20 аминокислот в составе белка

Важная и проверенная информация на тему: "20 аминокислот в составе белка" от профессионалов для спортсменов и новичков.

Аминокислоты — номенклатура, получение, химические свойства. Белки

Строение аминокислот

Аминокислоты — гетерофункциональные соеди­нения, которые обязательно содержат две функцио­нальные группы: аминогруппу — NH2 и карбоксиль­ную группу —СООН, связанные с углеводородным радикалом.Общую формулу простей­ших аминокислот можно за­писать так:

Так как аминокислоты со­держат две различные функ­циональные группы, которые оказывают влияние друг на друга, характерные реакции отличают­ся от характерных реакций карбоновых кислот и аминов.

Свойства аминокислот

Аминогруппа — NH2 определяет основные свой­ства аминокислот, т. к. способна присоединять к себе катион водорода по донорно-акцепторному механизму за счет наличия свободной электронной пары у атома азота.

Группа —СООН (карбоксильная группа) опреде­ляет кислотные свойства этих соединений. Следовательно, аминокислоты — это амфотерные орга­нические соединения. Со щелочами они реагируют как кислоты:

С сильными кислотами- как основания-амины:

Кроме того, аминогруппа в аминокислоте всту­пает во взаимодействие с входящей в ее состав кар­боксильной группой, образуя внутреннюю соль:

Ионизация молекул аминокислот зависит от кислотного или щелочного характера среды:

Так как аминокислоты в водных растворах ве­дут себя как типичные амфотерные соединения, то в живых организмах они играют роль буферных веществ, поддерживающих определенную концен­трацию ионов водорода.

Аминокислоты представляют собой бесцветные кристаллические вещества, плавящиеся с разло­жением при температуре выше 200 °С. Они растворимы в воде и нерастворимы в эфире. В зависи­мости от радикала R— они могут быть сладкими, горькими или безвкусными.

Аминокислоты подразделяют на природные (обнаруженные в живых организмах) и синтети­ческие. Среди природных аминокислот (около 150) выделяют протеиногенные аминокислоты (около 20), которые входят в состав белков. Они представляют собой L-формы. Примерно полови­на из этих аминокислот относятся к незамени­мым, т. к. они не синтезируются в организме че­ловека. Незаменимыми являются такие кислоты, как валин, лейцин, изолейцин, фенилаланин, ли­зин, треонин, цистеин, мети­онин, гистидин, триптофан. В организм человека данные вещества поступают с пи­щей. Если их количество в пище будет недостаточ­ным, нормальное развитие и функционирование орга­низма человека нарушаются. При отдельных заболеваниях организм не в состоянии син­тезировать и некоторые другие аминокислоты. Так, при фенилкетонурии не синтезируется тирозин. Важнейшим свойством аминокислот является способность вступать в молекулярную конденса­цию с выделением воды и образованием амидной группировки —NH—СО—, например:

Получаемые в результате такой реакции высокомолекулярные соединения содержат большое число амидных фрагментов и поэтому получили название полимамидов.

К ним, кроме названного выше синтетического волок­на капрона, относят, напри­мер, и энант, образующийся при поликонденсации аминоэнантовой кислоты. Для получения синтетических во­локон пригодны аминокис­лоты с расположением амино- и карбоксильной групп на концах молекул.

Полиамиды альфа-аминокислот называются пепти­дами. В зависимости от числа остатков аминокислот различают дипептиды, трипептиды, полипепти­ды. В таких соединениях группы —NH—СО— на­зывают пептидными.

Изомерия и номенклатура аминокислот

Изомерия аминокислот определяется различ­ным строением углеродной цепи и положением аминогруппы, например:

Широко распространены также названия ами­нокислот, в которых положение аминогруппы обо­значается буквами греческого алфавита: α, β, у и т. д. Так, 2-аминобутановую кислоту можно на­звать также α-аминокислотой:

Способы получения аминокислот

В биосинтезе белка в живых организмах уча­ствуют 20 аминокислот.

