Аминокислоты классификация изомерия номенклатура

Важная и проверенная информация на тему: "аминокислоты классификация изомерия номенклатура" от профессионалов для спортсменов и новичков.

Аминокислоты — номенклатура, получение, химические свойства. Белки

Строение аминокислот

Аминокислоты — гетерофункциональные соеди­нения, которые обязательно содержат две функцио­нальные группы: аминогруппу — NH2 и карбоксиль­ную группу —СООН, связанные с углеводородным радикалом.Общую формулу простей­ших аминокислот можно за­писать так:

Так как аминокислоты со­держат две различные функ­циональные группы, которые оказывают влияние друг на друга, характерные реакции отличают­ся от характерных реакций карбоновых кислот и аминов.

Свойства аминокислот

Аминогруппа — NH2 определяет основные свой­ства аминокислот, т. к. способна присоединять к себе катион водорода по донорно-акцепторному механизму за счет наличия свободной электронной пары у атома азота.

Группа —СООН (карбоксильная группа) опреде­ляет кислотные свойства этих соединений. Следовательно, аминокислоты — это амфотерные орга­нические соединения. Со щелочами они реагируют как кислоты:

С сильными кислотами- как основания-амины:

Кроме того, аминогруппа в аминокислоте всту­пает во взаимодействие с входящей в ее состав кар­боксильной группой, образуя внутреннюю соль:

Ионизация молекул аминокислот зависит от кислотного или щелочного характера среды:

Так как аминокислоты в водных растворах ве­дут себя как типичные амфотерные соединения, то в живых организмах они играют роль буферных веществ, поддерживающих определенную концен­трацию ионов водорода.

Аминокислоты представляют собой бесцветные кристаллические вещества, плавящиеся с разло­жением при температуре выше 200 °С. Они растворимы в воде и нерастворимы в эфире. В зависи­мости от радикала R— они могут быть сладкими, горькими или безвкусными.

Аминокислоты подразделяют на природные (обнаруженные в живых организмах) и синтети­ческие. Среди природных аминокислот (около 150) выделяют протеиногенные аминокислоты (около 20), которые входят в состав белков. Они представляют собой L-формы. Примерно полови­на из этих аминокислот относятся к незамени­мым, т. к. они не синтезируются в организме че­ловека. Незаменимыми являются такие кислоты, как валин, лейцин, изолейцин, фенилаланин, ли­зин, треонин, цистеин, мети­онин, гистидин, триптофан. В организм человека данные вещества поступают с пи­щей. Если их количество в пище будет недостаточ­ным, нормальное развитие и функционирование орга­низма человека нарушаются. При отдельных заболеваниях организм не в состоянии син­тезировать и некоторые другие аминокислоты. Так, при фенилкетонурии не синтезируется тирозин. Важнейшим свойством аминокислот является способность вступать в молекулярную конденса­цию с выделением воды и образованием амидной группировки —NH—СО—, например:

Получаемые в результате такой реакции высокомолекулярные соединения содержат большое число амидных фрагментов и поэтому получили название полимамидов.

К ним, кроме названного выше синтетического волок­на капрона, относят, напри­мер, и энант, образующийся при поликонденсации аминоэнантовой кислоты. Для получения синтетических во­локон пригодны аминокис­лоты с расположением амино- и карбоксильной групп на концах молекул.

Полиамиды альфа-аминокислот называются пепти­дами. В зависимости от числа остатков аминокислот различают дипептиды, трипептиды, полипепти­ды. В таких соединениях группы —NH—СО— на­зывают пептидными.

Изомерия и номенклатура аминокислот

Изомерия аминокислот определяется различ­ным строением углеродной цепи и положением аминогруппы, например:

Широко распространены также названия ами­нокислот, в которых положение аминогруппы обо­значается буквами греческого алфавита: α, β, у и т. д. Так, 2-аминобутановую кислоту можно на­звать также α-аминокислотой:

Способы получения аминокислот

В биосинтезе белка в живых организмах уча­ствуют 20 аминокислот.

