Аминокислоты проявляют амфотерные свойства

Важная и проверенная информация на тему: "аминокислоты проявляют амфотерные свойства" от профессионалов для спортсменов и новичков.

Аминокислоты проявляют амфотерные свойства

4.3. Свойства аминокислот

Физические свойства . Аминокислоты – твердые кристаллические вещества с высокой температурой плавления. Хорошо растворимы в воде, водные растворы электропроводны. Эти свойства объясняются тем, что молекулы аминокислот существуют в виде внутренних солей, которые образуются за счет переноса протона от карбоксила к аминогруппе:

Аминокислоты с одной карбоксильной группой и одной аминогруппой имеют нейтральную реакцию.

Аминокислоты как амфотерные соединения образуют соли как с кислотами (по группе NH2), так и со щелочами (по группе СООН):

С ионами тяжелых металлов α-аминокислоты образуют внутрикомплексные соли. Комплексы меди (II), имеющие глубокую синюю окраску, используются для обнаружения

Химические свойства . Аминокислоты проявляют свойства оснований за счет аминогруппы и свойства кислот за счет карбоксильной группы, т.е. являются амфотерными соединениями. Подобно аминам, они реагируют с кислотами с образованием солей аммония:

Как карбоновые кислоты они образуют функциональные производные:

H 2 N–CH 2 –COOH + NaOH

H 2 N–CH 2 –COO – Na + + H 2 O

б) сложные эфиры

Кроме того, возможно взаимодействие амино- и карбоксильной групп как внутри одной молекулы (внутримолекулярная реакция), так и принадлежащих разным молекулам (межмолекулярная реакция).

Практическое значение имеет внутримолекулярное взаимодействие функциональных групп ε-аминокапроновой кислоты, в результате которого образуется ε-капролактам (полупродукт для получения капрона):

Заметим, что в искусственных условиях (вне организма) 2 различных аминокислоты могут образовать 4 изомерных дипептида (попробуйте представить их формулы).

Межмолекулярная реакция с участием трех α-аминокислот приводит к образованию трипептида и т.д. Фрагменты молекул аминокислот, образующие пептидную цепь, называются аминокислотными остатками, а связь CO–NH — пептидной связью. Важнейшие природные полимеры – белки (протеины) – относятся к полипептидам, т.е. представляют собой продукт поликонденсации α-аминокислот (часть V, раздел 6.3).

—> В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 α-аминокислот (часть V, раздел 6.4.3).

Свойства аминокислот

Cвойства аминокислот можно разделить на две группы: химические и физические.

Химические свойства аминокислот

В зависимости от соединений, аминокислоты могут проявлять различные свойства.

Аминокислоты как амфотерные соединения образуют соли и с кислотами, и со щелочами.

Как карбоновые кислоты аминокислоты образуют функциональные производные: соли, сложные эфиры, амиды.

Взаимодействие и свойства аминокислот с основаниями:
Образуются соли:

NH2-CH2-COOH + NaOH

NH2-CH2-COONa + H2O

Натриевая соль + 2-аминоуксусной кислоты

Натриевая соль аминоуксусной кислоты (глицина) + вода

Взаимодействие со спиртами:

Аминокислоты могут реагировать со спиртами при наличии газообразного хлороводорода, превращаясь в сложный эфир. Сложные эфиры аминокислот не имеют биполярной структуры и являются летучими соединениями.

NH2-CH2-COOH + CH3OH

NH2-CH2-COOCH3 + H2O.

Метиловый эфир / 2-аминоуксусной кислоты /

Взаимодействие с аммиаком:

Образуются амиды:

Взаимодействие аминокислот с сильными кислотами:

Получаем соли:

Таковы основные химические свойства аминокислот.

