Аминокислоты для синтеза днк

Важная и проверенная информация на тему: "аминокислоты для синтеза днк" от профессионалов для спортсменов и новичков.

Синтез белка

Участок молекулы ДНК имеет следующий состав:
Г-А-Т-Г-А-А-Т-А-Г-Т-Г-Ц-Т-Т-Ц. Перечислите не менее трех последствий, к которым может привести случайная замена седьмого нуклеотида тимина на цитозин (Ц).

1) произойдет генная мутация — изменится кодон третьей аминокислоты;
2) в белке произойдёт замена одной аминокислоты на другую (иле на вал), в результате изменится первичная структура белка;
3) могут измениться все остальные структуры белка, что повлечет за собой появление у организма нового признака.
4*) если после сплайсинга этот нуклеотид окажется третим нуклеотидом триплета или некодирующим участком ДНК, то может не произойти никаких изменений.
5*) если это часть управляющего участка (промотор, оператор), то синтез белка может прекратиться.
=======
*Сложно! Если не понимаете, то запоминать не надо!

Чем объясняется огромное разнообразие белков, образующихся в живых организмах? Укажите не менее трех причин.

[3]

1) В состав белков входит 20 видов аминокислот. Количество вариантов белка, состоящего из ста аминокислот, составляет 20 100 .
2) В состав белков могут входить разнообразные небелковые компоненты, например, углеводы в гликопротеинах, гем в гемоглобине.
3) Генные мутации, постоянно происходящие в организмах, приводят к изменению структуры белка, кодируемого данным геном.

Какова роль нуклеиновых кислот в биосинтезе белка?

ДНК содержит информацию для синтеза белка, иРНК переносит эту информацию к рибосоме, рРНК входит в состав рибосом, тРНК доставляет к рибосоме аминокислоты.

Почему реакции биосинтеза белка называют матричными?

В основе реакций матричного синтеза лежит комплементарное взаимодействие между нуклеотидами. Образуются полимеры, строение которых полностью определяется строением исходного вещества – матрицы. ДНК является матрицей для синтеза иРНК, а иРНК является матрицей для синтеза белка.

Что служит матрицей для синтеза и-РНК?

и-РНК синтезируется на матрице ДНК в процессе транскрипции.

Какие процессы происходят на рибосоме при биосинтезе белка?

1. К кодону, находящемуся в А-участке рибосомы, по принципу комплементарности присоединяется антикодон тРНК, несущей определенную аминокислоту.
2. рРНК катализирует образование пептидной связи между двумя находящимися радом (в А- и П-участках) аминокислотами. При этом вся цепочка, находившаяся в П-участке, «перевешивается» на аминокислоту, находящуюся в А-участке.
3. Рибосома сдвигается на один кодон. Пустая тРНК, стоявшая в П-участке, уходит в цитоплазму, тРНК с полипептидом оказывается в П-участке, а в А-участке оказывается новый, еще не транслированный кодон.

В каких случаях изменение последовательности нуклеотидов ДНК не влияет на структуру и функции соответствующего белка?

1) Если изменился третий нуклеотид триплета и получился триплет, кодирующий ту же самую аминокислоту.
2) Если изменения произошли в интроне, который будет вырезан в процессе сплайсинга.

В каких реакциях обмена веществ осуществляется связь между ядром, ЭПС, рибосомами, митохондриями?

В реакциях биосинтеза белка: в ядре синтезируется иРНК, в шероховатой ЭПС на рибосомах синтезируется белок, митохондрии поставляют АТФ для этих процессов.

В пробирку поместили рибосомы из разных клеток, весь набор аминокислот и одинаковые молекулы и-РНК и т-РНК, создали все условия для синтеза белка. Почему в пробирке будет синтезироваться один вид белка на разных рибосомах?

Рибосома осуществляет сборку молекулы белка в соответствии с информацией, записанной в иРНК. Поскольку иРНК поместили одинаковые, то и белки будут одинаковые.

Биосинтез аминокислот

ПРОМЫШЛЕННЫЙ БИО СИНТЕЗ АМИНОКИСЛОТ

МИКРОБИОЛОГИЧЕСКИЙ СИНТЕЗ. ОБЩИЕ СВЕДЕНИЯ

Микробиологический синтез — промышленный способ получения химических соединений и продуктов (например, дрожжей кормовых), осуществляемый благодаря жизнедеятельности микробных клеток. Иногда к микробиологическому синтезу относят также промышленные процессы, основанные на использовании иммобилизованных клеток.

[2]

Наиболее важные продукты микробиологического синтеза:

Антибиотики; Аминокислоты ; Нуклеозидфосфаты; Витамины , провитамины, коферменты; Алкалоиды; Гиббереллины; Ферменты; Белково-витаминные препараты.

Некоторые продукты микробиологического синтеза, например, пекарские дрожжи, давно использовались человеком, однако широкое применение микробиологического синтеза началось в 40-50х годах 20 века в связи с освоением производства пенициллина. К этому же времени относится возникновение новой отрасли народного хозяйства — микробиологической промышленности.

В микробиологическом синтезе сложные вещества образуются из более простых в результате функционирования ферментных систем микробной клетки. Этим он отличается от брожения. в результате которого также образуются различные продукты обмена веществ микроорганизмов (спирты, органические кислоты и др.), но преимущественно в результате ферментативного распада органических веществ.