Тема: Амины. Строение молекул, изомерия, номенклатура

Название Тема: Амины. Строение молекул, изомерия, номенклатура
Дата 21.02.2014
Размер 58.67 Kb.
Тип Урок
скачать

Тема: Амины. Строение молекул, изомерия, номенклатура,

физические и химические свойства

Цель урока: Знать состав и строение аминов. Классификация, виды изомерии и номенклатура аминов. Уметь составлять уравнения реакций, характеризующих химические свойства аминов

Амины – органические производные аммиака NH3, в молекуле которого один, два или три атома водорода замещены на углеводородные радикалы:

Простейший представитель – метиламин:

Амины классифицируют по двум структурным признакам.

  1. По количеству радикалов, связанных с атомом азота, различают первичные, вторичные и третичные амины.
  2. По характеру углеводородного радикала амины подразделяются на алифатические (жирные), ароматические и смешанные (или жирноароматические).
АМИНЫ Первичные Вторичные Третичные
Алифатические (жирные) CH3NH2
Метиламин
(CH3)2NH
Диметиламин
(CH3)3N
Триметиламин
Ароматические C6H5NH2
Фениламин(анилин)
(C6H5)2NH
Дифениламин
(C6H5)3N
Трифениламин
Смешанные C6H5-NH-СН3
Метилфениламин
C6H5-N(СН3)2
Диметилфениламин

Кроме того, к аминам относятся азотсодержащие циклы, в которых атом азота связан с углеродными атомами. Например, упоминавшийся в части IV (раздел 3.4.1, п.4) уротропин может рассматриваться как третичный амин. Обычно азотистые (и другие) гетероциклы изучаются в самостоятельном разделе органической химии, поскольку циклическое строение придает некоторые особые свойства.

Названия большинства аминов образуются из названий углеводородного радикала (радикалов в порядке увеличения) и суффикса –амин.


Первичные амины часто называют как производные углеводородов, в молекулах которых один или несколько атомов водорода замещены на аминогруппы NH2. Аминогруппа при этом рассматривается как заместитель, а ее местоположение указывается цифрой в начале названия. Например:

Анилин (фениламин) C6H5NH2 в соответствии с этим способом называется аминобензолом.

— положения аминогруппы, начиная с С3H7NH2:

— изомерия аминогруппы, связанная с изменением степени замещенности атомов водорода при азоте:

Изучая новый класс соединений — амины, попробуем предсказать их основные физические и химические свойства. Для этого следует рассмотреть следующие факторы:
— характер химических связей;
— преимущественный тип разрыва связей;
— реакционные центры молекулы;
— характер взаимного влияния атомов на реакционную способность отдельных реакционных центров;
— возможность межмолекулярных взаимодействий (диполь-дипольных, Н-связей и т.п.).

В аминах имеются связи С–Н, а также связи N–H и N–C. Связи азота с углеродом или водородом — полярные ковалентные. Разрыв полярных связей, как известно, происходит преимущественно гетеролитически. Следовательно, для реакций с участием этих связей характерен ионный механизм.
Исходя из распределения электронной плотности в молекуле и наличия неподеленной пары электронов на азоте, можно считать, что амины обладают основными и нуклеофильными свойствами:

Нуклеофильность — способность частицы предоставить электронную пару на образование связи с углеродом.

Кроме того, атомы азота в аминах имеют низкие степени окисления ( ^ Физические свойства аминов

Читайте так же:  Аминокислоты входящие в состав рнк

Связь N–H является полярной, поэтому первичные и вторичные амины образуют межмолекулярные водородные связи (несколько более слабые, чем Н-связи с участием группы О–Н).

Это объясняет относительно высокую температуру кипения аминов по сравнению с неполярными соединениями со сходной молекулярной массой. Например:

При обычной температуре только низшие жирные амины CH3NH2, (CH3)2NH, (CH3)3N – газы (с запахом аммиака), средние амины – жидкости с резким запахом гниющей рыбы, высшие – твердые вещества без запаха.