Полисахариды

Белки — главные «труженики» клетки — это природ­ные биополимеры, построенные из остатков 20 аминокис­лот. В состав макромолекул белков может входить от не­скольких десятков до сотен тысяч и даже миллионов ами­нокислотных остатков, причем свойства белка существенно зависят именно от порядка, в котором располагаются эти остатки друг за другом. Поэтому, очевидно, что число воз­можных белков практически не ограничено.

Аминокислотами называют органические соединения, в которых карбоксильная (кислотная) группа СООН и ами­ногруппа NH2. присоединены к одному и тому же атому углерода.

Рис.1 Структурная формула аминокислот

Строение такой молекулы описывается струк­турной формулой (рис.1), где R — радикал, разный для разных аминокислот. Таким образом, в состав аминокислот вхо­дят все четыре органогена С, О, Н, N, а в некоторые ради­калы может входить сера S.

По способности человека синтезировать аминокислоты из их предшественников они делятся на две группы:

  • Незаменимые: Триптофан, Фенилаланин, Лизин, Треонин, Метионин, Лейцин, Изолейцин, Валин, Аргинин, Гистидин;
  • Заменимые: Тирозин, Цистеин, Глицин, Аланин, Серин, Глутаминовая кислота, Глутамин , Аспарагиновая кислота, Аспарагин, Пролин

Незаменимые аминокислоты должны поступать в организм человека с пищей, так как они не синтезируются человеком, хотя некоторые заменимые аминокислоты синтезируются в организме человека в недостаточных количествах и тоже должны поступать с пищей.

Химические формулы 20 стандартных аминокислот:

Структуру белковой молекулы, поддерживаемую ковалентными связями между аминокислотными остатка­ми, называют первичной. Другими словами, первичная структура белка определяется простой последовательно­стью аминокислотных остатков. Эти остатки могут впол­не определенным образом размещаться в пространстве, образуя вторичную структуру. Наиболее характерной вто­ричной структурой является α-спираль, когда аминокис­лотные цепочки как бы образуют резьбу винта.

Читайте так же:  Наибольшее витамина д в продуктах

Одним из самых удивительных свойств макромолекул является то, что α-спирали с левой и правой «резьбой» встречаются в живой природе с существенно разной вероятностью: мак­ромолекул, «закрученных» вправо, почти нет. Асиммет­рию биологических веществ относительно зеркального отражения обнаружил в 1848 г. великий французский уче­ный Л. Пастер. Впоследствии выяснилось, что эта асим­метрия присуща не только макромолекулам (белкам, нук­леиновым кислотам), но и организмам в целом. Как воз­никла преимущественная спиральность макромолекул и как она в дальнейшем закрепилась в ходе биологической эволюции — эти вопросы до сих пор являются дискусси­онными и не имеют однозначного ответа.

Наиболее сложные и тонкие особенности структуры, отличающие один белок от другого, связаны с простран­ственной организацией белка, которую называют третич­ной структурой. Фактически речь идет о том, что спира­левидные цепочки аминокислотных остатков свернуты в нечто, напоминающее клубок ниток; В результате доволь­но длинные цепочки занимают сравнительно небольшой объем в пространстве. Характер свертывания в клубок от­нюдь не случаен. Напротив, он однозначно определен для каждого белка. Именно благодаря третичной структуре белок способен выполнять свои уникальные каталитиче­ские, ферментативные функции, когда в результате целенаправленного захватывания реагентов осуществляется их синтез в сложные химические соединения, сравнимые по сложности с самим белком. Ни одна из химических ре­акций, осуществляемых белками, не может происходить обычным образом.

Кроме третичной структуры, белок может иметь чет­вертичную структуру; когда имеет место структурная связь между двумя или несколькими белками. Фактиче­ски речь идет об объединении нескольких «клубков» из полипептидных цепочек.

Нуклеиновые кислоты (от лат. nucleus — ядро) — высокомолекулярные органические фосфорсодержащие соединения, биополимеры. Полимерные формы нуклеиновых кислот называют полинуклеотидами. Цепочки из нуклеотидов соединяются через остаток фосфорной кислоты (фосфодиэфирная связь). Поскольку в нуклеотидах существует только два типа гетероциклических молекул, рибоза и дезоксирибоза, то и имеется лишь два вида нуклеиновых кислот — дезоксирибонуклеиновая (ДНК) и рибонуклеиновая (РНК). Нуклеиновые кислоты ДНК и РНК присутствуют в клетках всех живых организмов и выполняют важнейшие функции по хранению, передаче и реализации наследственной информации. Одна из основных аксиом биологии утверждает, что наследственная информация о структуре и функциях био­логического объекта передается из поколения в поколе­ние матричным путем, а носителями этой информации являются нуклеиновые кислоты.

