Аминокислоты получение и применение

Важная и проверенная информация на тему: "аминокислоты получение и применение" от профессионалов для спортсменов и новичков.

Аминокислоты получение и применение

Химические свойства аминокислот

Реакции по карбоксильной группе

Декарбоксилирование карбоновых кислот легко протекает, если в a-положении к карбоксилу находится электроноакцепторная группа как, например, СООН (см. главу Дикарбоновые кислоты), NO2, CCl3 и другие. В аминокислотах таким электроноакцептором служит аммониевая группа NH3 + . Реакцию осуществляют при нагревании a-аминокислот в присутствии солей Cu(II) и поглотителей углекислого газа (Ba(OH)2).

В живых организмах этот процесс протекает под действием ферментов – декарбоксилазы и пиридоксальфосфата и приводит к образованию биогенных аминов.

В присутствии окислителей дезаминирование не останавливается на стадии образования амина, протекает окисление аминогруппы до иминогруппы и последующий гидролиз с образованием альдегида.

Этерификация аминокислот спиртами катализируется газообразным хлороводородом. Образующиеся при этом аммониевые соли сложных эфиров аминокислот превращают в нейтральные соединения, действуя на них органическими основаниями, например, триэтиламином.

Наличие двух функциональных групп в молекуле аминокислоты обусловливает реакцию межмолекулярного ацилирования с образованием амидов. Образующаяся связь называется пептидной, а соединения – пептидами или полипептидами. (см. Белки).

Отношение аминокислот к нагреванию

Аминокислоты с различным взаимным расположением амино- и карбоксильных групп при нагревании ведут себя различно. α-Аминокислоты димеризуются и образуют циклические продукты дикетопиперазины. При этом протекает взаимное ацилирование аминогруппы одной молекулы аминокислоты карбоксильной группой другой молекулы.

γ -Аминокислоты при нагревании превращаются в лактамы – продукты внутримолекулярного ацилирования аминогруппы карбоксилом.

β-Аминокислоты отщепляют молекулу аммиака и дают α,β-непредельные кислоты.

Замыкание β-лактамного цикла происходит при взаимодействии β-аминокислот с дициклогексилкарбодиимдом (ДЦК).

Нингидринная реакция (реакция Руэманна)

При кратковременном нагревании α-аминокислот с нингидрином в воде наблюдается изменение окраски раствора с бесцветного на фиолетовый за счет образования нингидринного пигмента (пурпура Руэманна). Эта качественная реакция используется для визуальной идентификации a-аминокислот на тонкослойных и бумажных хроматограммах.

α-Аминокислоты образуют с катионами металлов внутрикомплексные соли. Например, глицин реагирует со свежеосажденным гидроксидом меди, давая синий раствор глицината меди.

Подобно ариламинам ароматические аминокислоты алкилируются, ацилируются и диазотируются по аминогруппе. Аналогично другим замещенным карбоновым кислотам, ароматические аминокислоты превращаются в сложные эфиры и амиды по карбоксильной группе. Обратим внимание на некоторые специфические свойства антраниловой кислоты, позволяющие использовать ее в органическом синтезе. Так, она является исходным соединением в одном из самых удобных методов генерации дегидробензола. Диазотирование антраниловой кислоты алкилнитритами дает цвиттер-ионную соль диазония, которая термически или фотохимически разлагается с образованием дегидробензола.

В промышленности из антраниловой кислоты синтезируют индиго – синий кубовый краситель.

Аминокислоты получение и применение

Благодаря способности аминокислот к поликонденсации образуются полиамиды – белки, пептиды, а также энант, капрон и нейлон. При поликонденсации ɛ-аминокапроновой кислоты получается полимер капрон. Из капроновой смолы получают не только волокна, но и пластмассовые изделия.

Энант, капрон и нейлон применяются в промышленности при производстве корда, прочных тканей, сетей, канатов, веревок, трикотажных и чулочных изделий.

Аминокислоты широко применяются в медицинской практике в качестве лекарственных средств.

Аминокислоты прописываются при сильном истощении, после тяжелых операций, их используют для питания больных.

Из полиаминокислот получают хороший материал для хирургии.

Аргинин в сочетании с аспартатом или глутаматом помогает при заболевании печени.

Аспарагиновая кислота способствует повышению потребления кислорода сердечной мышцей. В кардиологии применяют панангин – препарат, содержащий аспартат калия и аспартат магния. Панангин применяют для лечения различного рода аритмий, а также ишемической болезни сердца.

В медицинских учреждениях аминокислоты применяются в качестве парентерального питания пациентов с заболеваниями желудочно-кишечного тракта (язва желудка), при лечении болезней печени, ожогов, малокровия, при нервно-психических заболеваниях.

Глутаминовая кислота используется в детской психиатрии для лечения слабоумия и последствий родовых травм, при нарушениях мозгового кровообращения после инсульта, при атеросклерозе мозговых сосудов, потере памяти.

Гистидин иногда применяют для лечения больных гепатитами, язвенной болезнью желудка и двенадцатиперстной кишки.

Глицин является медиатором торможения в ЦНС. В медицинской практике применяется для лечения алкоголизма. Производное глицина – бетаин улучшает процессы пищеварения.

