Аминокислоты это органические соединения

Важная и проверенная информация на тему: "аминокислоты это органические соединения" от профессионалов для спортсменов и новичков.

Аминокислоты это органические соединения

11. Азотсодержащие органические соединения

11.1. Нитросоединения. Амины

Очень важны в народном хозяйстве азотсодержащие органические вещества. Азот может входить в органические соединения в виде нитрогруппы NO2, аминогруппы NH2 и амидогруппы (пептидной группы) – C(O)NH, причем всегда атом азота будет непосредственно связан с атомом углерода.

Нитросоединения получают при прямом нитровании предельных углеводородов азотной кислотой (давление, температура) или при нитровании ароматических углеводородов азотной кислотой в присутствии серной кислоты, например:

Низшие нитроалканы (бесцветные жидкости) используются как растворители пластмасс, целлюлозного волокна, многих лаков, низшие нитроарены (желтые жидкости) – как полупродукты для синтеза аминосоединений.

Амины (или аминосоединения) можно рассматривать как органические производные аммиака. Амины могут быть первичными R – NH2, вторичными RR’NH и третичными RR’R» N, в зависимости от числа атомов водорода, которые замещены на радикалы R, R’, R». Например, первичный амин — этиламин C2H5NH2, вторичный амин — дижетиламин (CH3)2NH, третичный амин – триэтиламин (C2H5)3N.

Амины, как и аммиак, проявляют основные свойства, они в водном растворе гидратируются и диссоциируют как слабые основания:

а с кислотами образуют соли:

Третичные амины присоединяют галогенпроизводные с образованием солей четырехзамещенного аммония:

Ароматические ажины (в которых аминогруппа связана непосредственно с бензольным кольцом) являются более слабыми основаниями, чем алкиламины, из-за взаимодействия неподеленной пары электронов атома азота с ?-электронами бензольного кольца. Аминогруппа облегчает замещение водорода в бензольном кольце, например на бром; из анилина образуется 2,4,6-триброманилин:

Получение: восстановление нитросоединений с помощью атомарного водорода (получают либо непосредственно в сосуде по реакции Fe + 2НCl = FeCl2 + 2Н 0 , либо при пропускании водорода Н2 над никелевым катализатором Н2 = 2Н 0 ) приводит к синтезу первичных аминов:

б) реакция Зинина

Амины используются в производстве растворителей для полимеров, лекарственных препаратов, кормовых добавок, удобрений, красителей. Очень ядовиты, особенно анилин (желто-коричневая жидкость, всасывается в организм даже через кожу).

11.2. Аминокислоты. Белки

Аминокислоты – органические соединения, содержащие в своем составе две функциональные группы – кислотную СООН и аминную NH2; являются основой белковых веществ.

Аминокислоты проявляют свойства и кислот, и аминов. Так, они образуют соли (за счет кислотных свойств карбоксильной группы):

и сложные эфиры (подобно другим органическим кислотам):

С более сильными (неорганическими) кислотами они проявляют свойства оснований и образуют соли за счет основных свойств аминогруппы:

Реакцию образования глицинатов и солей глициния можно объяснить следующим образом. В водном растворе аминокислоты существуют в трех формах (на примере глицина):

Поэтому глицин в реакции со щелочами переходит в глицинат-ион, а с кислотами – в катион глициния, равновесие смещается соответственно в сторону образования анионов или катионов.

Белки – органические природные соединения; представляют собой биополимеры, построенные из остатков аминокислот. В молекулах белков азот присутствует в виде амидогруппы – С(О) – NH– (так называемая пептидная связь С – N). Белки обязательно содержат С, Н, N, О, почти всегда S, часто Р и др.

При гидролизе белков получают смесь аминокислот, например:

По числу остатков аминокислот в молекуле белка различают дипептиды (приведенный выше глицилаланин), трипептиды и т. д. Природные белки (протеины) содержат от 100 до 1 10 5 остатков аминокислот, что отвечает относительной молекулярной массе 1 • 10 4 – 1 • 10 7 .

Образование макромолекул протеинов (биополимеров), т. е. связывание молекул аминокислот в длинные цепи, происходит при участии группы СООН одной молекулы и группы NH2 другой молекулы:

Физиологическое значение белков трудно переоценить, не случайно их называют «носителями жизни». Белки – основной материал, из которого построен живой организм, т. е. протоплазма каждой живой клетки.