Эти биополимеры на первый взгляд проще, чем белки. «Алфа­вит» нуклеиновых кислот состоит всего из четырех «букв», в роли которых выступают нуклеотиды — сахара-пентозы, к которым присоединено одно из пяти азотистых основа­ний: гуанин (Г), аденин (А), цитозин (Ц), тимин (Т) и урацил (У).

Аденин Гуанин Тимин Цитозин

Рис. 2 Структуры оснований, наиболее часто встречающихся в составе ДНК

В рибонуклеиновой кислоте (РНК) сахаром явля­ется углевод рибоза (С5Н10О5), а в дезоксирибонуклеиновой кислоте (ДНК) — углевод дезоксирибоза (С5Н10О4), который отличается от рибозы только тем, что около одно­го из атомов углерода ОН-группа заменена на атом водоро­да. Три из указанных азотистых оснований — Г, А и Ц — входят в состав и РНК, и ДНК. Четвертое азотистое осно­вание в этих кислотах разное — Т входит только в ДНК, а У— только в РНК. Связываются звенья нуклеотидов фосфодиэфирными связями остатка фосфорной кислоты Н3РО4.

Относительные молекулярные массы нуклеиновых кислот достигают значений 1500 000-2 000 000 и более. Вторичная структура ДНК была установлена метода­ми рентгеноструктурного анализа в 1953 г. Р. Франклин, М. Уилкинсом, Дж. Уотсоном и Ф. Криком. Оказалось, что ДНК образуют спирально за­крученные нити, причем азо­тистое основание одной нити ДНК связано водородными связями с определенным ос­нованием другой нити: аде­нин может быть связан толь­ко с тимином, а цитозин — только с гуанином (рис. 3). Такие связи называются комплементарными (допол­нительными). Отсюда следует, что поря­док расположения оснований в одной нити однозначно оп­ределяет порядок в другой нити. Именно с этим связано важнейшее свойство ДНК — способность к самовоспроиз­ведению (репликации). РНК не имеет двойной спиральной структуры и по­строена как одна из нитей ДНК. Различают рибосомную (рРНК), матричную (мРНК) и транспортную (тРНК). Они отличаются теми ролями, которые играют в клетках.

Рис. 3 Различные формы двойной спирали ДНК

Что же означают последовательности нуклеотидов в нуклеиновых кислотах? Каждые три нуклеотида (их на­зывают триплетами или кодонами) кодируют ту или иную аминокислоту в белке. Например, последователь­ность УЦГ дает сигнал на синтез аминокислоты серин. Сразу возникает вопрос: сколько различных троек можно получить из четырех «букв»? Легко сообразить, что та­ких троек может быть 4 3 = 64. Но в образовании белков может участвовать всего 20 аминокислотных остатков, значит, некоторые из них можно кодировать разными тройками, что и наблюдается в природе.

Читайте так же:  Как нужно принимать глютамин

Например, лей­цин, серин, аргинин кодируются шестью тройками, пролин, валин и глицин — четырьмя и т. д. Это свойство триплетного генетического кода называется вырожденностью или избыточностью. Следует также отметить, что для всех живых организмов кодирование белков происходит одинаково (универсальность кодирования). В то же вре­мя последовательности нуклеотидов в ДНК не могут быть считаны иначе, как единственным способом (непе­рекрываемость кодонов).

Не нашли то, что искали? Воспользуйтесь поиском:

[3]

Составные части белковых веществ. Аминокислоты

Белки — полимерные молекулы, в которых мономерами служат аминокислоты. В составе белков в организме человека встречают только 20 аминокислот. Одни и те же аминокислоты присутствуют в различных по структуре и функциям белках.