Метионин и его активные производные используются в лечении и профилактике болезней печени. Метионин защищает организм при отравлении бактериальными эндотоксинами и некоторыми другими ядами, в связи с этим используется для защиты организма от токсикантов окружающей среды.

Некоторые аминокислоты используются в качестве самостоятельных лекарственных средств (аргинин, цистеин, ароматические аминокислоты).

Аминокислоты в сельском хозяйстве применяются преимущественно в качестве кормовых добавок. Многие растительные белки содержат недостаточное количество белков. Лизин, лейцин, метионин, треонин, триптофан добавляют в корма сельскохозяйственных животных.

Аминокислоты метионин, глутаминовая кислота и валин применяются для защиты растений от болезней, а аланин и глицин, обладающий гербицидным действием, используется для борьбы с сорняками.

Аминокислоты используются в микробиологической промышленности для приготовления культуральных сред и как реактивы.

В пищевой промышленности аминокислоты применяются в качестве вкусовых добавок.

Наиболее важны добавки лизина, триптофана и метионина к пищевым продуктам, неполноценным по содержанию этих аминокислот.

Добавка глутаминовой кислоты и ее солей к ряду продуктов придает им приятный мясной вкус, что часто используют в пищевой промышленности.

[3]

Натриевая соль глутаминовой кислоты (глутамат натрия) известна как «пищевая добавка E621» или «усилитель вкуса».

Глутаминовая кислота является важным компонентом при замораживании и консервировании.

Благодаря присутствию глицина, метионина и валина, во время термической обработки продуктов питания удается получить специфические ароматы хлебобулочных и мясных изделий.

Аминокислоты цистеин, лизин и глицин используются в качестве антиоксидантов, стабилизирующих ряд витаминов, например аскорбиновую кислоту; замедляющих пероксидное окисление липидов.

Глицин применяется при производстве безалкогольных напитков и приправ.

Читайте так же:  Л карнитин можно пить постоянно

Аминокислоты также являются компонентами спортивного питания (в изготовлении которого применяется, как правило, валин, лейцин, изолейцин, аланин, лизин, аргинин и глутамин), использующегося спортсменами, а также людьми, занимающимися бодибилдингом, фитнесом

В химической промышленности введение в такие аминокислоты, как глутаминовая или аспарагиновая кислоты, гидрофобных группировок дает возможность получать поверхностно-активные вещества (ПАВ), широко используемые в синтезе полимеров, а также при производстве моющих средств, эмульгаторов, добавок к моторному топливу.

Аминокислоты и белки

Аминокислоты

В зависимости от взаимного расположения обеих функциональных групп различают α-, β – и γ-аминокислоты:

CH3-CH(NH2)-COOH (α-аминопропионованя кислота)

Для аминокислот характерны следующие виды изомерии: углеродного скелета, положения функциональных групп и оптическая изомерия.

Физические свойства аминокислот

Аминокислоты – твердые кристаллические вещества, хорошо растворимые в воде. Они плавятся при высоких температурах с разложением.

Аминокислоты получают путем замещения галогена на аминогруппу в галогензамещенных карбоновых кислотах. В общем виде уравнение реакции будет выглядеть так:

Химические свойства аминокислот

Аминокислоты – амфотерные соединения. Они реагируют как с кислотами, так и с основаниями:

[1]

При растворении аминокислот в воде аминогруппа и карбоксильная группа взаимодействуют друг с другом с образованием соединений, называемых внутренними солями:

Молекулу внутренней соли называют биполярным ионом.

Водные растворы аминокислот имеют нейтральную, щелочную и кислотную среду в зависимости от количества функциональных групп. Например, глутаминовая кислота образует кислый раствор, поскольку в её составе две карбоксильные группы и одна аминогруппа, а лизин – щелочной раствор, т.к. в её составе одна карбоксильная группа и две аминогруппы.

Две молекулы аминокислоты могут взаимодействовать друг с другом. При этом происходит отщепление молекулы воды и образуется продукт, в котором фрагменты молекулы связаны между собой пептидной связью (-CO-NH-). Например:

Полученное соединение называют дипептидом. Вещества, построенные из многих остатков аминокислот, называются полипептидами. Пептиды гидролизуются под действием кислот и оснований.

α-Аминокислоты играют особую роль в природе, поскольку при их совместной поликонденсации в природных условиях образуются важнейшие для жизни вещества – белки.

Также для аминокислот характерны все химические свойства карбоновых кислот (по карбоксильной группе) и аминов (по аминогруппе).

В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 стандартных аминокислот. Множество их комбинаций создают молекулы белков с большим разнообразием свойств. Кроме того, аминокислотные остатки в составе белка часто подвергаются посттрансляционным модификациям, которые могут возникать и до того, как белок начинает выполнять свою функцию, и во время его «работы» в клетке. Часто в живых организмах несколько молекул разных белков образуют сложные комплексы, например, фотосинтетический комплекс.