При биологическом синтезе белка в полипептидную цепь включаются остатки 20 аминокислот (в порядке, задаваемом генетическим кодом организма). Среди них есть и такие, которые не синтезируются вообще (или синтезируются в недостаточном количестве) самим организмом, они называются незаменимыми аминокислотами и вводятся в организм вместе с пищей. Пищевая ценность белков различна; животные белки, имеющие более высокое содержание незаменимых аминокислот, считаются для человека более важными, чем растительные белки.

Примеры заданий частей А, В, С

1—2. Класс органических веществ

2. первичные амины

содержит функциональную группу

3. Водородные связи образуются между молекулами

Аминокислоты

Аминокислоты — это класс органических соединений, имеющих амфотерные свойства, поскольку в их молекулах содержатся карбоксильные (–СООН) и аминные (-NH2) группы. Аминокислоты способны реагировать между собой, образуя полипептидные цепи, которые являются основой белков.

Реакция диссоциации аминокислоты глицина

Молекулы аминокислот, в отличие от биологических молекул — жиров и углеводов, — непременно содержат азот. Аминокислоты — это группа карбоновых кислот, в состав которых входят одна или несколько аминогрупп (-NH2), придающие им еще и щелочные свойства. Таким образом, это амфотерные (греч. амфотерос — оба) соединения, реагирующие как со щелочами, так и с кислотами.

Читайте так же:  Какие витамины можно пить

Растворения аминокислот в воде обусловлено их диссоциацией, в результате чего в растворе карбоксильная группа отдает атом водорода, получая отрицательный заряд, а аминогруппа присоединяет атом водорода и получает положительный заряд.

Ключевые аминокислоты

Ключевыми считают 20 аминокислот, различающихся строением боковых цепей, которых в химии называют радикалами. В составе простейшей аминокислоты — глицина — боковую цепь заменяет атом водорода. В сложнее организованной кислоте — аланине — боковой цепью является уже метильная группа (СН3).

Дальнейшее разнообразие аминокислот обусловлено усложнением боковой цепи. Она может состоять из углеводородной цепи, спиртового остатка, соединений серы, дополнительной карбоксильной или аминогруппы и даже довольно сложных органических соединений, карбоновая цепь которых имеет форму кольца. В зависимости от структуры боковых цепей аминокислоты имеют различные химические и физические свойства. Аминокислоты могут быть неполярными, полярными, иметь кислотные или щелочные свойства.

Незаменимые аминокислоты

Растения способны синтезировать все 20 необходимых для жизни аминокислот, используя для этого только остатки карбоновой и азотной кислот и солнечную энергию. Животные также могут образовывать аминокислоты из простых молекул, однако не способны синтезировать так называемые незаменимые аминокислоты. Эти аминокислоты не играется какой-то особой роли, отличной от других аминокислот, и не имеют слишком сложного строения. Каждому виду животных присущ определенный набор незаменимых аминокислот. В организме человека не синтезируются восемь аминокислот: валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан, фенилаланин. Незаменимые аминокислоты должны поступать в организм животных и человека с пищей.

Пептидная связь и пептиды

Аминокислоты способны реагировать между собой — карбоксильная группа одной аминокислоты вступает в реакцию с аминогруппой другой. Во время реакции образуется молекула воды, а валентности, которые высвободились, участвуют в связях между аминокислотами.

Ковалентная связь аминогруппы с карбоксильной (-NH-CO-) получила название пептидной связи. Она присуща только аминокислотам. Вещества, состоящие из остатков двух-восьми аминокислот, называются пептидами, а вещества, состоящие из остатков десяти-шестидесяти аминокислот — полипептидами.

Функции аминокислот

Аминокислоты выполняют прежде всего структурную функцию, поскольку являются звеньями, из которых строятся белки. Кроме того, им присущи другие важные функции.

Отдельные пептиды и аминокислоты является основой не только для белков, но и для других веществ. Например, неотъемлемым компонентом меланина — пигмента кожи и волос человека — является аминокислота тирозин. Также на основе этой аминокислоты образуется гормон щитовидной железы тироксин.

Аминокислоты, которые поступают в организм животного с пищей, могут быть и источником энергии. Аминокислоты окисляются до CO2 и H2O и простых азотсодержащих соединений, при этом высвобождается 17,6 кДж энергии с 1 г аминокислоты.

Благодаря своим амфотерными свойствам аминокислоты обеспечивают постоянное рН содержимого клетки.

