Аминокислоты формулы и названия таблица

Важная и проверенная информация на тему: "аминокислоты формулы и названия таблица" от профессионалов для спортсменов и новичков.

Аминокислоты — номенклатура, получение, химические свойства. Белки

Строение аминокислот

Аминокислоты — гетерофункциональные соеди­нения, которые обязательно содержат две функцио­нальные группы: аминогруппу — NH2 и карбоксиль­ную группу —СООН, связанные с углеводородным радикалом.Общую формулу простей­ших аминокислот можно за­писать так:

Так как аминокислоты со­держат две различные функ­циональные группы, которые оказывают влияние друг на друга, характерные реакции отличают­ся от характерных реакций карбоновых кислот и аминов.

Свойства аминокислот

Аминогруппа — NH2 определяет основные свой­ства аминокислот, т. к. способна присоединять к себе катион водорода по донорно-акцепторному механизму за счет наличия свободной электронной пары у атома азота.

Группа —СООН (карбоксильная группа) опреде­ляет кислотные свойства этих соединений. Следовательно, аминокислоты — это амфотерные орга­нические соединения. Со щелочами они реагируют как кислоты:

С сильными кислотами- как основания-амины:

Кроме того, аминогруппа в аминокислоте всту­пает во взаимодействие с входящей в ее состав кар­боксильной группой, образуя внутреннюю соль:

Ионизация молекул аминокислот зависит от кислотного или щелочного характера среды:

Так как аминокислоты в водных растворах ве­дут себя как типичные амфотерные соединения, то в живых организмах они играют роль буферных веществ, поддерживающих определенную концен­трацию ионов водорода.

Аминокислоты представляют собой бесцветные кристаллические вещества, плавящиеся с разло­жением при температуре выше 200 °С. Они растворимы в воде и нерастворимы в эфире. В зависи­мости от радикала R— они могут быть сладкими, горькими или безвкусными.

Аминокислоты подразделяют на природные (обнаруженные в живых организмах) и синтети­ческие. Среди природных аминокислот (около 150) выделяют протеиногенные аминокислоты (около 20), которые входят в состав белков. Они представляют собой L-формы. Примерно полови­на из этих аминокислот относятся к незамени­мым, т. к. они не синтезируются в организме че­ловека. Незаменимыми являются такие кислоты, как валин, лейцин, изолейцин, фенилаланин, ли­зин, треонин, цистеин, мети­онин, гистидин, триптофан. В организм человека данные вещества поступают с пи­щей. Если их количество в пище будет недостаточ­ным, нормальное развитие и функционирование орга­низма человека нарушаются. При отдельных заболеваниях организм не в состоянии син­тезировать и некоторые другие аминокислоты. Так, при фенилкетонурии не синтезируется тирозин. Важнейшим свойством аминокислот является способность вступать в молекулярную конденса­цию с выделением воды и образованием амидной группировки —NH—СО—, например:

Получаемые в результате такой реакции высокомолекулярные соединения содержат большое число амидных фрагментов и поэтому получили название полимамидов.

К ним, кроме названного выше синтетического волок­на капрона, относят, напри­мер, и энант, образующийся при поликонденсации аминоэнантовой кислоты. Для получения синтетических во­локон пригодны аминокис­лоты с расположением амино- и карбоксильной групп на концах молекул.

Полиамиды альфа-аминокислот называются пепти­дами. В зависимости от числа остатков аминокислот различают дипептиды, трипептиды, полипепти­ды. В таких соединениях группы —NH—СО— на­зывают пептидными.

Изомерия и номенклатура аминокислот

Изомерия аминокислот определяется различ­ным строением углеродной цепи и положением аминогруппы, например:

Широко распространены также названия ами­нокислот, в которых положение аминогруппы обо­значается буквами греческого алфавита: α, β, у и т. д. Так, 2-аминобутановую кислоту можно на­звать также α-аминокислотой:

Способы получения аминокислот

В биосинтезе белка в живых организмах уча­ствуют 20 аминокислот.