Микробиологический синтез использует способность некоторых организмов размножаться с большой скоростью (выделены бактерии и дрожжи, биомасса которых увеличивается в 500 раз быстрее, чем у самых урожайных сельскохозяйственных культур) и к «сверхсинтезу» — избыточному образованию продуктов обмена веществ (аминокислот, витаминов и др.), превышающему потребности микробной клетки.

Для микробиологического синтеза органических соединений в качестве сырья применяют наиболее дешевые источники азота (например, нитраты или соли аммония) и углерода (например, углеводы, органические кислоты, спирты, жиры, углеводороды, в том числе газообразные). Микробиологический синтез включает ряд последовательных стадий. Главные из них — подготовка необходимой культуры микроорганизма — продуцента, выращивание продуцента, культивирование продуцента в заданных условиях, в ходе которого и осуществляется микробиологический синтез (эту стадию часто называют ферментацией), фильтрация и отделение биомассы, выделение и очистка требуемого продукта (если это необходимо), сушка.

Ферментацию проводят в специальных реакторах (ферментерах), снабженных устройствами для перемешивания среды и подачи стерильного воздуха. Управление процессом может осуществляться с помощью электроники. Наиболее удобно ферментацию осуществлять непрерывным способом — при постоянной подаче питательной среды и выводе продуктов микробиологического синтеза. Так производят, например, кормовые дрожжи. Однако большинство метаболитов получают периодическим способом — с выводом продукта в конце процесса.

МИКРОБНЫЙ СИНТЕЗ АМИНОКИСЛОТ

Специфические ферменты, регулирующие биосинтез аминокислот, широко распространены у бактерий. В любом живом организме аминокислоты расходуются прежде всего на биосинтез первичных метаболитов — ферментных и неферментных белков. Следовательно, возможен и другой путь получения аминокислот, а именно — из гидролизатов соответствующих белков (триптофан разрушается при кислотном гидролизе), в том числе из нативной (т.е. находящейся в природном состоянии, не модифицированной, сохранившей структуру, присущих ей живых клеток) биомассы микробных клеток.

Промышленный биосинтез аминокислот. Природные аминокислоты являются, как правило, оптически активными L — и D ­формами, которые трудно разделить. Вот почему микробный синтез с помощью коринебактерий (к данной группе микроорганизмов относятся бифидобактерии и пропионовокислые бактерии ) и некоторых других микробов является ныне основным и экономически выгодным.

Читайте так же:  Последовательность аминокислот в молекуле

Первое место здесь по праву занимает Япония, где лишь глутаминовой кислоты изготавливается свыше 100 тысяч тонн в год; большинство природных незаменимых аминокислот производит фирма «Такеда». С. Киношита, впервые в 50-е годы открывший и доказавший перспективность микробного синтеза, уже 1963 году признавал: «Мало сомнения в том, что недалеко то время, когда с помощью микроорганизмов будет возможно производить все известные аминокислоты».

Это время наступило уже к 70-м годам. Получены микробы ­суперпродуценты из родов Brevibacterium, Corynebacterium, Micrococcus и другие, с помощью которых освоено крупнотоннажное производство не только глутамата, но и L — лизина, L — валина, L — гистидина и других. Получен штамм Escherichia coli, продуцирующий за 48 часов 27 г / л L — пролина, и штамм, продуцирующий до 22,4 г / л L — фениланина. С помощью Corynebacterium sp. можно получигь алкапосодержащих средах L ­тирозин (до 19 г/л ); С помощью Corynebacterium glutamicum на глюкозной среде — L ­валин (до 11 г / л; L — аргинин, L — гистидин, L — изолейцин — 15 — 20,8 г / л.

Энзиматический синтез

По данному способу процесс получения аминокислот заключается в синтезе предшественника аминокислоты и последующей его трансформации в целевую аминокислоту с использованием выделенных ферментов или микроорганизмов.

Ферментативный синтез

Данный способ получения аминокислот основан на способности микроорганизмов синтезировать все L-аминокислоты, а в определенных условиях — обеспечивать их «сверхсинтез». Основное отличие микробиологической ферментации от энзиматической заключается в использовании не отдельных выделенных, а всех ферментов микроорганизмов.

Продуцентами аминокислот в биосинтезе наиболее часто служат бактерии, относящиеся к родам Corynebacterium, Brevibacterium, Escherishia. Субстратом при производстве аминокислот является углеводное сырье (меласса, гидролизаты крахмала и целлюлозы), этанол, уксусная или другие органические кислоты, а также углеводороды. В качестве источника азота используют соли аммония, нитраты, а также аминокислоты.

У микробиологического синтеза есть свои преимущест­ва и свои недостатки. С одной стороны, в нем мало стадий и требуется от­носительно простая и универсальная аппаратура. С другой стороны, живые организмы, с которыми приходится работать, очень чувствительны к ма­лейшему изменению условий, а концентрация целевого продукта получа­ется низкой, что ведет к увеличению размеров аппаратуры.

Биосинтез аминокислот. Общие принципы.

Большинство остальных аминокислот получает свою аминогруппу от одной из первичных аминокислот в результате трансаминирования. Из свободных аминокислот в цитоплазме количественно преобладает глутаминовая кислота (больше половины всего «пула» аминокислот).