· Аминокислоты, класс органических соединений, объединяющих в себе свойства кислот и аминов, т. е. содержащих наряду с карбоксильной группой —COOH аминогруппу —NH2. А. могут содержать одну NH2-группу и одну СООН-группу (моноаминокарбоновые кислоты), одну NH2-группу и две СООН-группы (моноаминодикарбоновые кислоты), две NH2-группы и одну СООН-группу (диаминомонокарбоновые кислоты).

Аспарагиновая — HOOC CH2CH (NH2) COOH

Циклические

. Эти аминокислоты имеют в своем составе ароматическое или гетероциклическое ядро и, как правило, не синтезируется в организме человека и должны поступать с пищей. Они активно участвуют в разнообразных обменных процессах. Так фенил-аланин служит основным источником синтеза тирозина — предшественника ряда биологически важных веществ: гормонов (тироксина, адреналина), некоторых пигментов. Триптофан помимо участия в синтезе белка, служит компонентом витамина PP, серотонина, триптамина, ряда пигментов. Гистидин необходим для синтеза белков, является предшественником гистамина, влияющего на кровяное давление и секрецию желудочного сока.

Серосодержащие аминокислоты

, содержащие атом серы: цистеин и метионин

7. Связи аминокислот в белковой молекуле, структура белковой молекулы.

Первичная структура белков— последовательность аминокислот в полипептидной цепи. Важными особенностями первичной структуры являются консервативные мотивы — сочетания аминокислот, играющих ключевую роль в функциях белка. Консервативные мотивы сохраняются в процессе эволюции видов, по ним часто удаётся предсказать функцию неизвестного белка.

Вторичная структура — локальное упорядочивание фрагмента полипептидной цепи, стабилизированное водородными связями. Ниже приведены самые распространённые типы вторичной структуры белков:

§ α-спирали — плотные витки вокруг длинной оси молекулы, один виток составляют 3,6 аминокислотных остатка, и шаг спирали составляет 0,54 нм [15] (так что на один аминокислотный остаток приходится 0,15 нм), спираль стабилизирована водородными связями между H и O пептидных групп, отстоящих друг от друга на 4 звена. Спираль построена исключительно из одного типа стереоизомеров аминокислот (L). Хотя она может быть как левозакрученной, так и правозакрученной, в белках преобладает правозакрученная. Спираль нарушают электростатические взаимодействия глутаминовой кислоты, лизина, аргинина. Расположенные близко друг к другу остатки аспарагина,серина, треонина и лейцина могут стерически мешать образованию спирали, остатки пролина вызывают изгиб цепи и тоже нарушают α-спирали.

§ β-листы (складчатые слои) — несколько зигзагообразных полипептидных цепей, в которых водородные связи образуются между относительно удалёнными друг от друга (0,347 нм на аминокислотный остаток) в первичной структуре аминокислотами или разными цепями белка, а не близко расположенными, как имеет место в α-спирали. Эти цепи обычно направлены N-концами в противоположные стороны (антипараллельная ориентация). Для образования β-листов важны небольшие размеры боковых групп аминокислот, преобладают обычно глицин и аланин.

Третичная структура — пространственное строение полипептидной цепи (набор пространственных координат составляющих белок атомов). Структурно состоит из элементов вторичной структуры, стабилизированных различными типами взаимодействий, в которых гидрофобные взаимодействия играют важнейшую роль. В стабилизации третичной структуры принимают участие:

§ ковалентные связи (между двумя остатками цистеина — дисульфидные мостики);

§ ионные связи между противоположно заряженными боковыми группами аминокислотных остатков;

§ гидрофильно-гидрофобные взаимодействия. При взаимодействии с окружающими молекулами воды белковая молекула «стремится» свернуться так, чтобы неполярные боковые группы аминокислот оказались изолированы от водного раствора; на поверхности молекулы оказываются полярные гидрофильные боковые группы.

Четвертичная структура (или субъединичная, доменная) — взаимное расположение нескольких полипептидных цепей в составе единого белкового комплекса. Белковые молекулы, входящие в состав белка с четвертичной структурой, образуются на рибосомах по отдельности и лишь после окончания синтеза образуют общую надмолекулярную структуру. В состав белка с четвертичной структурой могут входить как идентичные, так и различающиеся полипептидные цепочки. В стабилизации четвертичной структуры принимают участие те же типы взаимодействий, что и в стабилизации третичной. Надмолекулярные белковые комплексы могут состоять из десятков молекул.