Аминокислоты — номенклатура, получение, химические свойства. Белки

Строение аминокислот

Аминокислоты — гетерофункциональные соеди­нения, которые обязательно содержат две функцио­нальные группы: аминогруппу — NH2 и карбоксиль­ную группу —СООН, связанные с углеводородным радикалом.Общую формулу простей­ших аминокислот можно за­писать так:

Так как аминокислоты со­держат две различные функ­циональные группы, которые оказывают влияние друг на друга, характерные реакции отличают­ся от характерных реакций карбоновых кислот и аминов.

Свойства аминокислот

Аминогруппа — NH2 определяет основные свой­ства аминокислот, т. к. способна присоединять к себе катион водорода по донорно-акцепторному механизму за счет наличия свободной электронной пары у атома азота.

Группа —СООН (карбоксильная группа) опреде­ляет кислотные свойства этих соединений. Следовательно, аминокислоты — это амфотерные орга­нические соединения. Со щелочами они реагируют как кислоты:

С сильными кислотами- как основания-амины:

Кроме того, аминогруппа в аминокислоте всту­пает во взаимодействие с входящей в ее состав кар­боксильной группой, образуя внутреннюю соль:

[3]

Ионизация молекул аминокислот зависит от кислотного или щелочного характера среды:

Так как аминокислоты в водных растворах ве­дут себя как типичные амфотерные соединения, то в живых организмах они играют роль буферных веществ, поддерживающих определенную концен­трацию ионов водорода.

Аминокислоты представляют собой бесцветные кристаллические вещества, плавящиеся с разло­жением при температуре выше 200 °С. Они растворимы в воде и нерастворимы в эфире. В зависи­мости от радикала R— они могут быть сладкими, горькими или безвкусными.

Аминокислоты подразделяют на природные (обнаруженные в живых организмах) и синтети­ческие. Среди природных аминокислот (около 150) выделяют протеиногенные аминокислоты (около 20), которые входят в состав белков. Они представляют собой L-формы. Примерно полови­на из этих аминокислот относятся к незамени­мым, т. к. они не синтезируются в организме че­ловека. Незаменимыми являются такие кислоты, как валин, лейцин, изолейцин, фенилаланин, ли­зин, треонин, цистеин, мети­онин, гистидин, триптофан. В организм человека данные вещества поступают с пи­щей. Если их количество в пище будет недостаточ­ным, нормальное развитие и функционирование орга­низма человека нарушаются. При отдельных заболеваниях организм не в состоянии син­тезировать и некоторые другие аминокислоты. Так, при фенилкетонурии не синтезируется тирозин. Важнейшим свойством аминокислот является способность вступать в молекулярную конденса­цию с выделением воды и образованием амидной группировки —NH—СО—, например:

Получаемые в результате такой реакции высокомолекулярные соединения содержат большое число амидных фрагментов и поэтому получили название полимамидов.

К ним, кроме названного выше синтетического волок­на капрона, относят, напри­мер, и энант, образующийся при поликонденсации аминоэнантовой кислоты. Для получения синтетических во­локон пригодны аминокис­лоты с расположением амино- и карбоксильной групп на концах молекул.

[1]

Полиамиды альфа-аминокислот называются пепти­дами. В зависимости от числа остатков аминокислот различают дипептиды, трипептиды, полипепти­ды. В таких соединениях группы —NH—СО— на­зывают пептидными.

Читайте так же:  Помогает ли л карнитин сжигать жир

Изомерия и номенклатура аминокислот

Изомерия аминокислот определяется различ­ным строением углеродной цепи и положением аминогруппы, например:

Широко распространены также названия ами­нокислот, в которых положение аминогруппы обо­значается буквами греческого алфавита: α, β, у и т. д. Так, 2-аминобутановую кислоту можно на­звать также α-аминокислотой:

Способы получения аминокислот

В биосинтезе белка в живых организмах уча­ствуют 20 аминокислот.

Химические свойства. 1. Аминокислоты — это органические амфотерные соединения

Читайте также:

  1. I группа. Свойства, характеризующие сущность и сложность системы
  2. III группа. Свойства, характеризующие методологию целеполагания системы
  3. Z-преобразование и его свойства
  4. Адсорбционные свойства цеолитов
  5. Адсорбция. Адсорбционные свойства цеолитов
  6. Бесконечно малые функции и их свойства
  7. Биогеохимические циклы тяжелых металлов.
  8. Биологические пруды – это специально созданные неглубокие водоемы, где протекают естественные биохимические процессы самоочищения воды в аэробных и анаэробных условиях.
  9. Биохимические и физиологические реакции на клеточном и субклеточном уровне.
  10. Биохимические методы переработки и использования отходов производства и потребления
  11. Биохимические механизмы мышечного сокращения и расслабления.
  12. Биохимические свойства.