Белки обладают свойством амфотерности, то есть в зависимости от условий проявляют как кислотные, так и осно́вные свойства. В белках присутствуют несколько типов химических группировок, способных к ионизации в водном растворе: карбоксильные остатки боковых цепей кислых аминокислот (аспарагиновая и глутаминовая кислоты) и азотсодержащие группы боковых цепей основных аминокислот (в первую очередь, ε-аминогруппализина и амидиновый остаток CNH(NH2)аргинина, в несколько меньшей степени —имидазольный остаток гистидина).

Белки различаются по степени растворимости в воде. Водорастворимые белки называются альбуминами, к ним относятся белки крови и молока. К нерастворимым, или склеропротеинам, относятся, например, кератин (белок, из которого состоят волосы, шерсть млекопитающих, перья птиц и т. п.) и фиброин, который входит в состав шёлка и паутины. Растворимость белка определяется не только его структурой, но внешними факторами, такими как природа растворителя, ионная сила и pH раствора.

Аминокислоты — номенклатура, получение, химические свойства. Белки

Строение аминокислот

Аминокислоты — гетерофункциональные соеди­нения, которые обязательно содержат две функцио­нальные группы: аминогруппу — NH2 и карбоксиль­ную группу —СООН, связанные с углеводородным радикалом.Общую формулу простей­ших аминокислот можно за­писать так:

Так как аминокислоты со­держат две различные функ­циональные группы, которые оказывают влияние друг на друга, характерные реакции отличают­ся от характерных реакций карбоновых кислот и аминов.

Свойства аминокислот

Аминогруппа — NH2 определяет основные свой­ства аминокислот, т. к. способна присоединять к себе катион водорода по донорно-акцепторному механизму за счет наличия свободной электронной пары у атома азота.

Группа —СООН (карбоксильная группа) опреде­ляет кислотные свойства этих соединений. Следовательно, аминокислоты — это амфотерные орга­нические соединения. Со щелочами они реагируют как кислоты:

С сильными кислотами- как основания-амины:

Кроме того, аминогруппа в аминокислоте всту­пает во взаимодействие с входящей в ее состав кар­боксильной группой, образуя внутреннюю соль:

Ионизация молекул аминокислот зависит от кислотного или щелочного характера среды:

Так как аминокислоты в водных растворах ве­дут себя как типичные амфотерные соединения, то в живых организмах они играют роль буферных веществ, поддерживающих определенную концен­трацию ионов водорода.

Аминокислоты представляют собой бесцветные кристаллические вещества, плавящиеся с разло­жением при температуре выше 200 °С. Они растворимы в воде и нерастворимы в эфире. В зависи­мости от радикала R— они могут быть сладкими, горькими или безвкусными.

Аминокислоты подразделяют на природные (обнаруженные в живых организмах) и синтети­ческие. Среди природных аминокислот (около 150) выделяют протеиногенные аминокислоты (около 20), которые входят в состав белков. Они представляют собой L-формы. Примерно полови­на из этих аминокислот относятся к незамени­мым, т. к. они не синтезируются в организме че­ловека. Незаменимыми являются такие кислоты, как валин, лейцин, изолейцин, фенилаланин, ли­зин, треонин, цистеин, мети­онин, гистидин, триптофан. В организм человека данные вещества поступают с пи­щей. Если их количество в пище будет недостаточ­ным, нормальное развитие и функционирование орга­низма человека нарушаются. При отдельных заболеваниях организм не в состоянии син­тезировать и некоторые другие аминокислоты. Так, при фенилкетонурии не синтезируется тирозин. Важнейшим свойством аминокислот является способность вступать в молекулярную конденса­цию с выделением воды и образованием амидной группировки —NH—СО—, например:

Читайте так же:  Тоник коллаген аминокислоты кора

Получаемые в результате такой реакции высокомолекулярные соединения содержат большое число амидных фрагментов и поэтому получили название полимамидов.

К ним, кроме названного выше синтетического волок­на капрона, относят, напри­мер, и энант, образующийся при поликонденсации аминоэнантовой кислоты. Для получения синтетических во­локон пригодны аминокис­лоты с расположением амино- и карбоксильной групп на концах молекул.

Полиамиды альфа-аминокислот называются пепти­дами. В зависимости от числа остатков аминокислот различают дипептиды, трипептиды, полипепти­ды. В таких соединениях группы —NH—СО— на­зывают пептидными.

Изомерия и номенклатура аминокислот

Изомерия аминокислот определяется различ­ным строением углеродной цепи и положением аминогруппы, например:

Широко распространены также названия ами­нокислот, в которых положение аминогруппы обо­значается буквами греческого алфавита: α, β, у и т. д. Так, 2-аминобутановую кислоту можно на­звать также α-аминокислотой:

Способы получения аминокислот

В биосинтезе белка в живых организмах уча­ствуют 20 аминокислот.

Аминокислоты

Характеристики и физические свойства аминокислот

Аминокислоты представляют собой твердые кристаллические вещества, характеризующиеся высокими температурами плавления и разлагающиеся при нагревании. Они хорошо растворяются в воде. Данные свойства объясняются возможностью существование аминокислот в виде внутренних солей (рис. 1).

Рис. 1. Внутренняя соль аминоуксусной кислоты.