Читайте так же:  Креатин для тренировок эффект

8. Свойства белковых веществ.

Все белковые вещества состоят из пяти элементов: углерода, водорода, кислорода, азота и серы. Содержание их в разных Б. веществах мало разнится в процентном отношении.

Белки являются структурной и функциональной основой жизнедеятельности всех живых организмов, они обеспечивают рост, развитие и нормальное протекание обменных процессов в организме. Это мускулы, кровь, сердце, кожа, кости. В природе существует примерно 10 10 -10 12 различных белков, обеспечивающих жизнедеятельность организмов всех степеней сложности от вирусов до человека. Белками являются ферменты, антитела, многие гормоны и другие биологические активные вещества. Необходимость постоянного обновления белков лежит в основе обмена веществ.

9. Классификация белковых веществ, характеристика отдельных представителей простых белков.

Классификация белковых веществ ( см. 5 вопр.)

Просты́е белки́ — белки, которые построены из остатков α-аминокислот и при гидролизе распадаются только на аминокислоты. Простые белки по растворимости в воде и солевых растворах условно подразделяются на несколько групп: протамины, гистоны, альбумины, глобулины, проламины, глютелины.

Простые белки по растворимости и пространственному строению разделяют на глобулярные и фибриллярные.

Глобулярные белки отличаются шарообразной формой молекулы (эллипсоид вращения), растворимы в воде и в разбавленных солевых растворах.

1.альбумины — растворимы в воде в широком интервале рН (от 4 до 8,5), осаждаются 70-100%-ным раствором сульфата аммония;

2.полифункциональные глобулины с большей молекулярной массой, труднее растворимы в воде, растворимы в солевых растворах, часто содержат углеводную часть;

3.гистоны — низкомолекулярные белки с высоким содержанием в молекуле остатков аргинина и лизина, что обусловливает их основные свойства;

4.протамины отличаются еще более высоким содержанием аргинина (до 85 %), как и гистоны, образуют устойчивые ассоциаты с нуклеиновыми кислотами, выступают как регуляторные и репрессорные белки — составная часть нуклеопротеинов;

5.проламины характеризуются высоким содержанием глутаминовой кислоты (30-45 %) и пролина (до 15 %), нерастворимы в воде, растворяются в 50-90 % этаноле;

6.глутелины содержат около 45 % глутаминовой кислоты, как и проламины, чаще содержатся в белках злаков.

Фибриллярные белки характеризуются волокнистой структурой, практически нерастворимы в воде и солевых растворах. Полипептидные цепи в молекулах расположены параллельно одна другой. Участвуют в образовании структурных элементов соединительной ткани (коллагены, кератины, эластины).

· Кератины — семейство фибриллярных белков, обладающих механической прочностью, которая среди материалов биологического происхождения уступает лишь хитину. В основном из кератинов состоят роговые производные эпидермиса кожи — такие структуры, как волосы, ногти, рога носорогов, перья.

α-кератины имеют конформацию в виде плотных витков вокруг длинной оси молекулы (α-спираль); эти кератины являются основой волос (включая шерсть), рогов, когтей и копыт млекопитающих.

β-кератины, более твёрдые и имеющие форму несколько зигзагообразных полипептидных цепей (т. н. β-листы); эти кератины обнаружены в когтях и чешуе рептилий, в их панцирях ( у черепах), в перьях, клювах и когтях птиц, в иглах дикобразов.

Видео (кликните для воспроизведения).

· Эластин — белок, обладающий эластичностью и позволяющий тканям восстанавливаться, например, при защемлении или порезе кожи. Эластин – белок, отвечающий за упругость

Эластин – белок, отвечающий за упругость соединительных тканей. Он широко используется в косметологии, так как содержит важнейшие аминокислоты ( валин, глицин, пролин, аланин и др.). В составе эластина также присутствуют уникальные белки – десмозины.

[2]

10. Строение нуклеопротеидов.