Физические свойства аминокислот

Перечислим физические свойства аминокислот:

  • Бесцветные
  • Имеют кристаллическую форму
  • Большинство аминокислот со сладким привкусом, но в зависимости от радикала (R) могут быть горькими или безвкусными
  • Хорошо растворяются в воде, но плохо растворяются во многих органических растворителях
  • Аминокислоты имеют свойство оптической активности
  • Плавятся с разложением при температуре выше 200°C
  • Нелетучие
  • Водные растворы аминокислот в кислой и щелочной среде проводят электрический ток

Редактировать этот урок и/или добавить задание и получать деньги постоянно* Добавить свой урок и/или задания и получать деньги постоянно

Добавить новость и получить деньги

Добавить анкету репетитора и получать бесплатно заявки на обучение от учеников

user->isGuest) »]) . ‘ или ‘ . Html::a(‘зарегистрируйтесь’, [‘/user/registration/register’], [‘class’ => »]) . ‘ , чтобы получать деньги $$$ за каждый набранный балл!’); > else user->identity->profile->first_name) || !empty(Yii::$app->user->identity->profile->surname))user->identity->profile->first_name . ‘ ‘ . Yii::$app->user->identity->profile->surname; > else echo ‘Получайте деньги за каждый набранный балл!’; > ?>—>

При правильном ответе Вы получите 2 балла

Отметьте верные свойства аминокислот

Выберите те ответы, которые считаете верными.

Добавление комментариев доступно только зарегистрированным пользователям

Lorem iorLorem ipsum dolor sit amet, sed do eiusmod tempbore et dolore maLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempborgna aliquoLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempbore et dLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempborlore m mollit anim id est laborum.

28.01.17 / 22:14, Иван Иванович Ответить +5

Читайте так же:  Рейтинг протеина для набора

Lorem ipsum dolor sit amet, consectetu sed do eiusmod qui officia deserunt mollit anim id est laborum.

28.01.17 / 22:14, Иван ИвановичОтветить -2

Lorem ipsum dolor sit amet, consectetur adipisicing sed do eiusmod tempboLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod temLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempborpborrum.

28.01.17 / 22:14, Иван Иванович Ответить +5

Состав аминокислот

Состав аминокислот

Аминокислоты — это производные углеводородов. В состав аминокислот входят молекулы, у которых есть два вида функциональных групп: карбоксильная группа, имеющая кислотные свойства и аминогруппа, обладающая основными свойствами этого вещества.

Состав аминокислот можно выразить формулой: NH2-R-COOH.

Примерами аминокислот могут быть:

  • Аминоуксусная NH2-СH2-COOH
  • Аминопропионовая NH2-СH2-СH2-COOH
  • Аминокапроновая NH2-(СH2)5-COOH
  • Аминоэнантовая NH2-(СH2)6-COOH
  • Аминобензойная NH26H4-COOH

Глутаминовая кислта. Аминокислоты Глицин. Аминокислоты Ацетилхолин. Аминокислоты Дофамин. Аминокислоты Сератонин. Аминокислоты

В зависимости от расположения этих функциональных групп возникает множество изомеров. Наибольший интерес представляет А-аминокислоты, то есть аминокислоты, в которых карбоксильная группа и аминогруппа находятся рядом. Именно А-аминокислоты входят в состав белков!

Аминокислоты — это твёрдые кристаллические вещества, что объясняется строением их молекул. В состав аминокислот входит внутренняя соль, где соль, надо понимать, как сложное вещество с химической точки зрения!).

Получение аминокислот

Получение аминокислот связано с гидролизом белков, но их можно синтезировать из карбоновых кислот, для чего сначала получают хлорпроизводные кислоты, которые затем обрабатывают аммиаком.

Сератонин. Аминокислоты Сератонин. Аминокислоты Сератонин. Аминокислоты

Химические свойства аминокислот

Химические свойства аминокислот определяются наличием двух противоположных по свойствам функциональных групп (карбоксильная группа и аминогруппа), входящих в состав аминокислот, что придает им амфотерные свойства (свойства и кислоты, и основания одновременно). Так, аминокислоты вступают в химическую реакцию с основаниями и спиртами, при этом образуются химические соединения, аналогичные продуктам реакции карбоновых кислот со щелочами и спиртами — соли и сложные эфиры.

Как основания, аминокислоты легко взаимодействуют с кислотами, при этом образуются соли.