У ряда микроорганизмов хорошо изучены пути синтеза всех двадцати аминокислот. Исходным материалом для синтеза служат простые промежуточные продукты обмена (пируват, 2-оксоглутарат, оксалоацетат или фумарат, эритрозо-4-фосфат, рибозо-5-фосфат и АТР). При синтезе большинства аминокислот аминогруппа вводится только на последнем этапе путем трансаминирования. Некоторые аминокислоты образуются в результате ряда превращений других аминокислот, и в этих случаях трансаминирования не требуется. Аминокислоты можно подразделить на группы, исходя из путей их синтеза (рис. 7.17). Синтез различных аминокислот включает разное число этапов, катализируемых ферментами. Примечателен тот факт, что аминокислоты, которые человек должен получать в готовом виде, синтезируются особенно длинным путем.

Будьте здоровы!

ССЫЛКИ К РАЗДЕЛУ О ПРЕПАРАТАХ ПРОБИОТИКАХ

Питай гены правильно. Роль витаминов B

Витамины группы B и НАД-h

Несколько витаминов группы B играют ключевую роль в цикле Кребса. Фигурально, выражаясь, они служат таким своеобразным ядром процессов производства энергии.
В частности, витамин B2 (рибофлавин) и B3 (ниацинамид) задействуются в центре производства энергии клеток, позволяя им выполнять важнейшие задачи, в том числе и собственный синтез новых ДНК.

Пациенты с синдромом хронической усталости (СХУ) обычно имеют недостаточное количество витаминов группы B в организме, это один из основных факторов их пониженного уровня биоэнергетики. В таких случаях помогают витаминные комплексы с высоким содержанием витаминов группы B и с витамином С, способствующим улучшению функции синтеза карнитина в организме.

Другой важный микроэлемент НАД-h, тесно связанный в процессах биохимии с витамином B3 также эффективен при борьбе с СХУ. Доктор Джозеф Белланти со своими коллегами из Джорджтаунского Университета (Вашингтон) исследовали 26 пациентов, страдающих СХУ. Они получали 10 миллиграмм НАД-h ежедневно в течение четырех недель или плацебо. 8 из 26 пациентов (31%) получавших НАД-h продемонстрировали улучшение (симптомы СХУ стали менее выраженными) и только 2 из 26 (8%) получавших плацебо показали некоторую положительную динамику.

Как принимать витамины B-группы и НАД-h.

Если Вы принимаете какие-то мультивитаминные комплексы, то в них уже содержатся витамины B-группы в том или ином количестве. Однако, в подавляющем большинстве витаминных комплексов количество витаминов B-группы очень незначительно, чтобы приносить какую-то ощутимую пользу для улучшения биоэнергетики.

Для общего поддержания здоровья мультивитаминные добавки должны содержать не менее 10 миллиграмм витамина B2 и 10 миллиграмм витамина B3. Если же Вы страдаете от раздражительности, стрессов и депрессии, то необходимо ежедневно употреблять от 50 до 10 миллиграмм витаминов B1,B2,B3. Если же вы постоянно страдаете от СХУ, то дозировки вышеперечисленных витаминов необходимо увеличить до 100 миллиграмм в день и дополнительно включить в рацион 10 миллиграммов НАД-h.

Микроэлементы, ответственные за синтез и ремонт ДНК

Когда клетки в нашем организме создают собственные копии, что необходимо для роста организма, заживления ран и замещения старых отмирающих клеток, первое, что делает старая клетка – это копирует 3 миллиарда так называемых химических букв, формирующих её ДНК. И уже эта новая ДНК управляет процессом синтеза новой клетки.

Однако, увы, качество копировния ДНК медленно, но верно ухудшается в процессе репликации клеток вследствие ошибок, накапливающихся при копировании. Это как фотография фотография, качество каждой последующей копии с копии ухудшается по сравнению с оригиналом. Эти ошибки репликации, а также повреждения ДНК свободными радикалами приводит к развитию процессов старения, дисфункциям и, в конечном счете, к развитию тяжелых хронических заболеваний.

Хотя этот процесс разрушения неизбежен, мы можем его замедлить при помощи правильного питания и приема определенных пищевых добавок. Хотя правильное питания – это залог правильного функционирования ДНК, некоторые добавки (в форме таблеток, капсул или других формах) гарантируют, что “строительные блоки”, необходимые для синтеза и ремонта ДНК всегда будут присутствовать в организме в достаточном количестве.

Читайте так же:  Какой протеин лучше для мужчин

Два семейства микроэлементов критичны для этих процессов. Во-первых, это витамины группы B, которые жизненно необходимы для процессов синтеза, восстановления и регуляции ДНК. Во-вторых, это аминокислоты, содержащиеся в белках, которые мы употребляем в пищу. Аминокислоты необходимы организму для синтеза собственных белков, ферментов и гормонов. В первой части этой главы рассмотрим подробнее процессы синтеза, восстановления и регулирования ДНК, а во второй части этой главы подробнее рассмотрим и изучим роль аминокислот.

Витамины B-группы как стройматериал для ДНК

Несмотря на то, что миллиарды долларов сегодня тратятся на исследования генов, большинство ученых игнорирует то, что фундаментальную зависимость ДНК от витаминов B-группы. В самом деле, если связь витаминов B-группы и процессов синтеза и восстановления ДНК и упоминается в научных статьях и книгах, то как-то очень коротко, как бы между делом.

Ключевая роль Витаминов B-группы в процессе синтеза ДНК.

Организму необходимы витамины B-группы для создения основы ДНК – нуклеотидов, молекул, формирующих химический алфавит – аденина, цитозина, гуанина и Тимина, это четырехбуквенный алфавит ДНК. Немного упрощая реальность, можно сказать, что для синтеза Тимина необходимы витамины B3, B6 и фолиевая кислота, для синтеза цитозина необходим витамин B3, гуанин и аденин требуют для своего синтеза наличия витамина B3 и фолиевой кислоты. Без этих микроэлементов ДНК не может существовать в принципе, поэтому они столь важны.