Нуклеопротеиды относятся к числу наиболее важных в биологическом отношении белковых веществ: с ними связаны процессы деления клеток и передача наследственных свойств; из нуклеинов построены фильтрующиеся вирусы, вызывающие заболевание.

Нукленопротеиды состоят из белка и нуклеиновых кислот. Нуклеиновые кислоты представляют собой сложное соединения, при гидролизе распадающиеся на простые нуклеиновые кислоты (мононуклеиды), которые построены из азотистых оснований, углеводов (пентоз) и фосфорной кислоты.

В составе нуклеотидов встречаются производные пуриновых и пиримидиновых оснований — аденин (6-амино-пурин), гуанин (2-амино-6-оксипурин), цитозин (2-окси-6-пиримидин), урацил (2,6-диоксипиримидин), тимин (2,6-диокси-5-метилпиримидин).

В зависимости от типа входящих в состав нуклеопротеидных комплексов нуклеиновых кислот различают рибонуклеопротеиды и дезоксирибонуклеопротеиды.

11. АТФ и ее роль в живых организмах.

Аденозинтрифосфа́т — нуклеотид, играет исключительно важную роль в обмене энергии и веществ в организмах; в первую очередь соединение известно как универсальный источник энергии для всех биохимических процессов, протекающих в живых системах. АТФ был открыт в 1929 году Карлом Ломанном. А в 1941 году Фриц Липман показал, что АТФ является основным переносчиком энергии в клетке.

Главная роль АТФ в организме связана с обеспечением энергией многочисленных биохимических реакций. Являясь носителем двух высокоэнергетических связей, АТФ служит непосредственным источником энергии для множества энергозатратных биохимических и физиологических процессов. Всё это реакции синтеза сложных веществ в организме: осуществление активного переноса молекул через биологические мембраны, в том числе и для создания трансмембранного электрического потенциала; осуществлениямышечного сокращения.

Читайте так же:  Чем опасен л карнитин

Помимо энергетической АТФ выполняет в организме ещё ряд других не менее важных функций:

§ Вместе с другими нуклеозидтрифосфатами АТФ является исходным продуктом при синтезе нуклеиновых кислот.

§ Кроме того, АТФ отводится важное место в регуляции множества биохимических процессов. Являясь аллостерическим эффектором ряда ферментов, АТФ, присоединяясь к их регуляторным центрам, усиливает или подавляет их активность.

§ АТФ является также непосредственным предшественником синтеза циклического аденозинмонофосфата — вторичного посредника передачи в клетку гормонального сигнала.

§ Также известна роль АТФ в качестве медиатора в синапсах.

12. Характеристика других сложных белковых веществ.

Сложные белки́ (протеиды, холопротеины) — двухкомпонентные белки, в которых помимо пептидных цепей (простого белка) содержится компонент неаминокислотной природы — простетическая группа. При гидролизе сложных белков, кроме свободных аминокислот, освобождается небелковая часть или продукты её распада.

В качестве простетической группы могут выступать различные органические (липиды, углеводы) и неорганические (металлы) вещества.

Среди сложных белков выделяют следующие основные классы: гликопротеины, липопротеины, хромопротеины, нуклеопротеины, фосфопротеины и металлопротеины.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: При сдаче лабораторной работы, студент делает вид, что все знает; преподаватель делает вид, что верит ему. 9348 —

| 7297 — или читать все.

185.189.13.12 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

20 аминокислот в составе белка

Для названия аминокислот используют три типа номенклатуры – тривиальную, рациональнцю и IUPAC.

По систематической номенклатуре (IUPAC) названия аминокислот образуются из названий соответствующих кислот прибавлением приставки амино и указанием места расположения аминогруппы по отношению к карбоксильной группе.

Нумерация углеродной цепи начинается с атома углерода карбоксильной группы.

По рациональной номенклатуре к тривиальному названию карбоновой кислоты добавляется приставка амино с указанием положения аминогруппы буквой греческого алфавита.

Формулы и названия некоторых α-аминокислот, остатки которых входят в состав белков

Если в молекуле аминокислоты содержится две аминогруппы, то в ее названии используется приставка диамино, три группы NH2триамино и т.д.

Наличие двух или трех карбоксильных групп отражается в названии суффиксом –диовая или -триовая кислота.