Формулы аминокислот

Аминокислоты можно рассматривать как производные карбоновых кислот, в которых один или несколько атомов водорода замещены на аминогруппы.

Различают

-аминокислоты, в молекулах которых аминогруппа и карбоксильная группа связаны с одним атомом углерода, и -,-, -аминокислоты, функциональные группы которых разделены нескольким атомам углерода.

Структурные формулы аминокислот

Общая структурная формула

-аминокислот:

Все аминокислоты являются амфотерными соединениями, кислотные свойства обусловлены карбоксильной группой –COOH, а основные – аминогруппой – NH2. Благодаря этому водные растворы аминокислот обладают свойствами буферных растворов, т.е. находятся в состоянии внутренних солей:

Читайте так же:  Лучший аргинин рейтинг 2019

Такая форма молекулы аминокислоты называется цвиттер-ионом. В этой форме молекула обладает значительным дипольным моментом при суммарном нулевом заряде. Кристаллы большинства аминокислот построены именно из таких молекул.

Изоэлектрическая точка аминокислоты – значение pH, при котором максимум молекул обладает нулевым зарядом. При таком значении pH аминокислота наименее подвижна в электрическом поле. Это свойство можно использовать для разделения аминокислот, белков и пептидов методом электрофореза.

Группы аминокислот

В зависимости от кислотно-основных свойств, обусловленных строением радикала, аминокислоты делятся на четыре группы:

  • Неполярные или гидрофобные (аланин, валин, изолейцин, лейцин, пролин, метионин, фенилаланин, триптофан).
  • Полярные незаряженные (заряды компенсируются) при pH=7 (серин, треонин, цистеин, аспарагин, глутамин, тирозин).
  • Полярные и заряженные отрицательно при pH=7 (аспарагиновая кислота, глутаминовая кислота)
  • Полярные заряженные положительно при pH=7 (лизин, аргинин, гистидин)

Важнейшим свойством аминокислот является их способность к реакциям поликонденсации с образованием пептидов:

Пример образования трипептида (глицил – аланил – валин):

Формулы 20 аминокислот

В живых организмах при синтезе белков (полипептидов) в большинстве случаев используется 20 стандартных (протеиногенных) аминокислот:

Примеры решения задач

Задание Вычислить, какой объем углекислого газа (н.у.) выделится при взаимодействии 40 г карбоната натрия с аминоуксусной кислотой.
Решение Формула аминоуксусной кислоты: NH2CH2COOH.

Запишем уравнение реакции:

Найдем количество вещества карбоната натрия:

г/моль моль

Согласно уравнению реакции:

моль

Один моль газа при нормальных условиях занимает объем 22,4л. Таким образом:

моль л/моль л

Аминокислоты: названия и формулы

Аминокислоты: названия

Сгруппируем аминокислоты в таблице №2 по строению радикала (R) (формуле) (третий столбец таблицы) и по названию (по алфавиту).

Здесь же отметим знаком * незаменимые (важнейшие для организма) аминокислоты.

Поясним, что существуют незаменимые и заменимые аминокислоты:

Незаменимые аминокислоты: Это важные аминокислоты, которые не могут быть синтезированы в организме. Поэтому нужно, чтобы они поступали в организм с пищей.

Существуют 8 незаменимых аминокислот для взрослого человека: лейцин, изолейцин, валин, метионин, фенилаланин, треонин, триптофан, лизин, также часто к ним относят гистидин.

Заменимые аминокислоты — это аминокислоты, которые могут соединяться в организме. Их можно получить двумя способами: либо в готовом виде из повседневного потребления пищи, либо производить самостоятельно из других видов аминокислот и веществ попадающих в организм.