Амины способны к образованию водородных связей с водой:

Поэтому низшие амины хорошо растворимы в воде. С увеличением числа и размеров углеводородных радикалов растворимость аминов в воде уменьшается, т.к. увеличиваются пространственные препятствия образованию водородных связей. Ароматические амины – бесцветные жидкости и твердые вещества с неприятным запахом, в воде практически не растворяются.

[1]

^ Химические свойства аминов

Амины, являясь производными аммиака, имеют сходное с ним строение и проявляют подобные ему свойства.

Как в аммиаке, так и в аминах атом азота имеет неподеленную пару электронов:

Поэтому амины подобно аммиаку проявляют свойства оснований.

^ I. Свойства аминов как оснований (акцепторов протонов)
1. Водные растворы алифатических аминов проявляют щелочную реакцию, т.к. при их взаимодействии с водой образуются гидроксиды алкиламмония, аналогичные гидроксиду аммония:

Связь протона с амином, как и с аммиаком, образуется по донорно-акцепторному механизму за счет неподеленной электронной пары атома азота.
Алифатические амины – более сильные основания, чем аммиак, т.к. алкильные радикалы увеличивают электронную плотность на атоме азота за счет +I-эффекта. По этой причине электронная пара атома азота удерживается менее прочно и легче взаимодействует с протоном.

2. Взаимодействуя с кислотами, амины образуют соли:

Соли аминов – твердые вещества, хорошо растворимые в воде. При нагревании щелочи вытесняют из них амины:

Читайте так же:  Сделать изотоник своими руками

Ароматические амины являются более слабыми основаниями, чем аммиак, поскольку неподеленная электронная пара атома азота смещается в сторону бензольного кольца, вступая в сопряжение с его -электронами.

или

Уменьшение электронной плотности на атоме азота приводит к снижению способности отщеплять протоны от слабых кислот. Поэтому анилин взаимодействует лишь с сильными кислотами (HCl, H2SO4), а его водный раствор не окрашивает лакмус в синий цвет.

Таким образом, основные свойства изменяются в ряду:

C6H5NH2^ II. Окисление аминов
Амины, особенно ароматические, легко окисляются на воздухе. В отличие от аммиака, они способны воспламеняться от открытого пламени.

III. Взаимодействие с азотистой кислотой

Азотистая кислота HNO2 – неустойчивое соединение. Поэтому она используется только в момент выделения. Образуется HNO2, как все слабые кислоты, действием на ее соль (нитрит) сильной кислотой:

Строение продуктов реакции с азотистой кислотой зависит от характера амина. Поэтому данная реакция используется для различения первичных, вторичных и третичных аминов.

  • Первичные алифатические амины c HNO2 образуют спирты:

R-NH2 + HNO2  R-OH + N2­ + H2O

  • Первичные ароматические амины при повышенной температуре реагируют аналогично, образуя фенолы. При низкой температуре (около 0 С) реакция идет иначе.
  • Вторичные амины (алифатические и ароматические) под действием HNO2 превращаются в нитрозосоединения (вещества с характерным запахом):

R2NH + H-O-N=O  R2N-N=O + H2O
алкилнитрозамин

  • Реакция с третичными аминами приводит к образованию неустойчивых солей и не имеет практического значения

3.Домашнее задание:

Тема: Аминокислоты, строение, изомерия, номенклатура, получение

Название Тема: Аминокислоты, строение, изомерия, номенклатура, получение
Дата 21.02.2014
Размер 54.45 Kb.
Тип Урок
скачать

Тема: Аминокислоты, строение, изомерия, номенклатура, получение,

химические свойства и применение

Цель урока: Знать определение, состав строение и виды изомерии аминокислот. Уметь составлять уравнения реакций, отражающих двойственный характер аминокислот. Знать области их применения

Ход урока:

  1. Оргмомент
  2. Химический диктант по теме «Амины» (предлагается учащимся по вариантам на кодопленках)

Учащимся, легко справившимся с диктантом, предлагаются тестовые задания на карточках:

Вопросы для контроля:

[3]

1. Вещество CH3-NH-CH(CH3)2относится к ряду …
Ответ 1 : фенолов
Ответ 2 : ароматических аминов
Ответ 3 : алифатических аминов
Ответ 4 : нитросоединений

2. Вещество, формула которого имеет вид C6H5-N(CH3)2, называется …
Ответ 1 : анилин
Ответ 2 : диметилфениламин
Ответ 3 : диметилфенол
Ответ 4 : диметилнитробензол

^ 3. Какую реакцию на индикатор показывают амины жирного ряда?
Ответ 1 : кислотную
Ответ 2 : нейтральную
Ответ 3 : щелочную
Ответ 4 : не действуют на индикатор

^ 4. Характерной химической реакцией аминов, обусловленной наличием в их молекулах аминогруппы, является …
Ответ 1 : радикальное замещение
Ответ 2 : взаимодействие с кислотами с образованием солей
Ответ 3 : электрофильное присоединение
Ответ 4 : нуклеофильное присоединение

^ 5. Какие реакции характерны для анилина?

^ 6. В приведенной схеме превращений соединением, относящимся к классу аминов, является . . .

^ 7. Определите массу хлорида фениламмония, если к анилину массой 13,95 г добавили хлороводород, выделившийся на первой стадии хлорирования метана объемом 5 л при н.у.

^ Ответ 1 : 18,2 г
Ответ 2 : 21,2 г
Ответ 3 : 19,4 г
Ответ 4 : 17,5 г

  1. Изложение нового материала:

Аминокислоты – органические бифункциональные соединения, в состав которых входят карбоксильные группы –СООН и аминогруппы -NH2.

Это замещенные карбоновые кислоты, в молекулах которых один или несколько атомов водорода углеводородного радикала заменены аминогруппами.

Простейший представитель – аминоуксусная кислота H2N-CH2-COOH (глицин)

Аминокислоты классифицируют по двум структурным признакам.

  1. В зависимости от взаимного расположения амино- и карбоксильной групп аминокислоты подразделяют на -, -, -, -, - и т. д.

  1. По характеру углеводородного радикала различают алифатические (жирные) и ароматические аминокислоты. Приведенные выше аминокислоты относятся к жирному ряду. Примером ароматической аминокислоты может служить пара-аминобензойная кислота:

По систематической номенклатуре названия аминокислот образуются из названий соответствующих кислот прибавлением приставки амино и указанием места расположения аминогруппы по отношению к карбоксильной группе.

Часто используется также другой способ построения названий аминокислот, согласно которому к тривиальному названию карбоновой кислоты добавляется приставка амино с указанием положения аминогруппы буквой греческого алфавита. Пример:

Для -аминокислот, которые играют исключительно важную роль в процессах жизнедеятельности животных и растений, применяются тривиальные названия.

^ Некоторые важнейшие -аминокислоты общей формулы

Аминокислота Сокращенное обозначение -R
Глицин Gly
Аланин Ala -CH3
Фенилаланин Phe -CH2-C6H5
Валин Val -СH(CH3)2
Лейцин Leu -CH2-CH(CH3)2
Серин Ser -CH2OH

Если в молекуле аминокислоты содержится две аминогруппы, то в ее названии используется приставка диамино, три группы NH2триамино и т.д.

Наличие двух или трех карбоксильных групп отражается в названии суффиксом –диовая или -триовая кислота:

Видео (кликните для воспроизведения).

1. Изомерия углеродного скелета

2. Изомерия положения функциональных групп

3. Оптическая изомерия

Все -аминокислоты, кроме глицина H2N-CH2-COOH, содержат асимметрический атом углерода (-атом) и могут существовать в виде оптических изомеров (зеркальных антиподов).

Оптическая изомерия природных  -аминокислот играет важную роль в процессах биосинтеза белка.