1. Аминокислоты — это органические амфотерные соединения. Они содержат в составе молекулы две функциональные группы противоположного характера: аминогруппу с основными свойствами и карбоксильную группу с кислотными свойствами. Аминокислоты реагируют как с кислотами, так и с основаниями:

При растворении аминокислот в воде карбоксильная группа отщепляет ион водорода, который может присоединиться к аминогруппе. При этом образуется внутренняя соль, молекула которой представляет собой биполярный ион, который называется цвиттер-ионом:

Кислотно-основные превращения аминокислот в различных средах можно изобразить следующей схемой:

Водные растворы аминокислот имеют нейтральную, щелочную или кислую среду в зависимости от количества функциональных групп. Так, глутаминовая кислота образует кислый раствор (две группы —СООН, одна —NH2), лизин — щелочной (одна группа —СООН, две —NH2).

2. Трансаминирование — одна из реакций метаболизма аминокислот, которая заключается в переносе аминогруппы (NH2) из аминокислоты в кетокислоты; в результате образуется другая кетокислота и аминокислота.

3. Дезаминирование — этоотщепление аминогруппы (—NH2) из молекулы органического соединения.

Дезаминирование играет важную роль в процессах обмена веществ, в частности в катаболизме аминокислот. Доказано существование 4 типов дезаминирования аминокислот (отщепление аминогруппы). Выделены соответствующие ферментные системы, катализирующие эти реакции, и идентифицированы продукты реакции. Во всех случаях NH2-группа аминокислоты освобождается в виде аммиака.

4. Декарбоксилирование– это процесс отщепления карбоксильной группы аминокислот в виде СО2 получил название декарбоксилирования. Несмотря на ограниченный круг аминокислот и их производных, подвергающихся декарбоксилированию в животных тканях, образующиеся продукты реакции – биогенные амины – оказывают сильное фармакологическое действие на множество физиологических функций человека и животных. Например, в животных тканях с высокой скоростью протекает декарбоксилирование гистидина под действием специфической декарбоксилазы.

Гистамин оказывает широкий спектр биологического действия. По механизму действия на кровеносные сосуды он резко отличается от других биогенных аминов, так как обладает сосудорасширяющим свойством. Большое количество гистамина образуется в области воспаления, что имеет определенный биологический смысл. Вызывая расширение сосудов в очаге воспаления, гистамин тем самым ускоряет приток лейкоцитов, способствуя активации защитных сил организма. Кроме того, гистамин участвует в секреции соляной кислоты в желудке, что широко используется в клинике при изучении секреторной деятельности желудка (гистаминовая проба). Он имеет прямое отношение к явлениям сенсибилизации и десенсибилизации. При повышенной чувствительности к гистамину в клинике используют антигистаминные препараты (санорин, димедрол и др.), оказывающие влияние на рецепторы сосудов. Гистамину приписывают также роль медиатора боли.

5. Превращения аминокислот при нагревании. α-Аминокислоты, а еще легче их эфиры, при нагревании образуют циклические пептиды — дикетопиперазины:

β-Аминокислоты при нагревании образуют α,β-ненасыщенные кислоты с отщеплением аминогруппы и водорода от соседних атомов углерода:

γ-, δ- и ε-Аминокислоты, как и соответствующие оксикислоты, легко отщепляют воду и циклизуются, образуя внутренние амиды — лактамы:

Видео (кликните для воспроизведения).

6. Качественные реакции на аминокислоты.Качественные (цветные) реакции аминокислот сохранили свое важное значение до настоящего времени. Общая качественная реакция α-аминокислот – это реакция с нингидрином. Все аминокислоты окисляются нингидрином с образованием продуктов, окрашенных в сине-фиолетовый цвет. Эта реакция может быть использована для количественного определения аминокислот спектрофотометрическим методом.