К заменимым аминокислотам относят: аргинин, аспарагин, глутамин, глутаминовая кислота, глицин, орнитин, таурин и др. (см. таблицу №1)

Теперь переходим к таблице №2 с формулами и названиями аминокислот.

Сокращение (аминокислотный остаток в пептидах и белках)

Аминокислоты формулы и названия таблица

Для названия аминокислот используют три типа номенклатуры – тривиальную, рациональнцю и IUPAC.

По систематической номенклатуре (IUPAC) названия аминокислот образуются из названий соответствующих кислот прибавлением приставки амино и указанием места расположения аминогруппы по отношению к карбоксильной группе.

Нумерация углеродной цепи начинается с атома углерода карбоксильной группы.

По рациональной номенклатуре к тривиальному названию карбоновой кислоты добавляется приставка амино с указанием положения аминогруппы буквой греческого алфавита.

Формулы и названия некоторых α-аминокислот, остатки которых входят в состав белков

Если в молекуле аминокислоты содержится две аминогруппы, то в ее названии используется приставка диамино, три группы NH2триамино и т.д.

Наличие двух или трех карбоксильных групп отражается в названии суффиксом –диовая или -триовая кислота.

Свойства аминокислот

Cвойства аминокислот можно разделить на две группы: химические и физические.

Химические свойства аминокислот

В зависимости от соединений, аминокислоты могут проявлять различные свойства.

Аминокислоты как амфотерные соединения образуют соли и с кислотами, и со щелочами.

Читайте так же:  Креатин в моче у ребенка

Как карбоновые кислоты аминокислоты образуют функциональные производные: соли, сложные эфиры, амиды.

Взаимодействие и свойства аминокислот с основаниями:
Образуются соли:

NH2-CH2-COOH + NaOH

NH2-CH2-COONa + H2O

Натриевая соль + 2-аминоуксусной кислоты

Натриевая соль аминоуксусной кислоты (глицина) + вода

Взаимодействие со спиртами:

Аминокислоты могут реагировать со спиртами при наличии газообразного хлороводорода, превращаясь в сложный эфир. Сложные эфиры аминокислот не имеют биполярной структуры и являются летучими соединениями.

NH2-CH2-COOH + CH3OH

NH2-CH2-COOCH3 + H2O.

Метиловый эфир / 2-аминоуксусной кислоты /

Взаимодействие с аммиаком:

Образуются амиды:

Взаимодействие аминокислот с сильными кислотами:

Получаем соли:

Таковы основные химические свойства аминокислот.

Физические свойства аминокислот

Перечислим физические свойства аминокислот:

  • Бесцветные
  • Имеют кристаллическую форму
  • Большинство аминокислот со сладким привкусом, но в зависимости от радикала (R) могут быть горькими или безвкусными
  • Хорошо растворяются в воде, но плохо растворяются во многих органических растворителях
  • Аминокислоты имеют свойство оптической активности
  • Плавятся с разложением при температуре выше 200°C
  • Нелетучие
  • Водные растворы аминокислот в кислой и щелочной среде проводят электрический ток

Редактировать этот урок и/или добавить задание и получать деньги постоянно* Добавить свой урок и/или задания и получать деньги постоянно

Добавить новость и получить деньги

Добавить анкету репетитора и получать бесплатно заявки на обучение от учеников

user->isGuest) »]) . ‘ или ‘ . Html::a(‘зарегистрируйтесь’, [‘/user/registration/register’], [‘class’ => »]) . ‘ , чтобы получать деньги $$$ за каждый набранный балл!’); > else user->identity->profile->first_name) || !empty(Yii::$app->user->identity->profile->surname))user->identity->profile->first_name . ‘ ‘ . Yii::$app->user->identity->profile->surname; > else echo ‘Получайте деньги за каждый набранный балл!’; > ?>—>

При правильном ответе Вы получите 2 балла

Отметьте верные свойства аминокислот

[1]

Выберите те ответы, которые считаете верными.