Получение аминокислот

Исходными соединениями для получения аминокислот часто служат карбоновые кислоты, в молекулу которых вводится аминогруппа. Например, получение их из галогензамещенных кислот

Кроме этого исходным сырьем для получения аминокислот могут служить альдегиды (1), непредельные кислоты (2) и нитросоединения (3):

Химические свойства аминокислот

Аминокислота как гетерофункциональные соединения вступают в большинство реакций, характерных для карбоновых кислот и аминов. Наличие в молекулах аминокислот двух различных функциональных групп приводит к появлению ряда специфических свойств.

Аминокислоты – амфотерные соединения. Они реагируют как с кислотами, так и с основаниями:

Водные растворы аминокислот имеют нейтральную, щелочную и кислотную среду в зависимости от количества функциональных групп. Например, глутаминовая кислота образует кислый раствор, поскольку в её составе две карбоксильные группы и одна аминогруппа, а лизин – щелочной раствор, т.к. в её составе одна карбоксильная группа и две аминогруппы.

Две молекулы аминокислоты могут взаимодействовать друг с другом. При этом происходит отщепление молекулы воды и образуется продукт, в котором фрагменты молекулы связаны между собой пептидной связью (-CO-NH-). Например:

Полученное соединение называют дипептидом. Вещества, построенные из многих остатков аминокислот, называются полипептидами. Пептиды гидролизуются под действием кислот и оснований.

Применение аминокислот

Аминокислоты, необходимые для построения организма, как человек, так и животные получают из белков пищи.

γ-Аминомасляная кислота используется в медицине (аминалон / гаммалон) при психических заболеваниях; на её основе создан целый ряд ноотропных препаратов, т.е. оказывающих влияние на процессы мышления.

ε-Аминокапроновая кислота также используется в медицине (кровоостанавливающее средство), а кроме того представляет собой крупнотоннажный промышленный продукт, использующийся для получения синтетического полиамидного волокна – капрона.

Антраниловая кислота используется для синтеза красителей, например синего индиго, а также участвует в биосинтезе гетероциклических соединений.

Примеры решения задач

Задание Напишите уравнения реакций аланина с: а) гидроксидом натрия; б) гидроксидом аммония; в) соляной кислотой. За счет каких групп внутренняя соль проявляет кислотные и основные свойства?
Ответ Аминокислоты часто изображают как соединения, содержащие аминогруппу и карбоксильную группу, однако с такой структурой не согласуются некоторые их физические и химические свойства. Строение аминокислот соответствует биполярному иону:

Запишем формулу аланина как внутренней соли:

Исходя из этой структурной формулы, напишем уравнения реакций:

Внутренняя соль аминокислоты реагирует с основаниями как кислота, с кислотами – как основание. Кислотная группа – N + H3, основная – COO — .

Задание При действии на раствор 9,63 г неизвестной моноаминокарбоновой кислоты избытком азотистой кислоты было получено 2,01 л азота при 748 мм. рт. ст. и 20 o С. Определите молекулярную формулу этого соединения. Может ли эта кислоты быть одной из природных аминокислот? Если да, то какая это кислота? В состав молекулы этой кислоты не входит бензольное кольцо.
Решение Напишем уравнение реакции:

Найдем количество вещества азота при н.у., применяя уравнение Клапейрона-Менделеева. Для этого температуру и давление выражаем в единицах СИ:

T = 273 + 20 = 293 K;

P = 101,325 × 748 / 760 = 99,7 кПа;

n(N2) = 99,7 × 2,01 / 8,31 × 293 = 0,082 моль.

По уравнению реакции находим количество вещества аминокислоты и её молярную массу.

Определим аминокислоту. Составим уравнение и найдем x:

14x + 16 + 45 = 117;

Из природных кислот такому составу может отвечать валин.

Строение аминокислот

Общие сведения о строении аминокислот

В зависимости от взаимного расположения обеих функциональных групп различают α-, β – и γ-аминокислоты:

CH3-CH(NH2)-COOH (α-аминопропионованя кислота);

Аминокислоты представляют собой твердые кристаллические вещества, хорошо растворимые в воде. Они плавятся при высоких температурах с разложением.

Электронное строение аминокислот

Видео (кликните для воспроизведения).

В зависимости от строения радикала все аминокислоты можно разделить на алифатические, ароматические (содержат бензольное кольцо) и гетероциклические:

Аланин (2-аминопропановая кислота).

Аспаргиновая кислота (аминобутандиовая кислота).

Цистеин (2-амино-3-меркаптопропановая кислота).

Существует также классификации аминокислот в зависимости от их кислотно-основных свойств:

— нейтральные (равное число амино- и карбоксильных групп);

[2]

— кислые (дополнительная карбоксильная группа, как, например в аспаргиновой или глутаминовой кислотах);

— основные (с дополнительной амино-группой, как, наприер в лизине).

В молекулах всех аминокислот, кроме глицина, атом углерода в α-положении содержит четыре различных заместителя, т.е. является асимметрическим. Благодаря центру хиральностиэти аминокислоты могут существовать в виде двух оптически активных энантиомеров. Отнесение аминокислот к D- или L-стереохимическим рядам проводят по стереохимическому стандарту – глицериновому альдегиду (рис. 1): к D-ряду принадлежат соединения, у которых аминогруппа расположена в формуле Фишера справа, и к L-ряду – у которых она слева.