Для обнаружения пептидных связей в пептидах и белках служит биуретовая реакция. Для обнаружения ароматических и гетероциклических альфа-аминокислот используют ксантопротеиновую реакцию. (от греч. ксантос — желтый). При нагревании ароматических аминокислот с концентрированной азотной кислотой происходит нитрование бензольного кольца и образуются соединения, окрашенные в желтый цвет.

| следующая лекция ==>
Аминокислоты | Пептиды. Белки

Дата добавления: 2014-01-04 ; Просмотров: 427 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

аминокислоты

Низкомолекулярные органические соединения, содержащие одну или две карбоксильные группы (—СООН) и одну или две аминогруппы (—NH2). Аминокислоты широко представлены в клетках и тканях живых организмов. Общая формула важнейших природных аминокислот

Читайте так же:  Сколько грамм протеина нужно в день

где радикал R может быть водородом (как в случае простейшей аминокислоты глицина), метильной группой – СН3 (как у аланина) или обладать более сложным строением.

Поскольку аминокислоты амфотерны, т.е. обладают свойствами и кислот, и оснований, они вступают в реакции друг с другом. Атом углерода карбоксильной группы одной аминокислоты соединяется с атомом азота аминогруппы другой с образованием т.н. пептидной связи, при этом отщепляется вода.

Если соединяются две аминокислоты, образуется дипептид, если три – трипептид, если 20 и более аминокислот – полипептид (см. пептиды). В живых организмах встречается ок. 150 аминокислот, но только 20 из них участвуют в построении полипептидных цепей белков – трансляции. Последовательность аминокислот в синтезирующейся полипептидной цепи определяется генетическим кодом.

Из 20 необходимых для построения белков аминокислот в организме животных и человека синтезируются из более простых веществ лишь т.н. заменимые аминокислоты. Остальные – незаменимые аминокислоты – должны поступать с пищей. У разных животных набор незаменимых аминокислот различен. Для человека это 8 аминокислот – валин, лейцин, лизин, метионин и др. Отсутствие или недостаток одной или нескольких незаменимых аминокислот в организме человека приводит к нарушениям обмена веществ и различным заболеваниям. Растения и хемосинтезирующие микроорганизмы сами синтезируют все необходимые аминокислоты.

Помимо построения белков аминокислоты (в т.ч. не входящие в белки) служат исходными веществами при синтезе в клетках витаминов, азотистых оснований, медиаторов и других биологически активных соединений.

Аминокислоты используются в медицине, в качестве пищевых добавок, для обогащения кормов и для других целей. В промышленных масштабах их получают путём микробиологического синтеза (см. биотехнология).

При изучении возможных путей возникновения жизни ряд аминокислот был получен при пропускании электрических разрядов через смесь газов, воссоздающих первичную атмосферу Земли. Таким образом была показана возможность абиогенного (без участия организмов) синтеза важнейших органических соединений.

Аминокислоты

Класс органических соединений, объединяющих в себе свойства кислот и аминов, т. е. содержащих наряду с карбоксильной группой —COOH аминогруппу —NH2. В зависимости от положения аминогруппы относительно карбоксильной группы различают α-, β-, γ и др. А. А. играют очень большую роль в жизни организмов, т. к. все белковые вещества построены из А. Все Белки при полном гидролизе (расщеплении с присоединением воды) распадаются до свободных А., играющих роль мономеров в полимерной белковой молекуле. При биосинтезе белка порядок, последовательность расположения А. задаются генетическим кодом (См. Генетический код), записанным в химической структуре дезоксирибонуклеиновой кислоты. 20 важнейших А., входящих в состав белков, отвечают общей формуле RCH(NH2)COOH и относятся к α-А. В природе встречаются и β-А., RCH(NH2)CH2COOH, например β-аланин CH2NH2CH2COOH, входящий в состав пантотеновой кислоты. А. могут содержать одну NH2-группу и одну СООН-группу (моноаминокарбоновые кислоты), одну NH2-группу и две СООН-группы (моноаминодикарбоновые кислоты), две NH2-группы и одну СООН-группу (диаминомонокарбоновые кислоты).

Аспарагиновая — HOOC CH2CH (NH2) COOH

А. — бесцветные кристаллические вещества, растворимые в воде; tпл 220—315°С. Высокая температура плавления А. связана с тем, что их молекулы имеют структуру главным образом амфотерных (двузарядных) ионов. Например, строение простейшей А. — Глицина можно выразить формулой

(а не NH2CH2COOH).

Все природные А., кроме глицина, содержат асимметричные атомы углерода, существуют в оптически активных модификациях и, как правило, относятся к L-ряду. А. D-ряда содержатся только в некоторых антибиотиках и в оболочках бактерий.