Добавление комментариев доступно только зарегистрированным пользователям

Lorem iorLorem ipsum dolor sit amet, sed do eiusmod tempbore et dolore maLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempborgna aliquoLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempbore et dLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempborlore m mollit anim id est laborum.

28.01.17 / 22:14, Иван Иванович Ответить +5

Lorem ipsum dolor sit amet, consectetu sed do eiusmod qui officia deserunt mollit anim id est laborum.

28.01.17 / 22:14, Иван ИвановичОтветить -2

Lorem ipsum dolor sit amet, consectetur adipisicing sed do eiusmod tempboLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod temLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempborpborrum.

28.01.17 / 22:14, Иван Иванович Ответить +5

Аминокислоты формулы и названия таблица

Аминокислоты классифицируют по следующим структурным признакам.

I. Классификация по взаимному положения функциональных групп

В зависимости от взаимного расположения амино- и карбоксильной групп аминокислоты подразделяют на α- , b- , g- , d- , e- и т. д.

Греческая буква при атоме углерода обозначает его удаленность от карбоксильной группы.

II. Классификация по строению бокового радикала (функциональным группам)

Алифатические аминокислоты

Оксимоноаминокарбоновые кислоты (содержат-ОН-группу): серин, треонин.

Моноаминодикарбоновые кислоты (содержат СООН-группу): аспартат, глутамат (за счёт второй карбоксильной группы несут в растворе отрицательный заряд).

Видео (кликните для воспроизведения).

Амиды моноаминодикарбоновых кислоты (содержат NH2СО-группу): аспарагин, глутамин.

Диаминомонокарбоновые кислоты (содержат NH2-группу): лизин, аргинин (за счёт второй аминогруппы несут в растворе положительный заряд).

Ароматические аминокислоты: фенилаланин, тирозин, триптофан.

Гетероциклические аминокислоты: триптофан, гистидин, пролин.

Иминокислоты аминокислоты: пролин.

III. Классификация по полярности бокового радикала (по Ленинджеру)

Выделяют четыре класса аминокислот, содержащих радикалы следующих типов.

Гидрофобные аминокислоты располагаются внутри молекулы белка, тогда как гидрофильные – на внешней поверхности, что делает гидрофильными и хорошо растворимыми в воде молекулы белка.

Читайте так же:  Креатин и всаа вместе

Благодаря этому свойству белки хорошо связывают воду, удерживая жидкость в крови, в межклеточном пространстве и внутри клеток.

1. Неполярные (гидрофобные)

К неполярным (гидрофобным) относятся аминокислоты с неполярными R-группами и одна серусодержащая аминокислота:

— алифатические: аланин, валин, лейцин, изолейцин

— ароматические: фенилаланин, триптофан.

2. Полярные незаряженные

Полярные незаряженные аминокислоты по сравнению с неполярными лучше растворяются в воде, более гидрофильны, так как их функциональные группы образуют водородные связи с молекулами воды.

[3]

К ним относятся аминокислоты, содержащие:

— полярную ОН-группу (оксиаминокислоты): серин, треонин и тирозин

— амидную группу: глутамин, аспарагин

— и глицин (R-группа глицина, представленная одним атомом водорода, слишком мала, чтобы компенсировать сильную полярность a-аминогруппы и a-карбоксильной группы).

3. Заряженные отрицательно при рН-7 (кислые)

Аспарагиновая и глутаминовая кислоты относятся к отрицательно заряженным аминокислотам.

Они содержат по две карбоксильные и по одной аминогруппе, поэтому в ионизированном состоянии их молекулы будут иметь суммарный отрицательный заряд:

4. Заряженные положительно при рН-7 (основные)

К положительно заряженным аминокислотам принадлежат лизин, гистидин и аргинин.

В ионизированном виде они имеют суммарный положительный заряд:

В зависимости от характера радикалов природные аминокислоты также подразделяются на нейтральные, кислые и основные. К нейтральным относятся неполярные и полярные незаряженные, к кислым – отрицательно заряженные, к основным – положительно заряженные.