Читайте так же:  Аминокислота и азотистая кислота

Рис. 1. Проекционные формулы Фишера D- и L-аминокислот.

Типы изомерии аминокислот

Для аминокислот характерно несколько типов изомерии, среди которых:

— изомерия углеродного скелета;

— изомерия положения функциональных групп;

Одной из особенностей аминокислот является возможность взаимодействия их друг с другом. При этом происходит отщепление молекулы воды и образуется продукт, в котором фрагменты молекулы связаны между собой пептидной связью (-CO-NH-). Например,

Полученное соединение называют дипептидом. Вещества, построенные из многих остатков аминокислот, называются полипептидами.

Примеры решения задач

Задание Назовите области применения аминокислот
Ответ Аминокислоты и их производные нашли широкое применение в пищевой, медицинской, микробиологической и химической отраслях промышленности. Аминокислоты входят в состав спортивного питания и комбикорма.
Задание Укажите формулу аминокислоты:
Ответ Аминокислоты – органические бифункциональные соединения, в состав которых входят карбоксильная группа –СООН и аминогруппа – NH2. Такие функциональные группы имеются в составе вещества под буквой (б), следовательно, формуле аминокислоты соответствует вещество (б).

Копирование материалов с сайта возможно только с разрешения
администрации портала и при наличие активной ссылки на источник.

Аминокислоты получение и применение

Аминокислотами называют гетерофункциональные соединения, содержащие одновременно аминогруппу и карбоксильную группы в составе одной молекулы. Классифицируют аминокислоты, основываясь на типе углеводородного радикала, на ароматические и алифатические, последние, в свою очередь, подразделяются на α-, β-, γ-, δ- и ω-аминокислоты, химические свойства которых ощутимо различаются.

Представители алифатических аминокислот

Наибольшее значение в химии имеют α-аминокислоты, в основном потому, что они являются мономерами белков – их можно назвать основой жизни. В состав важнейших α-аминокислот входят не только алифатические, но и ароматические и гетероароматические радикалы. Номенклатура аминокислот подразумевает использование названия соответствующей карбоновой кислоты в качестве основы, положение заместителей обозначают цифрами, начиная от карбонильного углерода (IUPAC), либо буквами греческого алфавита, начиная от соседнего атома углерода (рациональная). Широко используются и тривиальные названия. Тривиальные названия обычно связаны с источниками выделения аминокислот. Например, серин выделен из шелка (serieus (лат.) – шелковистый), тирозин – из сыра (tyros (греч.) – сыр). Для удобства написания полипептидных молекул используют сокращенные обозначения аминокислотных остатков.

Общее число встречающихся в природе α-аминокислот достигает 180, из них 20 постоянно присутствуют во всех белковых молекулах. Растения и некоторые микроорганизмы синтезируют все необходимые им аминокислоты. В животном организме некоторые аминокислоты синтезируются, некоторые – нет и должны поступать извне. Такие аминокислоты называют незаменимыми. К незаменимым относятся – валин, лизин, фенилалалнин, лейцин, треонин, триптофан, изолейцин, метионин.

Важнейшие α-аминокислоты

Сокращенное обозначение аминокислотного остатка

Аминокислоты I Что это? Для чего? Как принимать?

Бондарь Татьяна

Писатель и эксперт / Опубликовано

Поделиться этой страницей

Что такое аминокислоты?

Аминокислоты — это строительный материал для всех белков в организме, из которых образуются мышцы, сухожилия, связки, кожа, волосы. В фитнесе и бодибилдинге они необходимы для повышения эффективности тренировок и наращивания мышечной массы. Аминокислоты помогают быстро восстановиться и избавиться от болей после интенсивных занятий. Также известно, что на усвоение этого «строительного материала» организм тратит больше энергии, тем самым, сам процесс эффективно работает на снижение веса.

Виды аминокислот

Аминокислоты делятся на два вида: заменимые и незаменимые.

Заменимые аминокислоты

Заменимые аминокислоты синтезируются в основном в печени. К ним относятся:

Незаменимые аминокислоты

Незаменимые это те, что попадают в наш организм с пищей или в виде добавок и не синтезируются самостоятельно в организме. К ним относятся:

  • Валин — оказывает стимулирующее действие, необходим для метаболизма в мышцах, для быстрого восстановления после интенсивных тренировок;
  • Гистидин — способствует росту и восстановлению тканей, содержится в гемоглобине;
  • Лейцин — защищает мышечные ткани, используется при лечении артритов, повышает анаболическую реакцию мышц;
  • Изолейцин – помогает клеткам усваивать глюкозу, усиливает рост мышц, участвует в синтезе гемоглобина;
  • Лизин – обладает противовирусными свойствами, стимулирует иммунитет, используется для профилактики остеопороза;
  • Метионин — оказывает метаболическое, гепатопротекторное действие, участвует в обмене серосодержащих аминокислот;
  • Фенилаланин — используется при лечении различных заболеваний: витилиго, депрессии, СДВГ;
  • Триптофан — участвует в выработке серотонина, в синтезе мелатонина, положительно влияет на иммунную систему;
  • Треонин — поддерживает баланс белка в организме.

Как принимать аминокислоты?