Физические свойства. Аминокислоты – твердые кристаллические вещества с высокой т.пл., при плавлении разлагаются. Хорошо растворимы в воде, водные растворы электропроводны. Эти свойства объясняются тем, что молекулы аминокислот существуют в виде внутренних солей, которые образуются за счет переноса протона от карбоксила к аминогруппе.

^ Химические свойства . Аминокислоты проявляют свойства оснований за счет аминогруппы и свойства кислот за счет карбоксильной группы, т.е. являются амфотерными соединениями. Подобно аминам, они реагируют с кислотами с образованием солей аммония:

Как карбоновые кислоты они образуют функциональные производные:

б) сложные эфиры

Кроме того, возможно взаимодействие амино- и карбоксильной групп как внутри одной молекулы (внутримолекулярная реакция), так и принадлежащих разным молекулам (межмолекулярная реакция).

Практическое значение имеет внутримолекулярное взаимодействие функциональных групп -аминокапроновой кислоты, в результате которого образуется -капролактам (полупродукт для получения капрона):

Межмолекулярное взаимодействие -аминокислот приводит к образованию пептидов. При взаимодействии двух -аминокислот образуется дипептид.

Межмолекулярное взаимодействие трех -аминокислот приводит к образованию трипептида и т.д.

Фрагменты молекул аминокислот, образующие пептидную цепь, называются аминокислотными остатками, а связь CO–NH — пептидной связью.

1. Замещение галогена на аминогруппу в соответствующих галогензамещенных кислотах:

2. Присоединение аммиака к , -непредельным кислотам с образованием -аминокислот:

Классификация, номенклатура, изомерия. 1.1. Классификация, номенклатура, изомерия.

АМИНОКАРБОНОВЫЕ КИСЛОТЫ, БЕЛКИ

Схема лекции.

1.1. Классификация, номенклатура, изомерия.

1.2. Способы получения

1.3. Химические свойства

1.4. Оптическая изомерия

2.2. Пептидная связь

АМИНОКИСЛОТЫ

Определение: Органические соединения содержащие в молекуле карбоксильную и аминогруппы, называются аминокислотами. Из остатков аминокислот построены белки – основной материал, из которого состоят объекты живой природы. Поэтому аминокислоты имеют огромное значение.

Классификация, номенклатура, изомерия.

26 α-аминокислот, из которых построены белки, имеют собственные названия. Например: глицин, аланин, валин, серин и т.д. Рациональная номенклатура строится по тривиальному названию карбоновой кислоты в префиксе ставится «амино» и буквой греческого алфавита обозначается положение гидроксигруппы. По систематической номенклатуре локантом обозначается положение аминогруппы. Карбоксильная группа всегда занимает первое положение. Название строится по углеводороду с добавкой префикса «амино» и суффиксов «овая» или «диовая».

Гомологический ряд одноосновных аминокислот начинается с аминомуравьиной или неполного амида угольной кислоты. Затем идет глицин или аминоуксусная, Эти две кислоты не имеют структурных изомеров. Изомерия аминокислот связана с положением аминогруппы и строением углеродного скелета. Поэтому у следующей карбоновой кислоты – пропионовой – молгут быть два изомера, различающихся положением аминогруппы: α-амино пропионовая и β- мино пропионовая кислота. Кислота с четырьмя углеродными атомами может существовать в виде пяти изомеров. Три соответствуют н-масляной кислоте и два изомасляной кислоте.

Все природные аминокислоты, кроме аминоуксусной, содержат асимметрический атом углерода. Все они относятся к L-ряду.

Дата добавления: 2015-08-01 ; просмотров: 611 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Аминокислоты. Строение аминокислот. Изомерия и номенклатура. Физические и химические свойства

Разделы: Химия

Физические и химические свойства. Получение аминокислот и их применение».

Цель урока: Дать понятие об аминокислотах на основе межпредметных связей с биологией.

Образовательные задачи:

  • изучение строения, свойств аминокислот;
  • формирование умения составлять структурные формулы изомеров и называть их;
  • формирование знаний о способах получения и областях применения аминокислот.

Развивающие задачи: формирование приемов сравнения, сопоставления, анализа и обобщения знаний.