IV. Классификация по кислотно-основным свойствам

В зависимости от количества функциональных групп различают кислые, нейтральные и основные аминокислоты.

Основные

Аминокислоты, в которых число аминогрупп превышает число карбоксильных групп, называют основными аминокислотами: лизин, аргинин, гистидин:

Кислые

Если в аминокислотах имеется избыток кислотных групп, их называют кислыми аминокислотами: аспарагиновая и глутаминовая кислоты:

Все остальные аминокислоты относятся к нейтральным.

V. По числу функциональных групп

Аминокислоты по числу функциональных групп можно разделить моноаминомонокарбоновые, моноаминодикарбоновые, диаминомонокарбоновые:

VI.Биологическая классификация (по способности синтезироваться в организме человека и животных)

Заменимые аминокислоты – десять из 20 аминокислот, входящих в состав белков, могут синтезироваться в организме человека. К ним относятся: глицин (гликокол), аланин, серин, цистеин, тирозин, аспарагиновая и глутаминовая кислоты, аспарагин, глутамин, пролин.

Незаменимые аминокислоты (8 аминокислот) – не могут синтезироваться в организме человека и животных и должны поступать в организм в составе белковой пищи.

Абсолютно незаменимых аминокислот восемь: валин, изолейцин, лейцин, треонин, метионин, лизин, фенилаланин, триптофан.

Незаменимые аминокислоты входят часто в состав пищевых добавок, используются в качестве лекарственных препаратов.

Условно незаменимые (2 аминокислоты) — синтезируются в организме, но в недостаточном количестве, поэтому частично должны поступать с пищей. Такими аминокислотами являются гистидин, аргинин.

Для детей также незаменимыми являются гистидин и аргинин.

Для человека одинаково важны оба типа аминокислот: и заменимые, и незаменимые. Большая часть аминокислот идет на построение собственных белков организма, но без незаменимых аминокислот организм существовать не сможет.

При недостатке каких-либо аминокислот в организме человека в течение непродолжительного времени могут разрушаться белки соединительной ткани, крови, печени и мышц, а полученный из них «строительный материал» — аминокислоты идут на поддержание нормальной работы наиболее важных органов — сердца и мозга.

Дефицит аминокислот приводит к ухудшению аппетита, задержке роста и развития, жировой дистрофии печени и другим тяжелым нарушениям.

При этом наблюдается снижение аппетита, ухудшение состояния кожи, выпадение волос, мышечная слабость, быстрая утомляемость, снижение иммунитета, анемия.

Избыток аминокислот может вызвать развитие тяжелых заболеваний, особенно у детей и в юношеском возрасте. Наиболее токсичными являются метионин (провоцирует риск развития инфаркта и инсульта), тирозин (может спровоцировать развитие артериальной гипертонии, привести к нарушению работы щитовидной железы) и гистидин (может способствовать возникновению дефицита меди в организме и привести к заболеваниям суставов, ранней седине, тяжелым анемиям).

Читайте так же:  Л карнитин передозировка симптомы

В условиях нормального функционирования организма, когда присутствует достаточное количество витаминов (В6, В12, фолиевой кислоты) и антиоксидантов (витамины А, Е, С и селен), избыток аминокислот не наносит вред организму.

Биоорганическая химия

Аминокислоты.

Аминокислоты (аминокарбоновые кислоты) — органические соединения, в молекуле которых одновременно содержатся карбоксильные (-COOH) и аминные группы (-NH2).

Строение аминокислот можно выразить приведённой ниже общей формулой, (где R – углеводородный радикал, который может содержать и различные функциональные группы).

Аминокислоты могут рассматриваться как производные карбоновых кислот, в которых один или несколько атомов водорода заменены на аминные группы (-NH2).