Аминокислоты, которые входят в состав белка

Читайте также:

  1. II. По принципу организационно-правовых форм предприятий, входящих в состав рыночной инфраструктуры
  2. II.Организация — это составная часть какого либо объекта, его свойство иметь упорядоченную структуру.
  3. IV. Социальный состав.
  4. IV.5. Переходные процессы при КЗ. Начальное значение периодической составляющей тока КЗ. Ударный ток КЗ. Ударный коэффициент КЗ
  5. IX. Состав и назначение основных элементов персонального компьютера.
  6. N Образуется на уровне третичной структуры белка-фермента
  7. N являются белками иммунной системы
  8. А. Сеть и состав архивов
  9. Абстинентный синдром проявляется как психическими, так и неврологическими и соматическими расстройствами, которые смягчаются или проходят после приема новой дозы алкоголя.
  10. Алгоритм составления оптимального маршрута
  11. Анализ возрастного состава

Основных аминокислот всего 20. Их названия связаны со случайными моментами. Все аминокислоты, которые входят в состав природных белков – это α -аминокислоты. Это значит, что амино- и карбоксильная группа находятся у одного углеродного атома.

1.

аминоуксусная кислота (глицин);

2.

α-аминопропанова кислота (аланин);

3.

α- аминопентановая кислота (валин);

4.

α-аминоизокапроновая кислота (лейцин);

5.

α-амино-β-метилвалериановая кислота (изолейцин);

6.

α-амино-β-гидроксипропановая кислота (серин);

7.

α-амино-β-гидроксимасляная кислота (треонин);

Сера-содержащие:

8.

α-амино-β-меркаптопропановая кислота (цистеин);

9.

α-амино-γ-метилтиомасляная кислота (метионин);

10.

α-аминоянтарная кислота (аспарагиновая кислота);

11.

амид аспарагиновой кислоты (аспарагин);

12.

α-аминоглутаровая кислота (глутаминовая кислота);

13.

амид α-аминоглутаровой кислоты (гутамин);

14.

α, ε-диаминокапроновая кислота (лейзин);

15.

α-амино-δ-гуанидиловалериановая кислота

Циклические:

16.

α-амино-β-фенилпропановая кислота (фенилаланин);

17.

α-амино-β-пара-гидроксифенилпроавновая кислота (тирозин);

18.

α-амино-β-имидозолилпропановая ксилота (гистедин);

19.

α-амино-β-индолилпропановая ксилота (триптофан);

20.

α-тетрагидропироллкарбоновая кислота (пролин).

Все природные аминокислоты относятся к L-стереохимическому ряду, D-рядя только как исключение у бактерий, в составе капсул, чтобы защитить бактерии от действия ферментов.

Лекция 3.

Для каждой аминокислоты характерны свои единственные физико-химические свойства – изоэлектрическая точка, т.е. та pH среды, при которой раствор этой аминокислоты электронейтрален. (q = 0).

Если же рассматривать такую кислоту в водной среде, то диссоциация происходит и по кислотному и по основному типу – биполярный ион.
Читайте так же:  Протеины шелка для волос

В организме млекопитающих в печени имеется фермент оксидаза-D-аминокислот, который избирательно разрушает D-аминокислоты, которые попадают с продуктами питания. D-аминокислоты обнаружены в составе некоторых пептидов микроорганизмов. Кроме того, D-аминокислоты входят в состав большого числа антибиотиков. Например, D-валин, D-лейцин входят в состав антибиотика границидина, D-фенилаланин входит в состав границидина-С, пенициллин содержит необычный фрагмент D-диметилцистеин.

Процесс рацимизиации (переход D в L) происходит не ферментативно, поэтому очень медленно. На этом основано определение возраста млекопитающих.

Все аминокислоты имеют в своем составе амино- и карбоксильную группу обладают свойствами аминов и карбоновых кислот. Кроме того, для α-аминокислот характерна нингидриновая реакция (общая с белками). Со спиртовым раствором нингидрина очень быстро появляется сине-фиолетовая окраска, с пропином желтая.