Воспитательные задачи:

  • показ важности и практической применимости знаний по химии;
  • совершенствование учебных умений, навыков, развитие любви к предмету и к науке.

Тип урока: урок изучения нового материала.

Место данного урока в теме: первый урок в данной теме.

Метод: комбинированный (словесно — наглядно — практический).

Структура урока:

I. Организационный момент. Постановка задачи.

II. Изучение нового материала по плану:

  1. Актуализация знаний.
  2. Формирование новых понятий.
  3. Формирование умений и навыков.

III. Проверка усвоения темы.

IV. Заключение, выводы.

V. Краткий инструктаж по домашнему заданию. Подведение итогов работы учащихся, объявление оценок.

На дом: Л.А. Цветков § 41. И.Г. Хомченко «Сборник задач и упражнений по химии для средней школы» № 28.21, 28.22, 28.24, 28.25, 28.32* – 28.35*

Список литературы:

  1. Настольная книга учителя. Химия 10 класс, О.С. Габриелян, И.Г. Остроумов
  2. Химия внутри нас. Введение в бионеорганическую и биоорганическую химию. А.С. Егоров, Н.М. Иванченко, К.П. Шацкая.
  3. Тесты по химии для школьников и абитуриентов. Е.В. Барковский А.И. Врублевский
  4. Репетитор по химии под редакцией А.С. Егорова
  5. Подготовка к экзамену по химии с контролем на ЭВМ. Ф.А. Чмиленко, И.Г, Винниченко, Т.С. Чмиленко

Аминокислоты классификация изомерия номенклатура

4.1. Номенклатура аминокислот

По систематической номенклатуре названия аминокислот образуются из названий соответствующих кислот прибавлением приставки амино и указанием места расположения аминогруппы по отношению к карбоксильной группе.

Часто используется также другой способ построения названий аминокислот, согласно которому к тривиальному названию карбоновой кислоты добавляется приставка амино с указанием положения аминогруппы буквой греческого алфавита. Пример:

Для a -аминокислот, которые играют исключительно важную роль в процессах жизнедеятельности животных и растений, применяются тривиальные названия.

Некоторые важнейшие a -аминокислоты общей формулы

Аминокислоты классификация изомерия номенклатура

Для аминокислот известны два вида изомерии: структурная и пространственная (оптическая изомерия).

Структурная изомерия

Структурная изомерия связана с особенностями строения углеродного скелета и взаимным расположением функциональных групп.

1. Изомерия углеродного скелета

2. Изомерия положения аминогруппы

Оптическая изомерия

Все α-аминокислоты, кроме глицина H2N-CH2-COOH, содержат асимметрический атом углерода (a-атом) и могут существовать в виде оптических изомеров (зеркальных антиподов).

Оптическая изомерия природных α-аминокислот играет важную роль в процессах биосинтеза белка.

Аминокислоты объединяют в несколько классов

Аминокислоты – это строительные блоки макромолекул белков. По строению они являются органическими карбоновыми кислотами, у которых, как минимум, один атом водорода замещен на аминогруппу. Таким образом, в аминокислотах обязательно присутствует карбоксильная группа (СООН),аминогруппа (NH2), асимметричный атом углерода и боковая цепь (радикал R). Строением боковой цепи аминокислоты и отличаются друг от друга. Именно радикал придает аминокислотам большое разнообразие строения и свойств.

Классификация аминокислот

Классификация аминокислот может проводиться в зависимости от какого-либо свойства или качества аминокислот. Выделяют следующие классы аминокислот:

1. В зависимости от положения аминогруппы по отношению к С 2 (α-углеродный атом) на α-аминокислоты, β-аминокислоты и др.

2. По абсолютной конфигурации молекулы на L- и D-стереоизомеры.

3. По оптической активности в отношении плоскости поляризованного света – на право- и левовращающие.

4. По участию аминокислот в синтезе белков – протеиногенные и непротеиногенные.