В качестве примера можно привести простейшие: аминоуксусную кислоту, или глицин, и аминопропионовую кислоту или аланин:

Химические свойства аминокислот

Аминокислоты – амфотерные соединения, т.е. в зависимости от условий они могут проявлять как основные, так и кислотные свойства.

За счёт карбоксильной группы (-COOH) они образуют соли с основаниями. За счёт аминогруппы (-NH2) образуют соли с кислотами.

Ион водорода, отщепляющийся при диссоциации от карбоксила (-ОН) аминокислоты, может переходить к её аминогруппе с образованием аммониевой группировки (NH3 + ).

Таким образом, аминокислоты существуют и вступают в реакции также в виде биполярных ионов (внутренних солей).

Этим объясняется, что растворы аминокислот, содержащих одну карбоксильную и одну аминогруппу, имеют нейтральную реакцию.

Альфа-аминокислоты

Из молекул аминокислот строятся молекулы белковых веществ или белков, которые при полном гидролизе под влиянием минеральных кислот, щелочей или ферментов распадаются, образуя смеси аминокислот.

Общее число встречающихся в природе аминокислот достигает 300, однако некоторые из них достаточно редки.

Среди аминокислот выделяется группа из 20 наиболее важных. Они встречаются во всех белках и получили название альфа-аминокислот.

Альфа-аминокислоты – кристаллические вещества, растворимые в воде. Многие из них обладают сладким вкусом. Это свойство нашло отражение в названии первого гомолога в ряду альфа-аминокислот – глицина, явившегося также первой альфа-аминокислотой, обнаруженной в природном материале.

Ниже приведена таблица с перечнем альфа-аминокислот:

Заменимые и незаменимые аминокислоты

Аминокислоты

Аминокислоты – мономеры, состоящие из углеводорода, азота и кислорода. Некоторые соединения содержат серу, фосфор и некоторые другие элементы. Это производные карбоновых кислот с группой -COOH. Одна аминокислота может содержать несколько аминогрупп.

Рис. 1. Строение аминокислот.

Аминокислоты – кристаллические соединения, растворимые в воде. Они проявляют амфотерные свойства и могут реагировать с неорганическими веществами – кислородом, водой, кислотами, щелочами.

Аминокислоты образуют полимеры – белки, которые могут состоять из различных мономеров. К примеру, казеин включает тирозин, лизин, валин, пролин и другие аминокислоты.

Заменимые и незаменимые

Всего известно около 500 аминокислот. Аминокислоты классифицируются по разным признакам в зависимости от строения, состава, физических свойств. Из всего количества аминокислот только 22 используются организмом для синтеза в первую очередь различных белков. Важные для организма аминокислоты классифицируют на три группы:

  • заменимые – синтезируются внутри организма;
  • незаменимые – не синтезируются в организме;
  • частично заменимые – не синтезируются в организме в большом количестве.

Рис. 2. Классификация аминокислот.

Заменимые аминокислоты образуются из веществ, поступивших в организм вместе с пищей. Незаменимые не могут образовываться в организме, поэтому поступают к клеткам в готовом виде. Их отсутствие приводит к снижению умственной деятельности, памяти, иммунитета. Частично заменимые или частично незаменимые аминокислоты синтезируются в организме, но большая их часть попадает в организм в готовом виде вместе с пищей.

В таблице заменимых и незаменимых аминокислот перечислены вещества с молекулярными формулами.

Заменимые

Формула

Незаменимые

Формула

Частично заменимые

Как выглядит формула аминокислот

Общая формула аминокислот подтверждает наличие в молекуле атомов углерода, водорода, кислорода, а также содержание двух функциональных групп: карбоксильной и аминогруппы. Именно они объясняют амфортерный характер этих соединений, двойственность их структуры.

Читайте так же:  Витамин в 12 содержится в продуктах

Значимость соединений

Все процессы, связанные с жизнедеятельностью организмов, происходят на молекулярном уровне. Именно поэтому так важно иметь полное представление об особенностях всех органических веществ, их физических и химических свойствах.