К числу производных А., представляющих большой практический интерес, относится лактам ω-аминокапроновой кислоты (см. Капролактам) исходный продукт производства капрона.

Известно много методов синтеза А., например действие аммиака на галогензамещённые карбоновые кислоты:

восстановление оксимов или гидразонов, кето- или альдегидокислот:

RC(= NOH)COOH → RCHNH2COOH

и др. Некоторые А. выделяют из продуктов гидролиза богатых ими белков методом адсорбции на ионообменных смолах; так выделяют глутаминовую кислоту из казеина и клейковины злаков; тирозин — из фиброина шёлка; Аргинин из желатины; Гистидин из белков крови. Некоторые А. производят синтетически, например метионин, лизин и глутаминовую кислоту. А. получают в больших количествах также микробиологическим синтезом. Поступление в организм незаменимых А. определяется количеством и аминокислотным составом пищевых белков. Это следует учитывать для организации правильного общественного питания и составления рационов для разных возрастных и профессиональных групп населения. Потребность в пищевом белке может быть полностью покрыта за счёт смеси А. Этим пользуются в лечебном питании.

А. применяют в медицине: для парентерального питания больных (т. е. минуя желудочно-кишечный тракт) с заболеваниями пищеварительных и др. органов, а также для лечения заболеваний печени, малокровия, ожогов (метионин), язв желудка (гистидин), при нервно-психических заболеваниях (глутаминовая кислота и т. п.); в животноводстве и ветеринарии — для питания (см. ниже) и лечения животных, а также в микробиологической, медицинской и пищевой промышленности.

Читайте так же:  Турбослим л карнитин и липоевая

Изучение аминокислотного состава белков и обмена А. проводят рядом цветных реакций, например нингидриновой реакцией (См. Нингидриновая реакция), а также методами хроматографии (См. Хроматография) и с помощью специальных автоматических приборов — анализаторов А.

А. в кормлении с.-х. животных. Рационы с.-х. животных должны содержать все необходимые организму А., особенно незаменимые, поэтому при организации кормления в настоящее время стали учитывать в кормах не только общее количество протеина, как было принято раньше, но и незаменимых А. Потребность в А. у разных видов животных неодинакова. У жвачных животных микрофлора преджелудков способна синтезировать все необходимые организму А. из аммиака, выделяющегося при распаде белка или небелковых азотистых соединений, например мочевины (См. Мочевина). Нормирования А. для этих животных не проводят. Однако с целью пополнения рациона животных небелковыми азотистыми веществами применяют мочевину. Молодняк жвачных, у которого ещё недостаточно развиты преджелудки, испытывает некоторую потребность в незаменимых А. Рационы свиней и птицы обязательно балансируют по содержанию А. С этой целью подбирают корма, дополняющие друг друга по аминокислотному составу, а также используют синтетические А., выпускаемые промышленностью. Синтетические А. скармливают в смеси с концентратами; целесообразнее добавлять их в комбикорма промышленного изготовления. Избыток А. отрицательно влияет на организм животных.

Лит.: Майстер А., Биохимия аминокислот, пер. с англ.,М., 1961; Аминокислотное питание свиней и птицы, М., 1963; Збарский Б. И., Иванов И. И., Мардашев С. P., Биологическая химия, 4 изд., Л., 1965; Попов И. С., Аминокислотный состав кормов, 2 изд., М., 1965; Обмен аминокислот. Материалы Всесоюзной конференции [13—17 окт. 1965], Тбилиси, 1967; Кретович В. Л., Основы биохимии растений, 4 изд., М., 1964.

И. Б. Збарский, Я. Ф. Комиссаров.

Аминокислоты

Характеристики и физические свойства аминокислот

Аминокислоты представляют собой твердые кристаллические вещества, характеризующиеся высокими температурами плавления и разлагающиеся при нагревании. Они хорошо растворяются в воде. Данные свойства объясняются возможностью существование аминокислот в виде внутренних солей (рис. 1).

Рис. 1. Внутренняя соль аминоуксусной кислоты.

Получение аминокислот

Исходными соединениями для получения аминокислот часто служат карбоновые кислоты, в молекулу которых вводится аминогруппа. Например, получение их из галогензамещенных кислот

Кроме этого исходным сырьем для получения аминокислот могут служить альдегиды (1), непредельные кислоты (2) и нитросоединения (3):

Химические свойства аминокислот

Аминокислота как гетерофункциональные соединения вступают в большинство реакций, характерных для карбоновых кислот и аминов. Наличие в молекулах аминокислот двух различных функциональных групп приводит к появлению ряда специфических свойств.