Эти витамины поддерживают процесс, называемый биохимиками углеродным метаболизмом. Углерод, как мы помним со школьных уроков, самое распространенный на Земле элемент. Помимо синтеза, восстановления и регулирования ДНК, витамины B-группы выполняют еще ряд функций, важных для поддержания физического и психического здоровья организма.

Для осуществления некоторых вспомогательных биохимических реакций жизненно необходима фолиевая кислота.

Например, одна её химическая форма также необходима для синтеза ДНК, в то время как другая её форма совместно с витамином B12 ответственны за так называемую реакцию ДНК-метилирования, которая также критична для правильного функционирования ДНК и будет рассмотрена подробнее позже.

Витамин B12. Необходим клеткам для синтеза ДНК и осуществления реакции метилирования. Исследования австралийского ученого Майкла Фенеча показали, что низкий уровень витамина B12, как у молодых, так и у здоровых людей, приводит к преждевременному старению и повышенному риску развития онкологических заболеваний.

Витамин B6. Известный также под названием пиридоксин, преобразуется клетками в вещество пиридоксал 5. – фосфат, также доступный в форме пищевых добавок, однако, стоящий значительно дороже, чем сам витамин B6. Витамин B6 необходим для синтеза в организме глицингидроксиметилтрансферазы, белка, вовлеченного в процесс синтеза ДНК.

Витамин B3, известный также как ниацин (никотиновая кислота) и ниацинамид (никотинамид), витамин B3 играет ключевую роль в синтезе АТФ, что уже обсуждалось в предыдущих главах. Также витамин B3 необходим клеткам для синтеза ключевого для процесса восстановления ДНК фермента поли – (АДФ-рибоза) полимеразы. Этот фермент, известный под сокращенным названием (PARP) восстанавливает ДНК и его недостаток существенно увеличивает риски раковых заболеваний. Прием дополгительных количеств витамина B3 помогает ДНК противостоять атакам канцерогенных веществ.

Как недостаток витаминов группы B влияет на восстановление ДНК

Многие люди ужасно боятся радиоактивного заражения, которое может случиться при ядерном взрыве или употреблении в пищу зараженных радиацией растений. Однако, согласно исследованиям Брюса Эймса (Калифорнийский Университет в Беркли) повреждения ДНК, вызванные недостатком витаминов B-группы вызывают схожие с радиоактивным заражением симптомы. И в том, и в другом случае, происходит разрыв спиралей ДНК.

К сожалению, более 10% американцев испытывают хронический недостаток по крайней мере одного из витаминов B-группы, вызванной чрезмерно консервативными рекомендуемыми правительством дозировками. В действительности же, для американцев, страдающих от недостатков витаминов B-группы может быть в разы выше. А, как мы теперь понимаем, недостаток любого из таких витаминов замедляет синтез ДНК или делает этот процесс вовсе невозможным.

Особенно (подтверждено многочисленными исследованиями) критичен недостаток витаминов B3 и B2 и B6. Он продуцирует развитие генетической нестабльности, ломкости хромосом и разрывы спиралей ДНК.

Активация аминокислот

Для каждой из 20 аминокислот имеется соответствующий фермент, называемый аминоацил-т-РНК-лигазой (АРСазой, или кодазой), который катализирует соединение определенной аминокислоты с соответствующей ей специфической т-РНК (специфичность т-РНК определяется составом нуклеотидов антикодона в антикодоновой петле т-РНК). Процесс активации аминокислот называют термином «рекогниция», т.е. узнавание.Активация аминокислот необходима не только по тому, что только в активированном состоянии они способны к образованию пептидных связей, но и потому, что аминокислоты сами по себе не способны узнавать кодоны м-РНК (как было отмечено выше, эту роль выполняют т-РНК).

Активация аминокислот локализована в цитоплазме, осуществляется в две стадии. На первой стадии аминокислота связывается в активном центре кодазы, специфичной к этой аминокислоте, и реагирует с АТФ, образуя высокоэнергетический ангидрид – аминоациладенилат (аа-аденилат). Например, активацию пролина можно представить следующей упрощенной схемой:

Видео (кликните для воспроизведения).

На второй стадии активированный остаток аминокислоты (в нашем случае –остаток пролина) переносится за счет энергии АТФ с аминоациладенилата (аа) (в нашем случае – с пролил-аденилата) на концевую 3′-ОН-группу концевого остатка рибозы т-РНК аа (у нас т-РНК про ), в результате образуется сложноэфирная связь между остатком аминокислоты и остатком рибозы 3′-концевого остатка аденозина, входящего в последовательность нуклеотидов 3′-конца т-РНК (-ЦЦА 3′). Процесс переноса можно отразить следующей схемой:

Обратите внимание, что присоединение аминокислот к специфичным т-РНК сопровождается переносом энергии, которая используется на образование пептидных связей (– CONH –) между аминокислотами в процессе биосинтеза белка на рибосоме!