Аминоксилоты принимают как при наборе массы, так и при «сушке». Если вы пьете протеин, то в дополнительной подпитке нет необходимости.

  • Дозировка аминокислот должна определяться вашим весом и рекомендациями на упаковке. Это обусловлено тем, что в продуктах может содержаться различный процент «чистых» аминокислот. В основном принимают от 10 до 20 г в сутки.
  • Дозу аминокислот лучше делить на несколько приемов. Их можно пить с утра, во время тренировки и вечером. Это не постулат, поэтому каждый, исходя из целей тренинга, может сам определить для себя время приема.
  • Аминокислоты выпускаются в разных формах. Усвояемость каждой из форм индивидуальна, поэтому рекомендую попробовать разные варианты. Для кого-то более эффективными оказываются порошковые формы, кому-то больше подходят капсулы, а кто-то рад только жидким аминокислотам.

Какие аминокислоты выбрать?

Существуют комплексные и изолированные типы аминокислот. В составе комплексных форм представлены почти все аминокислоты, а изолированные содержат только одну (!) или несколько аминокислот (такие как ВСАА, аргинин + орнитин и т.д.). Предпочтительнее выбирать незаменимые аминокислоты, они значительно повысят работоспособность организма без заметных потерь собственных ресурсов.

Заключение

Употребление аминокислот позволяет значительно улучшить тренировочный процесс, насытить органы и мышцы питательными веществами и сократить периоды восстановления. При этом необходимо придерживаться правильного питания, ведь аминокислоты не являются полноценной заменой пище. Кроме того, эта добавка безопасна для употребления и не вызывает привыкания.

Исходя из ваших целей, вы можете приобрести определенную аминокислоту, которая поможет вам достичь их. Например, аргинин атлеты выбирают с целью пампинга во время тренировки, ВСАА — для восстановления после интенсивных нагрузок, а глютамин активно используется при наборе мышечной массы.

Будьте здоровы! Выбирайте проверенные продукты!

Виды аминокислот

Аминокислоты для спортивного питания существуют 2 типов:

  • гидролизаты,
  • свободные аминокислоты.

Гидролизат – это протеин, который был расщеплен до уровня свободных аминокислот. Гидролизат отличается от протеина тем, что он мгновенно усваивается и обладает минимальным временем на переваривание, что позволяет аминокислотам в кратчайшие сроки попадать в кровь и идти на строительство мышечной ткани.

Продукты, содержащие свободные аминокислоты обладают наивысшей скоростью их транспортировки. В основном это изолированные вещества (глицин, аргинин, глютамин и др.), но бывают и комплексные составы.

И изолированные вещества и комплексные составы обладают хорошей эффективностью. Отличает их то, что гидролизаты изготавливаются из натуральных ингредиентов, а свободные аминокислоты имеют химическое происхождение.

Кроме того, аминокислоты разделяются по группам:

Незаменимые аминокислоты являются более важными для развития мышц. Это связано с тем, что человеческий организм не может их вырабатывать самостоятельно, поэтому они должны поступать извне (с белковой пищей — мясом, молочными изделиями, яйцами, соей).

Делая выбор из всех возможных аминокислот, обращайте внимание в первую очередь на сырье, из которого они изготовлены. Более дешевые аминокислоты включают в себя пшеничный протеин или коллаген, которые ухудшают эффективность и состав.

Незаменимые аминокислоты, в особенности типа ВСАА, стимулируют анаболические процессы роста мышц. С увеличением их содержания в продукте, увеличивается его ценность и эффективность. Можно употреблять ВСАА в чистом виде, они, хоть и значительно дороже, дают результаты в разы лучше.

ВСАА в своем составе включает 3 аминокислоты:

Список других незаменимых аминокислот:

Гидролизаты, состав которых основан на сывороточном протеине или яичном белке дают отличные результаты. Это связано с тем, что сывороточный протеин и яичный белок являются ценнейшими источниками незаменимых аминокислот.

Лекция 3. Аминокислоты

Понравился сайт? Расскажи друзьям!

Общее строение протеиногенной аминокислоты
Читайте так же:  Протеин в домашних условиях для массы

Аминокислоты — карбоновые кислоты, у которых в радикале атом водорода замещен на аминогруппу. Известно несколько сотен аминокислот. Важнейшими являются 20 аминокислот, входящих в состав белков, их называют протеиногенными. Аминокислоты, из которых построены белки, имеют аминогруппу в α-положении по отношению к карбоксильной группе. Отличительные свойства аминокислот связаны с их радикалом.

Существуют различные способы классификации аминокислот. Например, по числу аминных и карбоксильных групп.

Моноаминомонокарбоновые кислоты содержат одну аминогруппу и одну карбоксильную (основное количество аминокислот).

Моноаминодикарбоновые кислоты: аспарагиновая и глу­таминовая содержат по две карбоксильные группы на одну аминогруппу.

Диаминомонокарбоновые аминокислоты: лизин, аргинин, гистидин, наоборот, при одной карбоксильной группе имеют две амино — (или имино-) группы.