Аминокислоты – амфотерные соединения. Они реагируют как с кислотами, так и с основаниями:

Водные растворы аминокислот имеют нейтральную, щелочную и кислотную среду в зависимости от количества функциональных групп. Например, глутаминовая кислота образует кислый раствор, поскольку в её составе две карбоксильные группы и одна аминогруппа, а лизин – щелочной раствор, т.к. в её составе одна карбоксильная группа и две аминогруппы.

Две молекулы аминокислоты могут взаимодействовать друг с другом. При этом происходит отщепление молекулы воды и образуется продукт, в котором фрагменты молекулы связаны между собой пептидной связью (-CO-NH-). Например:

Полученное соединение называют дипептидом. Вещества, построенные из многих остатков аминокислот, называются полипептидами. Пептиды гидролизуются под действием кислот и оснований.

Применение аминокислот

Аминокислоты, необходимые для построения организма, как человек, так и животные получают из белков пищи.

γ-Аминомасляная кислота используется в медицине (аминалон / гаммалон) при психических заболеваниях; на её основе создан целый ряд ноотропных препаратов, т.е. оказывающих влияние на процессы мышления.

ε-Аминокапроновая кислота также используется в медицине (кровоостанавливающее средство), а кроме того представляет собой крупнотоннажный промышленный продукт, использующийся для получения синтетического полиамидного волокна – капрона.

Антраниловая кислота используется для синтеза красителей, например синего индиго, а также участвует в биосинтезе гетероциклических соединений.

Примеры решения задач

Задание Напишите уравнения реакций аланина с: а) гидроксидом натрия; б) гидроксидом аммония; в) соляной кислотой. За счет каких групп внутренняя соль проявляет кислотные и основные свойства?
Ответ Аминокислоты часто изображают как соединения, содержащие аминогруппу и карбоксильную группу, однако с такой структурой не согласуются некоторые их физические и химические свойства. Строение аминокислот соответствует биполярному иону:

Запишем формулу аланина как внутренней соли:

Исходя из этой структурной формулы, напишем уравнения реакций:

Внутренняя соль аминокислоты реагирует с основаниями как кислота, с кислотами – как основание. Кислотная группа – N + H3, основная – COO — .

Задание При действии на раствор 9,63 г неизвестной моноаминокарбоновой кислоты избытком азотистой кислоты было получено 2,01 л азота при 748 мм. рт. ст. и 20 o С. Определите молекулярную формулу этого соединения. Может ли эта кислоты быть одной из природных аминокислот? Если да, то какая это кислота? В состав молекулы этой кислоты не входит бензольное кольцо.
Решение Напишем уравнение реакции:

Найдем количество вещества азота при н.у., применяя уравнение Клапейрона-Менделеева. Для этого температуру и давление выражаем в единицах СИ:

T = 273 + 20 = 293 K;

Читайте так же:  Смешивать протеин с креатином

P = 101,325 × 748 / 760 = 99,7 кПа;

n(N2) = 99,7 × 2,01 / 8,31 × 293 = 0,082 моль.

По уравнению реакции находим количество вещества аминокислоты и её молярную массу.

Определим аминокислоту. Составим уравнение и найдем x:

14x + 16 + 45 = 117;

Из природных кислот такому составу может отвечать валин.

[2]

Аминокислоты. Строение, изомерия, номенклатура, свойства

Аминокислоты

-органические бифункциональные соединения, в состав которых входят карбоксильные группы –СООН и аминогруппы NH2

Строение:-

этозамещенные карбоновые кислоты ,в молекулах которых один или несколько атомов водорода углеводородного радикала заменены аминогруппами

Классификация

: Аминокислоты классифицируют по двум структурным признакам.

1. В зависимости от взаимного расположения амино- и карбоксильной групп аминокислоты подразделяют на a-, b-, g-, d-, e- и т. д.

2. По характеру углеводородного радикала различают алифатические (жирные) и ароматические аминокислоты. Приведенные выше аминокислоты относятся к жирному ряду. Примером ароматической аминокислоты может служить пара-аминобензойная кислота:

Номенклатура:

По систематической номенклатуре названия аминокислот образуются из названий соответствующих кислот прибавлением приставки амино и указанием места расположения аминогруппы по отношению к карбоксильной группе.