Точность трансляции зависит от субстратной специфичности АРСаз как в отношении т-РНК, так и соответствующей ей аминокислоты. АРСазы способны распознавать и исправлять свои собственные ошибки. Например, из-за того, что радикалы аминокислот валина и изолейцина структурно очень похожи друг на друга, можно было ожидать, что на место изолейцина в полипептидную цепь будет часто встраиваться валин. Однако частота ошибок при включении структурно похожих аминокислот составляет только одну на 1300 аминокислотных остатков. АРСаза обеспечивает немедленное удаление ошибочно присоединенных аминокислотных остатков, катализируя гидролиз «неправильного» аминоациладенилата:

Читайте так же:  Глицин аргинин применение в медицине

H2N – CH – C

ОАМФ + H2O H2N – CH – COOH + АМФ

Затем АРСаза иле начинает все сначала и образует правильный аа-аденилат:

H2N – CH – COOH + АТФ H2N – CH – CO

Аминокислоты для синтеза днк

Найдите три ошибки в приведённом тексте «Репликация ДНК». Укажите номера предложений, в которых допущены ошибки, исправьте их.

(1)Репликация ДНК — это процесс удвоения молекулы ДНК. (2)Мономерами для синтеза ДНК служат аминокислоты. (3)Процесс начинается с того, что фермент хеликаза расплетает цепи ДНК, разрушая ковалентные связи между основаниями. (4)Однонитевые участки ДНК удерживаются специальными углеводами для обеспечения их большей стабильности. (5)Затем с ДНК связывается фермент ДНК-полимераза, осуществляющий синтез новой цепи на матрице старой. (6)Поскольку цепи ДНК антипараллельны, синтез одной из цепей происходит в противоположную движению хеликазы сторону. (7)Эта цепь называется отстающей, её синтез происходит фрагментами с периодической перестановкой ДНК-полимеразы.

Ошибки допущены в предложениях:

1. 2 — мономеры ДНК — нуклеотиды.

2. 3 — хеликаза разрушает водородные связи, а не ковалентные.

3. 4 — однонитевые участки удерживаются специальными белками.

Активирование аминокислот

Необходимым условием синтеза белка, который в конечном счете сводится к полимеризации аминокислот, является наличием в системе не свободных, а так называемых активированных аминокислот, располагающих своим внутренним запасом энергии. Активация свободных аминоксилот осуществляется при помощи специфических ферментов аминоацил -тРНК-синтетаз в присутствии АТФ. Этот процесс протекает в 2 стадии:

[1]

Обе стадии катализируются одним и тем же ферментом. На первой стадии аминокислота реагирует с АТФ и образуется пирофосфат и промежуточный продукт, который на второй стадии реагирует с соответствующей 3?-ОН-тРНК, в результате чего образуется аминоацил -тРНК и освобождается АМФ. Аминоацил-тРНК располагает необходимым запасом энергии.

Аминокислота присоединяется к концевому 3?-ОН-гидроксилу АМФ, который вместе с двумя остатками ЦМФ образует концевой триплет ЦЦА, являющийся одинаковым для всех транспортных РНК.

Регуляция синтеза белка

Основным условием существования любых живых организмов является наличие тонкой, гибкой, согласованно действующей системы регулирования, в которой все элементы тесно связаны друг с другом. В белковом синтезе не только количественный и качественный состав белков, но и время синтеза имеет прямое отношение ко многим проявлениям жизни. В частности, от этого зависит приспособление микроорганизмов к условиям окружающей питательной среды как биологической необходимости или приспособление сложного многоклеточного организма к физиологическим потребностям при изменении внутренних и внешних условий.

Клетки живых организмов обладают способностью синтезировать огромное количество разнообразных белков. Однако они никогда не синтезируют все белки. Количество и разнообразие белков, в частности ферментов, определяются степенью их участия в метаболизме. Более того, интенсивность обмена регулируется скоростью синтеза белка и параллельно контролируется аллостерическим путем. Таким образом, синтез белка регулируется внешними и внутренними условиями, которые диктуют клетке синтез такого количества белка и таких белков, которые необходимы для выполнения физиологических функций. Все это свидетельствует о весьма сложном, тонком и целесообразном механизме регуляции синтеза белка в клетке.

Общую теорию регуляции синтеза белка разработали Ф. Жакоб и Ж. Моно. Сущность этой теории сводится к «выключению» или «включению» генов как функционирующих единиц, к возможности или невозможности проявления их способности передавать закодированную в структурных генах ДНК генетическую информацию для синтеза специфических белков. Эта теория, доказанная в опытах на бактериях, получила широкое признание, хотя в эукариотических клетках механизм регуляции синтеза белка вероятно более сложный. У бактерий доказана индукция ферментов (т. е. синтез ферментов de novo) при добавлении в питательную среду субстратов этих ферментов. Добавление конечных продуктов реакции, образование которых катализируется этими же ферментами, напротив, вызывает уменьшение количества синтезируемых ферментов. Это последнее явление получило название репрессии синтеза ферментов. Оба явления — индукция и репрессия — взаимосвязаны.

Согласно теории Жакоба и Моно в биосинтезе белка у бактерий участвуют по крайней мере три типа генов: структурные гены, ген-регулятор и ген-оператор. Структурные гены определяют первичную структуру синтезируемого белка. Именно эти гены в цепи ДНК являются основой для биосинтеза мРНК, которая затем поступает в рибосому и, как было указано выше, служит матрицей для биосинтеза белка.

Синтез мРНК на структурных генах молекулы ДНК непосредственно контролируется определенным участком, называемым геном-оператором. Он служит как бы пусковым механизмом для функционирования структурных генов. Ген-оператор локализован на крайнем отрезке структурного гена или структурных генов, регулируемых им. «Считывание» генетического кода, т. е. формирование мРНК, начинается спромотора— участка ДНК, являющегося точкой инициации для синтеза мРНК, и далее распространяется последовательно вдоль оператора и струк¬турных генов. Координированный одним оператором одиночный ген или группа структурных генов образует оперон.