Из всех аминокислот выделяют:

Серосодержащие аминокислоты: цистеин и метионин. Гидроксиаминокислоты: серин, треонин, тирозин в радикале имеют гидроксигруппу. Циклические аминокислоты: фенилаланин, тирозин, триптофан, пролин, гистидин имеют в радикале кольцо. Ароматичес­кие аминокислоты содержат ароматическое кольцо: тирозин, фенилаланин, три­птофан. Иминокислота вместо амино — содержит иминогруппу: пролин.

Чаще всего аминокислоты делят по полярности и заряду их радикалов.

Неполярные содержат гидрофобный радикал, сообщающий эти свойства всей молекуле. К ним относятся:

Полярные, незаряженные аминокислоты имеют гидрофильный радикал. К ним относятся:

Полярные, заряженные аминокислоты. Две заряжены отрицательно:

аспарагиновая и глутаминовая кислоты. Сообщают кислые свойства и молекуле белка.

Три основные, положительно заряженные аминокислоты. Аминокислоты этой группы — сильно щелочные соединения (основные), которые обуславливают такие же свойства у белков.

Редкие (минорные) аминокислоты. Аминокислоты, не встречающиеся в белках.

Аминокислоты могут подвергаться модификации уже после встраивания в белковую молекулу. К ним относятся гидроксипролин, гидроксилизин, встречающиеся в белке соединительной ткани — коллагене. Десмозин и изодесмозин — производные из четы­рех молекул лизина, обнаружены в другом белке соединительной ткани эластине. Иногда аминокислотой называют цистин — соединение, образованное из двух молекул цистеина, объединенных через серу дисульфидным мостиком. В составе рибосомальных белков обнаружены аминолимонная и карбоксиаспарагиновая кислоты. Большой отрицатель­ный заряд в участке белка, где находятся эти аминокислоты, препятствует вза­имодействию белка с рРНК. В ядерных белках гистонах встречаются ацетил — и метилпроизводные лизина и серина, в фосфопротеинах — фосфосерин.

Для редких аминокислот нет соответствующих три­плетов в ДНК, т. е. эти аминокислоты не шифруются нуклеиновыми кислотами.

Известно много аминокислот, которые никогда не встречаются в белках. На­пример, цитруллин и орнитин — промежуточные продукты цикла мочевины, γ-аминомасляная кислота, принимающая участие в передаче нервных импульсов, канаванин — аминокислота, обнаруженная у растений и токси­чная для других форм жизни и др.

1. Аминокислоты благодаря карбоксильной и аминной группам являются амфолитами, т. е. проявляют свойства как кислот, так и оснований. В водных растворах карбоксильная группа диссоциирует, а аминогруппа протонируется по уравнению:

2. Все аминокислоты, входящие в состав белков, за исключением глицина, обладают оптической активностью. По строению аминокислоты белков относятся к L-изомерам. D-изомеры аминокислот обнаружены в составе оболочек бактерий, пеп­тидных антибиотиков — грамицидине, актиномицидине и некоторых других соединении и никогда не встречаются в составе белков.

D и L стереоизомеры аминокислот сильно отличаются по своей биологической активности. Так, например, D формы аминокислот воспринимаются человеком как сладкие, а L формы, как нейтральные по вкусу.

D и L стереоизомеры называются энантиомерами. Иногда к D и L буквам добавляют индексы s (серин) и g (глицеральдегид), в зависимости от того, что взято в качестве эталона.

3. Ни одна аминокислота не поглощает видимой части спектра света. Ультрафи­олетовый свет поглощают ароматические аминокислоты: триптофан, тирозин и фенилаланин с максимумом при длине волны 280 нм. Этот факт имеет пра­ктическое значение для спектрофотометрического количественного определения белка, поскольку почти все белки содержат эти аминокислоты.

Читайте так же:  Л карнитин 30 процентов раствор

4. Химические реакции аминокислот обусловлены их функциональными группами.

Карбоксильная группа аминокислот вступает в реакции амидирования, этерификации, восстановления и др.

Большое практическое значение имеют реакции аминогрупп аминокислот.

Для количественного определения аминокис­лот часто используется нингидриновая реакция. Нингидриновая реакция характерна для α-аминокислот. Ее дают свободные аминокислоты, пептиды и белки. Благодаря окисляющей спо­собности, нингидрин декарбоксилирует и дезаминирует аминокислоту. Восстанов­ленный нингидрин образует с молекулой невосстановленного нингидрина и аммиа­ком одинаковый для всех аминокислот, кроме пролина, комплекс синего цвета.

Пролин и гидроксипролин дают с нингидрином желтоокрашенный продукт.

Для обнаружения и количественного определения аминокислот также часто ис­пользуются цветные реакции на радикал аминокислоты: ксантопротеиновая, реакция с флуорескамином, реакция Фоля, Милона, Сакагучи и др.

Качественные реакции аминокислот имеют большое практическое значе­ние в белковой химии.

Синтезируют аминокислоты химическим и микробиологическим путём. Причём при химическом синтезе получаются рацематы (растворы, в которых половина аминокислот D формы, а половина L), поэтому их приходиться переводить и очищать с помощью ферментов. При микробиологическом синтезе получается только L форма.

Также свободные аминокислоты и пептиды можно получить из белков ферментативным гидролизом

Аминокислоты могут взаимодействовать друг с другом, образуя пептидную связь, при этом образуется цепочка из аминокислот — пептид.