Рассмотрим некоторые аминокислоты, формулы и названия которых знакомы даже современным школьникам.

На протяжении нескольких десятилетий наблюдается стремительное развитие биохимии. Благодаря инновационным методам исследования удалось объяснить сложные превращения, связанные с синтезом белковых молекул. Информация, полученная в специализированных научных лабораториях, используется в медицинской, фармацевтической промышленности.

Особенности биохимии

Эта наука занимается изучением химического состава живых организмов, их строения, превращений. Именно благодаря биохимии была выведена общая формула аминокислот, углеводов, жиров. Зародившись в девятом веке, только сегодня биохимия стала союзником в лечении сложных наследственных заболеваний.

Свойства и строение аминокислот

Любая формула аминокислот представляет собой производную аммиака и карбоновой кислоты. В настоящее время выделяют около трехсот представителей данного класса, встречающихся в живой природе. Любая формула аминокислот, независимо от особенностей углеродной цепочки, в своем составе имеет сразу две функциональные группы. Каждая из них накладывает свой отпечаток на общие химические свойства этих соединений. Общая формула аминокислот имеет вид NH2-CH(R)-COOH

Радикал, входящий в состав молекулы, является производной предельного углеводорода.

Существуют заменимые и незаменимые аминокислоты, формулы их рассматриваются в курсе органической химии.

Двадцать представителей данного класса входят в состав белковых молекул, считаются их обязательным структурным компонентом.

Среди тех соединений, которые должны знать выпускники средней школы, выделим: аланин, пролин, лейцин, глицин, глутамин, валин, аспарагиновую кислоту.

Классификация аминокислот

В зависимости от того, какой вид имеет формула аминокислот, могут быть некоторые отличия в названии. В наше время выделяют соединения, имеющие неполярные радикалы. Среди них выделим аланин, пролин, валин, изолейцин, триптофан, фенилаланин. Кроме того, есть и аминокислоты, которые имеют полярные незаряженные радикалы: серин, цистеин, глутамин, аспарагин.

Стандартные соединения являются составными компонентами полипептидных белковых цепей, выступая в виде L-пространственных изомеров. Практически все они содержат в структуре ассиметричный углеродный атом, объясняющий свободное пространственное вращение аминокислот.

Эти соединения включены в микробные клетки, обнаружены в составе антибиотиков.

[2]

Процесс взаимного превращения стереоизомеров называется рацемизацией. Кроме стандартных представителей данного класса, в белковые молекулы входят и нестандартные аминокислоты.

В зависимости от того, какова особенность белковой молекулы, в ее образовании принимают участие только определенные аминокислоты. Например, в составе коллагена присутствует оксипролин.

Все аминокислоты являются слабыми электролитами, поэтому в водном растворе подвергаются только частичной диссоциации. Возможность соединений находиться в виде полярных ионов применяется при проведении анализа биологических объектов с целью выявления аминокислотного состава. Для этого подходят такие методы, как электрофорез, ионообменная хроматография.

Видео (кликните для воспроизведения).

Именно последовательность аминокислот определяет особенности первичной структуры белковых молекул. Среди основных областей применения данного класса органических веществ можно отметить использование в органическом синтезе, фармацевтической промышленности. Аминокислоты применяют и в качестве подкормки для крупного рогатого скота.

Источники


  1. Дневник спортивной девочки; Эксмо — Москва, 2013. — 128 c.

  2. Гитун, Т. В. Кулинарная книга язвенника. Лечебное питание при заболеваниях ЖКТ / Т.В. Гитун. — М.: Феникс, 2006. — 256 c.

  3. Чустова, Л.И. Гимнастика музыкального слуха / Л.И. Чустова. — М.: Книга по Требованию, 2003. — 164 c.
Аминокислоты формулы и названия таблица
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here