В свою очередь деятельность оперона находится под контролирующим влиянием другого участка цепи ДНК, получившего название гена-регулятора. Поскольку структурные гены и ген-регулятор находятся в разных участках цепи ДНК, связь между ними, как предполагают Ф. Жакоб и Ж. Моно, осуществляется при помощи вещества-посредника, оказавшегося белком и названного репрессором. Образование репрессора происходит в рибосомах ядра на матрице специфической мРНК, синтезированной на гене-регуляторе. Репрессор имеет сродство к гену-оператору и обратимо соединяется с ним в комплекс. Образование такого комплекса приводит к блокированию синтеза мРНК и, следовательно, синтеза белка, т.е. функция гена-регулятора состоит, в том, чтобы через белок-репрессор прекращать деятельность структурных генов, синтезирующих мРНК. Репрессор, кроме того, обладает способностью строго специфически связываться с определенными низкомолекулярными веществами, называемыми индукторами, или эффекторами. Когда такой индуктор соединяется с репрессором, последний теряет способность связываться с геном-оператором, который таким образом выходит из-под контроля гена-регулятора, и начинается синтез мРНК.

Это типичный пример отрицательной формы контроля, когда индуктор, соединяясь с белком-репрессором, вызывает изменения его третичной структуры настолько, что репрессор теряет способность связываться с геном-оператором. Этот процесс аналогичен взаимоотношениям аллостерического центра фермента с эффектором, под влиянием которого изменяется третичная структура фермента и он теряет способность связываться со своим субстратом.

Механизм описанной регуляции синтеза белка и взаимоотношения репрессора со структурными генами были доказаны в опытах на Е. coli, на примере синтеза Р-галактозидазы (лактазы) — фермента, гидролизующего молочый сахар на глюкозу и галактозу. Дикий штамм Е. coli, обычно растущий на глюкозе, не может расти, если вместо глюкозы в питательную среду добавить лактозу (новый источник энергии и углерода) до тех пор, пока не будут синтезированы соответствующие ферменты (адаптивный синтез). При поступлении в клетку лактозы (индуктора) молекулы ее связываются с белком-репрессором и блокируют связь между репрессором и геном-оператором. При этом ген-оператор и структурные гены начинают снова функционировать и синтезировать необходимую мРНК, которая «дает команду» рибосомам синтезировать р-галактозидазу. Одновременно ген-регулятор продолжает вырабатывать репрессор, но он блокируется новыми молекулами лактозы, поэтому синтез фермента продолжается. Как только молекулы лактозы будут полностью расщеплены, репрессор освобождается и, поступив в ДНК, связывает ген-оператор и блокирует синтез мРНК, а следовательно, синтез Р-галактозидазы в рибосомах.

Читайте так же:  Л аргинин какой лучше брать

Таким образом, биосинтез мРНК, контролирующий синтез белка в рибосомах, зависит от функционального состояния репрессора. Если репрессор, который представляет собой белок, построенный из 4 субъединиц с общей молекулярной массой около 150000 Да, находится в активном состоянии, не связан с индуктором, то он блокирует ген-оператор и синтез мРНК не происходит. При поступлении метаболита-индуктора в клетку его молекулы связывают репрессор, превращая его в неактивную форму (или, возможно, снижая его сродство к гену-оператору). Структурные гены выходят из-под запрещающего контроля и начинают синтезировать нужную мРНК.

Выше было указано, что концентрация ряда ферментов в клетках резко снижается при увеличении концентрации отдаленных конечных продуктов, образующихся в цепи последовательных ферментативных реакций. Такой эффект, получивший название репрессии ферментов, часто наблюдается при реакциях биосинтеза. В этих случаях оказалось, что молекулы репрессора, также образующиеся в рибосомах ядра по «команде» гена-регулятора, являются неактивными и сами по себе не обладают способностью подавлять деятельность гена-оператора и, следовательно, всего оперона, но приобретают такую способность после образования комплекса с конечным или одним из конечных продуктов биосинтетического процесса.

Конечный продукт выступает, таким образом, в качестве корепрессора. Имеются данные, показывающие, что в качестве корепрессоров в синтезе ферментов обмена аминокислот выступает не свободная аминокислота как конечный продукт биосинтетической реакции, а комплекс ее с тРНК — аа-тРНК.

В регуляции экспрессии структурных генов специфическое участие принимает особый белок, получивший название катаболитный ген-активирующий белок (от англ, catabolite gene activation protein, сокращенно обозначаемый САР); этот белок взаимодействует с цАМФ, образуя комплекс, способствующий прикреплению РНК-полимеразы к промоторному участку генома. В присутствии комплекса САР-цАМФ фермент может начать транскрипцию оперона, включая структурные гены, т. е. в клетках имеется еще один, дополнительный САР-цАМФ регулятор, действующий скорее всего в качестве положительного регулятора, поскольку его присутствие необходимо для начала экспрессии гена. Таким образом, концепции Жакоба и Моно о механизме проявления активности генов признана одним из блестящих достижений молекулярной биологии. Она явилась логическим развитием многочисленных исследований, проведенных генетиками и биохимиками в предшествующие десятилетия.