Часто используется также другой способ построения названий аминокислот, согласно которому к тривиальному названию карбоновой кислоты добавляется приставка амино- с указанием положения аминогруппы буквой греческого алфавита. Пример:

1. Изомерия углеродного скелета

2. Изомерия положения функциональных групп

3. Оптическая изомерия

Все a-аминокислоты, кроме глицина H2N-CH2-COOH, содержат асимметрический атом углерода (a-атом) и могут существовать в видеоптических изомеров (зеркальных антиподов).

Оптическая изомерия природных a -аминокислот играет важную роль в процессах биосинтеза белка.

Физические свойства

Аминокислоты – твердые кристаллические вещества с высокой т.пл., при плавлении разлагаются. Хорошо растворимы в воде, водные растворы электропроводны. Эти свойства объясняются тем, что молекулы аминокислот существуют в виде внутренних солей, которые образуются за счет переноса протона от карбоксила к аминогруппе.

Химические св-ва

1.Аминокислоты реагируют как с кислотами, так и с основаниями:

Н2N-СН2-СООН + HCl→ Сl[Н3N-СН2-СООН],

Н2N-СН2-СООН + NaOH → H2N-CH2-COONa + Н2О.

Белки.Классификация, строение, качественные реакции, биологическое значение.

Белки

-это высокомолекулярные органические вещества, построенные из аминокислот и других соединений; играют фундаментальную роль в структуре и жизнедеятельности живых организмов.

Классификация: Простые(ПРОТЕИНЫ) Сложные(СЛОЖНЫЕ БЕЛКИ или ПРОТЕИДЫ)

Строение:

Молекула аминокислоты состоит из двух одинаковых для всех аминокислот частей, одна из которых является аминогруппой (—NH2) с основными свойствами, другая — карбоксильной группой (—COOH) с кислотными свойствами. Часть молекулы, называемая радикалом (R), у разных аминокислот имеет различное строение.

Биологическое значение:

Биологическое значение белков чрезвычайно велико. Упомя­нем только важнейшие функции белков в живых организмах.

1. Абсолютно все химические реакции в организме протекают в присутствии катализаторов — ферментов. Даже такая простая реакция как гидратация углекислого газа катализируется ферментом карбоангидразой. Все известные ферменты представляют со­бой белковые молекулы. Белки — это очень мощные и, самое главное, селективные катализаторы. Они ускоряют реакции в миллионы раз, причем для каждой реакции существует свой единственный фермент.

2. Некоторые белки выполняют транспортные функции и пе­реносят молекулы или ионы в места синтеза или накопления. На­пример, содержащийся в крови белок гемоглобин переносит кис­лород к тканям, а белок миоглобин запасает кислород в мышцах.

3. Белки — это строительный материал клеток. Из них постро­ены опорные, мышечные, покровные ткани.

4. Белки играют важную роль в иммунной системе организма.

Существуют специфические белки (антитела), которые способ­ны распознавать и связывать чужеродные объекты — вирусы, бактерии, чужие клетки.

5. Белки-рецепторы воспринимают и передают сигналы, по­ступающие от соседних клеток или из окружающей среды. На­пример, действие света на сетчатку глаза воспринимается фото­рецептором родопсином. Рецепторы, активизируемые низкомолекулярными веществами типа ацетилхолина, передают нервные импульсы в местах соединения нервных клеток.

Из приведенного перечня функций белков ясно, что белки жизненно необходимы любому организму и являются, следова­тельно, важнейшей составной частью продуктов питания. В про­цессе пищеварения белки гидролизуются до аминокислот, кото­рые служат исходным сырьем для синтеза белков, необходимых данному организму. Существуют аминокислоты, которые орга­низм не в состоянии синтезировать сам и приобретает их только с пищей. Эти аминокислоты называются незаменимыми. Для чело­века незаменимы триптофан, лейцин, изолейцин, валин, треонин, лизин, метионин и фенилаланин.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Видео (кликните для воспроизведения).

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Источники


  1. Малахов, Г. П. Здоровое питание / Г.П. Малахов. — М.: Комплект, 1997. — 496 c.

  2. Кузьмичев Ведомственные медали силовых структур Российской федерации / Кузьмичев, Трифон Илья; , Александр. — М.: Братишка, 2006. — 240 c.

  3. Д’Акампо, Джино Здоровое питание по-итальянски / Джино Д’Акампо. — М.: Эксмо, 2013. — 192 c.
Аминокислоты это органические соединения
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here