5. По строению бокового радикала – ароматические, алифатические, содержащие дополнительные СООН- и NH2-группы.

6. По кислотно-основным свойствам – нейтральные, кислые, основные.

[2]

7. По необходимости для организма – заменимые и незаменимые.

Двадцать аминокислот необходимы для синтеза белка

Среди многообразия аминокислот только 20 участвует во внутриклеточном синтезе белков (протеиногенные аминокислоты). Также в организме человека обнаружено еще около 40 непротеиногенных аминокислот.

Все протеиногенные аминокислоты являются α-аминокислотами. На их примере можно показать дополнительные способы классификации. Названия аминокислот обычно сокращаются до 3-х буквенного обозначения. Профессионалы в молекулярной биологии также используют однобуквенные символы для каждой аминокислоты.

По строению бокового радикала

· алифатические(аланин, валин, лейцин, изолейцин, пролин, глицин),

· ароматические(фенилаланин, тирозин, триптофан),

· серусодержащие(цистеин, метионин),

· содержащие ОН-группу (серин, треонин, опять тирозин),

· содержащие дополнительную СООН-группу (аспарагиновая и глутаминоваякислоты),

· дополнительную NH2-группу (лизин, аргинин, гистидин, также глутамин, аспарагин).

Строение протеиногенных аминокислот

По полярности бокового радикала

Существуют неполярныеаминокислоты (ароматические, алифатические) и полярные(незаряженные, отрицательно и положительно заряженные).

По кислотно-основным свойствам

По кислотно-основным свойствам подразделяют нейтральные(большинство), кислые(аспарагиновая и глутаминовая кислоты) и основные(лизин, аргинин, гистидин) аминокислоты.

По незаменимости

По необходимости для организма выделяют такие, которые не синтезируются в организме и должны поступать с пищей – незаменимыеаминокислоты (лейцин, изолейцин, валин, фенилаланин, триптофан, треонин, лизин, метионин). К заменимымотносят такие аминокислоты, углеродный скелет которых образуется в реакциях метаболизма и способен каким-либо образом получить аминогруппу с образованием сответствующей аминокислоты. Две аминокислоты являются условно незаменимыми (аргинин, гистидин), т.е.их синтез происходит в недостаточном количестве, особенно это касается детей.

Аминокислоты обладают изомерией

Изомерия аминокислот в зависимости от положения аминогруппы

В зависимости от положенияаминогруппы относительно 2-го атома углерода выделяют α-, β-, γ- и другие аминокислоты.

α- и β- формы аланина

Для организма млекопитающих наиболее характерны α-аминокислоты.

Изомерия по абсолютной конфигурации

По абсолютной конфигурации молекулы выделяют D- и L-формы. Различия между изомерами связаны с взаимным расположением четырех замещающих групп, находящихся в вершинах воображаемого тетраэдра, центром которого является атом углерода в α-положении. Имеется только два возможных расположения химических групп вокруг него.

Две конформации тетраэдра

В белке любого организма содержится только один стереоизомер, для млекопитающих это L-аминокислоты.

L- и D-формы аланина

Однако оптические изомеры претерпевают самопроизвольную неферментативнуюрацемизацию, т.е. L-форма переходит в D-форму. Данное обстоятельство используется для определения возраста, например, костной ткани зуба (в криминалистике, археологии).

Видео (кликните для воспроизведения).

Последнее изменение этой страницы: 2016-08-16; Нарушение авторского права страницы

Источники


  1. Новоселов, Владимир Восстановление после гепатита. Рекомендации диетолога / Владимир Новоселов. — М.: Невский проспект, 2016. — 160 c.

  2. Баршай, В. М. Гимнастика / В.М. Баршай, В.Н. Курысь, И.Б. Павлов. — М.: Феникс, 2011. — 336 c.

  3. Иваницкий, М. Ф. Анатомия человека (с основами динамической и спортивной морфологии). Учебник / М.Ф. Иваницкий. — Москва: Гостехиздат, 2015. — 624 c.
Аминокислоты классификация изомерия номенклатура
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here