В заключение следует вкратце рассмотреть вопрос о регуляции процессов дифференцировки клеток высших организмов. ДНК, присутствующая во всех соматических клетках, вероятнее всего, имеет одинаковую первичную структуру у данного организма и соответственно располагает информацией для синтеза любых или всех белков тела. Тем не менее клетки печени, например, синтезируют сывороточные белки, а клетки молочной железы — белки молока. Нет сомнения в том, что в дифференцированных клетках, очевидно, существует тонкий механизм контроля деятельности ДНК в разных тканях, обеспечивающий синтез многообразия белков.

Механизмы, лежащие в основе этой регуляции, пока неизвестны. Для объяснения их имеется ряд гипотез. Предполагается, что контроль осуществляется на уровне транскрипции по аналогии с индукцией ферментов у бактерий и что в этом случае в клетках животных должны функционировать аналогичные репрессоры.. Поскольку с молекулой ДНК у зукариот связаны гистоны, считается, что именно они выполняют роль репрессоров. Однако прямые доказательства их роли в качестве репрессоров отсутствуют, как и точные данные о существовании и природе каких-либо репрессоров в клетках эукариот. Высказано предположение, что в ядре синтезируется гигантская молекула мРНК, содержащая информацию для синтеза широкого разнообразия белков, но в цитоплазму, как было показано выше, попадает только небольшая часть зрелой мРНК, а основная часть распадается. Неясны, однако, биологический смысл и назначение этого механизма избирательного распада и, соответственно, траты огромной части молекулы мРНК.

Существует еще одно предположение, что на ДНК клетки синтезируются все возможные мРНК, которые поступают в цитоплазму, и процесс трансляции регулируется путем специфического и избирательного взаимодействия с определенными молекулами мРНК.

Биосинтез белка. Генетический код

Наследственная информация – это информация о строении белка (информация о том, какие аминокислоты в каком порядке соединять при синтезе первичной структуры белка).

Информация о строении белков закодирована в ДНК, которая у эукариот входит в состав хромосом и находится в ядре. Участок ДНК (хромосомы), в котором закодирована информация об одном белке, называется ген.

Транскрипция – это переписывание информации с ДНК на иРНК (информационную РНК). иРНК переносит информацию из ядра в цитоплазму, к месту синтеза белка (к рибосоме).

Трансляция – это процесс биосинтеза белка. Внутри рибосомы к кодонам иРНК по принципу комплементарности присоединяются антикодоны тРНК. Рибосома пептидной связью соединяет между собой аминокислоты, принесенные тРНК, получается белок.

Реакции транскрипции, трансляции, а так же репликации (удвоения ДНК) являются реакциями матричного синтеза. ДНК служит матрицей для синтеза иРНК, иРНК служит матрицей для синтеза белка.

Генетический код – это способ, с помощью которого информация о строении белка записана в ДНК.

Свойства генкода

1) Триплетность: одна аминокислота кодируется тремя нуклеотидами. Эти 3 нуклеотида в ДНК называются триплет, в иРНК – кодон, в тРНК – антикодон (но в ЕГЭ может быть и «кодовый триплет» и т.п.)

2) Избыточность (вырожденность): аминокислот всего 20, а триплетов, кодирующих аминокислоты – 61, поэтому каждая аминокислота кодируется несколькими триплетами.

3) Однозначность: каждый триплет (кодон) кодирует только одну аминокислоту.

4) Универсальность: генетический код одинаков для всех живых организмов на Земле.

Задачи на количество нуклеотидов/аминокислот
3 нуклеотида = 1 триплет = 1 аминокислота = 1 тРНК

Задачи на АТГЦ
ДНК иРНК тРНК
А У А
Т А У
Г Ц Г
Ц Г Ц

Читайте так же:  Л карнитин в капсулах какой лучше

Пути использования аминокислот в организме

Основные пути использования аминокислот в клетках организма представлены на рис. 51.

Рис. 51. Пути использования аминокислот в клетках организма

Главный путь использования аминокислот – синтез специфических для организма белков: структурных, сократительных, белков-ферментов, гормонов белковой природы взамен распадающихся. Скорость обновления тканевых белков достаточно высока. Так период полураспада белков печени составляет около 9 суток, белков мышечной ткани около 120 суток.

Другой важнейший путь использования аминокислот – синтез различных биологически активных веществ. Даже если исключить из этой группы белки-ферменты и гормоны белковой природы, перенеся их в группу белков, останется достаточно многочисленная группа веществ: гормонов-полипептидов, гормонов — производных аминокислот и ряд других соединений, выполняющих в организме преимущественно регуляторные функции.

Часть аминокислот (и поступивших из пищеварительной системы, и образовавшихся при распаде тканевых белков) используется в качестве источника энергии. Некоторое количество аминокислот может превращаться в углеводы, в липиды. Хотя последнее наиболее вероятно при поступлении в организм избыточного количества белка. Еще один очень важный путь использования аминокислот – синтез заменимых аминокислот. Рассмотрим важнейшие пути использования аминокислот в клетках организма.


Синтез белков


Синтез белка это сложный многоступенчатый процесс, основными этапами которого являются транскрипция, активация аминокислот и трансляция. Рассмотрим основные этапы синтеза белка.

Транскрипция.

Специфика того или иного белка определяется набором аминокислот и порядком их соединения в белковой молекуле. Набор аминокислот и порядок их соединения закодирован в молекуле ДНК с помощью последовательности нуклеотидов. Каждая аминокислота кодируется тремя расположенными рядом нуклеотидами – триплетами или кодонами. Главным отличительным свойством различных нуклеотидов являются входящие в их состав азотистые основания, которых в ДНК встречается четыре вида: аденин, гуанин, тимин и цитозин. Сочетаниями из трех азотистых оснований можно образовать 64 различных триплета.