В конце XIX века была полемика, каким образом аминокислоты образуют связь если взять две аминокислоты, слить их вместе, то не получится никогда линейной структуры (в силу термодинамики, происходит циклизация). Получить полипептид в XIX веке никак не получалось.

Линейные молекулы никак не получатся. С т.з.термодинамики более выгодно отщепить 2Н2О, чем образовать линейную молекулу.

В 1888 году химик Данилевский предположил, что белки – это полипептиды, линейные молекулы, которые образуются в результате действия карбоксильной группы одной аминокислоты с карбоксильной группой другой аминокислоты с отщеплением воды и образуется дипептид:

Образуется амидная связь (для белков пептидная), эти пептидные связи разделены только одним углеродным атомом. На основании биуретовой реакции Данилевский сделал такой вывод. Это реакция раствора белка с сульфатом меди в щелочной среде, образуется сине-фиолетовое окрашивание, образуется хилатный комплекс с ионами меди, в результате того, что пептидная связь в белковых молекулах имеет специфическое строение. Вследствие кето-енольной таутомерии она на половину двойная, на половину одинарная. Характерная реакция с Cu(OH)2:

Биуретовая реакция характерна для биурета (рис.1), для малонамида (рис.2) , белков.

Для того, чтобы окончательно доказать, что бели – это полипептиды в 1901 году Фишер синтезировал полипептид, независимо от него Гофман тоже синтезировал полипептид:

Синтез полипептида по Фишеру:

Продукт давал биуретовую реакцию, плохо растворялся, не обладал биологической активностью, расщеплялся протолитическими ферментами, а ферменты – это специфические биокатализаторы, которые расщеплют природные белки, значит у этого продукта такая же структура, как у природных белков.

В настоящее время синтезировано более 2 тысяч разных белков. Главное в синтезе белка – это защита аминогруппы и активация карбоксильной группы для того, чтобы синтез был направленным. Защита аминогрупп осуществляется ацилированием, для этого обрабатывают ангидридами трихлоруксусной кислоты и вводят трифторацильную группы, либо обрабатывают по Зенерсу (бензиловым эфиром хлоругольной кислоты).

Для синтеза каждого конкретного полипептида, для сшивания конкретного участка могут быть проведены свои собственные методы.

Защита по Зервесу, активация по Курциусу, снятие защиты по Бекману:

Выход продуктов этим методом значительно не сравним с методами, которые применялись до этого. С помощью автоматизации можно использовать этот метод в промышленных масштабах.

У каждого полипептида имеется N-конец, а другой С-конец. Аминокислота, которая принимает участие изменяет окончание на ил

Глицил-валил-тирозил-гистедин-аспарагил-пролин. Для определения аминокислот в полипептиде, необходимо провести гидролиз, его проводят при 100 С в течение 24 часов 6Н соляной кислотой. Далее продукты гидролиза анализируют – разделяют методом ионообменной хроматографии на колонке сульфалированным полистиролом. Потом вымывают цитратным буфером из колонки. По количеству элюента судят о том, какие кислоты, т.е. в начале будут вымываться кислые кислоты, а самыми последними – основные. Таким образом можно определять в какой момент, какая аминокислота прошла, а количество определяется фотометрически с помощью нингдрина, этим методом можно определить 1 мкг. Если необходимо оперделить 1 нг, применяют флуоросканин, он реагирует с α-аминокислотами, образуя сильно флуоросцилирующее соединение. Определяют какие и сколько аминокислот находятся, а последовательность аминокислот определить не удается.

Дата добавления: 2014-01-07 ; Просмотров: 3601 ; Нарушение авторских прав? ;

[1]

Видео (кликните для воспроизведения).

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источники


  1. Перрин, Д. Повязки и ортезы в спортивной медицине (+ DVD-ROM): моногр. / Д. Перрин. — М.: Практика, 2011. — 63 c.

  2. Е.М. Алексеев Основы учета и калькуляции в предприятиях общественного питания / Е.М. Алексеев, Н.М. Мифтахудинова. — М.: Экономика, 2008. — 128 c.

  3. Дерюгина, М.П. Детское питание / М.П. Дерюгина. — М.: Мн: Хэлтон, 1997. — 352 c.
20 аминокислот в составе белка
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here