Функции аминокислот в организмах: входят в состав антибиотиков микроорганизмов (грамицидин), гормонов (пептид — инсулин), глутатиона (пептид — переносчик веществ через мембрану). Основная функция: образуют белки.

Назначение в промышленности: пищевые добавки, 1-ое место по объёму производства лизин и глутаминовая кислота, чуть меньше глицин и метионин.

Белки (протеины)- это высокомолекулярные органические вещества, являю­щиеся полимерами аминокислот. Молекулярная масса белков — свыше 6 тыс. Белки составляют 50% сухой массы клетки.

Основу любого проявления жизни (движения, дыхания, выделения, чувстви­тельности, размножения и т. д.) составляют белки.

1. Образуют ферменты (трипсин, амилаза — ферменты класса гидролаз)

2. Запасающая (глиадин и зеин — белки зерна пшеницы и кукурузы, овальбумин — белок яйца)

3. Транспортная (гемоглобин переносит кислород, альбумины крови — жиры и жирные кислоты)

4. Сократительная (актин, миозин — белок мышц)

5. Защитная (антитела, яды — рицин)

6. Образуют гормоны (соматотропин)

7. Структурная (Белки оболочек вирусов, белки мембран­ных структур, кератин — белок волос)

Белки по своему составу бывают простыми и сложными. Простые белки состо­ят только из аминокислот, например, эластин — белок сухожилий, лактоглобулин — белок молока.

Классификация простых белков основана на растворимости белков.

1. Альбумины — белки, хорошо растворяющиеся в воде и в концентриро­ванных растворах солей, например, в насыщенном растворе хлорида натрия.

2. Глобулины — нерастворимые в дистиллированной воде белки. Они растворяются в присутствии солей. Осаждаются насыщенным раствором хлорида на­трия.

3. Протамины и гистоны— ядерные белки с высоким содержани­ем основных аминокислот лизина и аргинина —% всех аминокислот.

4. Проламины и глютелины — растительные белки. Особенно много их в семенах. Они не растворяются в воде. Проламины растворяются в спи­рте, а глютелины — только в щелочах.

5. Склеропротеины — белки соединительной ткани. Нерастворимы в воде. К ним относится белок соединительной ткани — эластин, кера­тин — белок волос, белок шелка — фиброин. Склеропротеины иногда назы­вают протеиноидами.

Сложные состоят из простого белка и небелковой простетической группы. По характеру простетической группы сложные белки делятся на несколько групп.

1.Хромопротеины содержат окрашивающую их группу. В гемоглобине, каталазе, цитохроме С и др. белках в качестве простетической группы находится гем (четырех пиррольных кольца, связанных метиновыми мостиками в порфин. В центре порфина находится атом железа. Радикалы гема у различных бе­лков варьируют.

В сетчатой оболочке глаза находится светочувствительный белок родоп­син. Он состоит из простого белка опсина и ретиналя, произ­водного витамина А.

Флавиновые ферменты — белки желтого цвета. В качестве простетической группы эти ферменты имеют флавинмононуклеотид или флавинадениндинуклеотид — производные витамина В7 (рибофлавина).

2.Фосфопротеины — сложные белки, содержащие остаток фосфор­ной кислоты. Фосфорная кислота эфирной связью соединена с гидроксилом серина, треонина или тирозина. К числу фосфопротеинов относится казеин — белок молока. Этот протеин можно отнести также к гликопротеинам, так как он содержит гликомакропептид, стабилизирующий казеин в растворе. К фосфопротеинам относятся также белки яйца, гистоны и др.

3. Гликопротеины. Очень многие белки содержат углеводные ко­мпоненты, например: яичный альбумин, групповые факторы крови, белки оболочки клетки, мукопротеины слизей и др.

4. Липопротеины имеют в составе липидный компонент. Эти бел­ки входят в состав клеточных мемб­ран.

5. Нуклеопротеины — это комплексы нуклеиновых кислот и бел­ков, например, рибосомы и вирус табачной мозаики.

Видео (кликните для воспроизведения).

6. Металлопротеины — белки, содержащие металлы. Ферритин — белок, накапливающий железо в кроветворных органах, содержит до 23% железа в виде Fe(OH)3. Ферменты алкогольоксидаза и карбоксипептидаза содержат цинк, тирозиноксидаза — медь.

Белки также делят по их форме на глобулярные (гемоглобин) и фибриллярные (кератин).

Источники


  1. Данилова, Н. Диабет. Методы традиционной и альтернативной медицины / Н. Данилова. — М.: Вектор, 2009. — 224 c.

  2. Ангел, Светлана Гимнастика в гамаке для начинающих. Новый вид упражнений в спортивном гамаке-тренажере для физического здоровья, красоты и совершенства / Светлана Ангел. — М.: Роса, 2013. — 94 c.

  3. Зейлигер, М. Л. Материалы для исследования физического развития учащихся в начальных школах г. Петрозаводска. Диссертация на степень доктора медицины / М.Л. Зейлигер. — М.: Типография Штаба Отдельного Корпуса Жандармов, 2013. — 99 c.
Аминокислоты получение и применение
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here