Молекулы ДНК находятся в ядре и не принимают непосредственного участия в синтезе белка. Информация о последовательности аминокислот в той или иной молекуле белка передается от ДНК к местам синтеза с помощью информационной РНК (и-РНК). Транскрипция — это процесс синтеза и-РНК на участке ДНК, несущем информацию о последовательности аминокислот в конкретной молекуле белка. Такой участок ДНК называется геном или цистроном.

Транскрипция начинается с разрыва водородных связей между двумя комплементарными цепями ДНК с помощью фермента ДНК-полимеразы. Затем происходит раскручивание спирали ДНК на участке, несущем нужную для синтеза белка информацию. Завершается транскрипция синтезом и-РНК при участии фермента РНК-полимеразы. В результате информация о последовательности аминокислот в белковой молекуле переносится в и-РНК. И-РНК выходит из ядра в цитоплазму и присоединяется к рибосоме.

Активация аминокислот

. В синтезе белка участвуют активные аминокислоты. Активация аминокислот начинается с их взаимодействия с АТФ, в результате которого образуется макроэргический комплекс аминокислоты (Ак) с АМФ (аминоациладенилат — Ак

АМФ) и неорганический пирофосфат (ФФн):

Затем происходит взаимодействие активированной аминокислоты с соответствующей данной аминокислоте транспортной РНК (т-РНК) с образованием макроэргического комплекса аминокислоты с т-РНК (аминоацил

Реакция катализируется ферментом аминоацил-т-РНК-синтетазой. Этот этап синтеза белка получил название рекогниции..

Транспортные РНК представляют собой сравнительно небольшие молекулы, состоящие из 80-100 нуклеотидов. Каждой аминокислоте соответствует от одной до шести видов т-РНК, с которыми она может образовывать комплекс. Транспортные РНК имеют два специфических триплета. Один из них кодон, к которому присоединяется аминокислота, другой – антикодон, который может присоединяться к кодону соответствующей аминокислоты в и-РНК по принципу комплементарности. Роль т-РНК сводится не только к доставке аминокислот к местам синтеза белка – рибосомам, но и переводу информации с последовательности нуклеотидов на последовательность аминокислот.

Трансляция

. Непосредственный синтез белка (трансляция) осуществляется на особых внутриклеточных образованиях, называемых рибосомами. Рибосомы построены из нуклеопротеинов, содержащих примерно 60% РНК и 40% различных белков. Они обеспечивают считывание генетической информации с и-РНК и реализацию ее в последовательности аминокислот в синтезируемой молекуле белка. Рибосомы обладают ферментативными свойствами, катализируя образование пептидных связей между аминокислотами. В процессе синтеза белка молекула и-РНК передвигается между двумя субъединицами рибосомы, к одной из которых присоединяется специфический белоксинтезирующий фермент (пептидилтрансфераза). В процессе этого перемещения кодоны и-РНК взаимодействуют с антикодонами т-РНК. При этом белоксинтезирующий фермент катализирует присоединение аминокислотного остатка т-РНК к полипептидной цепи. Образование и удлинение полипептидной цепи на рибосоме (элонгация) происходит с затратой энергии, источником которой является макроэргическое соединение гуанинтрифосфат (ГТФ).

Завершение синтеза белка (терминация) обеспечивается специальными кодонами в и-РНК (стоп-сигналами), которые не используются для кодирования аминокислот. Уже в процессе синтеза белка формируется первичная (последовательность аминокислот) и вторичная структура белковой молекулы. После завершения синтеза и отделения полипептидной цепи от рибосомы происходит формирование третичной и четвертичной структуры белка. В формировании третичной и четвертичной структуры белка участвуют дополнительные внутриклеточные органеллы (аппарат Гольджи).

Синтеза белка — энергоемкий процесс. Присоединение к полипептидной цепи одной аминокислоты требует затраты по меньшей мере пяти молекул АТФ. При активации аминокислоты АТФ распадается до АМФ, что эквивалентно затрате двух молекул АТФ. На этап трансляции затрачивается одна молекула ГТФ. В процессе элонгации расходуются две молекулы ГТФ на каждую присоединяемую к цепи аминокислоту. И, наконец, терминация (завершение синтеза) требует затраты еще одной молекулы ГТФ.

Ресинтез ГТФ происходит в реакции ГДФ с АТФ:

ГДФ + АТФ = ГТФ + АДФ

Следовательно, одним из важнейших условий синтеза белка является возможность обеспечения этого процесса достаточным количеством энергии.

Видео (кликните для воспроизведения).

Аминокислоты, не использованные для синтеза белка, подвергаются различным превращениям, которые, в большинстве своем начинаются с реакций трех типов: декарбоксилирования, трансаминирования, дезаминирования.

Источники


  1. Здоровое питание. Плакат. — М.: Эксмо, 2014. — 149 c.

  2. Виноградов, В. М. Лекарственные растения в лечении заболеваний органов пищеварения / В.М. Виноградов, В.К. Мартынок, В.В. Чернакова. — М.: Знание, 1991. — 192 c.

  3. Шелтон Голодание и здоровье / Шелтон, Герберт. — М.: Грэгори-Пэйдж, 1995. — 208 c.
Аминокислоты для синтеза днк
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here