Сератонин. Аминокислоты

Химические свойства аминокислот позволяют им взаимодействовать друг с другом, но такое взаимодействие отличается от привычных реакций. В результате химических реакции могут образовываться соединения с большим числом аминокислотных остатков — полипептиды. Группа атомов — CO — NH, входящих в состав аминокислот, называется пептидной группой, а связь между атомами азота и углерода — пептидная связь или амидная связь. Благодаря этим связям остатки аминокислот соединяются молекулах белков и некоторых волокон (например, в капроне)

Аминокислоты как «кирпичики», из которых построены белки, применяются в медицине: их прописывают больным и сильно и сильно ослабленным после тяжёлых операций и лечения, при заболеваниях желудочного тракта, а также нервных заболеваний. Аминокислоты используют в сельском хозяйстве в качестве добавки к корму животных.

Аминокапроновая кислота и аминоэнантовая кислота, служат исходным сырьём для получения синтетических волокон «капрон» и «энант».

Аминопропионовая кислота — образуется при гидролизе натурального шёлка. А вот её остаток содержится почти во всех белках!

Аминоуксусная кислота — представляет собой белое кристаллические вещество, которое очень хорошо растворимо в воде. Она имеет сладкий вкус, поэтому её второе название гликоль.

3.7 Характерные химические свойства азотсодержащих органических соединений: аминов и аминокислот

Видеоурок: Амины: Химические свойства

Лекция: Характерные химические свойства азотсодержащих органических соединений: аминов и аминокислот

[3]

Амины – это органические соединения, являющиеся производными аммиака, в молекуле которых один или несколько атомов водорода замещены на углеводородные радикалы (R).

Исходя из данного утверждения, т.е. по числу аминогрупп NH2 амины подразделяются на:

В зависимости от типа радикала, связанного с атомом азота, амины подразделяются на:

алифатические (CH3-N Изомерия алифатических аминов:

Ароматические амины проявляют более слабые основные свойства по сравнению с аммиаком. Это объясняется тем, что неподеленная электронная пара атома азота сдвигается в сторону ароматической π-системы бензольного кольца. Впоследствии, электронная плотность на атоме азота постепенно снижается.

Химические свойства аминов

Наличие электронной пары на атоме азота наделяет амины основными свойствами. Первичные предельные амины, в силу более сильных основных свойств, взаимодействуют с водой несколько лучше аммиака. В свою очередь, основность вторичных предельных аминов больше первичных. Проявление основных свойств третичными аминами не так однозначно, потому что атом азота в них, нередко экранирован углеводородными радикалами, что мешает проявлению его основных свойств.

Амины вступают в обратимые реакции с водой. Водный р-р аминов является щелочной средой, что является следствием диссоциации образующихся оснований. Общий вид реакции выглядит следующим образом:

Читайте так же:  Л карнитин российского производства

Свободные предельные амины и их водные р-ры взаимодействуют с кислотами с образованием солей. К примеру:

Соли аминов представляют собой аналоги солей аммония и являются твердыми веществами. Они хорошо растворяются в воде и плохо в неполярных органических растворителях. В реакциях с щелочами при нагревании из солей аминов высвобождаются свободные амины:

Первичные предельные амины взаимодействуют с азотистой кислотой с образованием спиртов, газообразного азота N2 и воды:

Это качественная реакция первичных предельных аминов и применяется для их различения от вторичных и третичных.

Вторичные амины в такой же реакции образуют масляные жидкости с запахом — N -нитрозамины:

  • Амины вступают в реакции нуклеофильного замещения:

Аминокислоты проявляют амфотерные свойства

Среди азотсодержащих органических веществ имеются соединения с двойственной функцией. Особенно важными из них являются аминокислоты.

В клетках и тканях живых организмов встречается около 300 различных аминокислот, но только 20 ( α-аминокислоты ) из них служат звеньями (мономерами), из которых построены пептиды и белки всех организмов (поэтому их называют белковыми аминокислотами). Последовательность расположения этих аминокислот в белках закодирована в последовательности нуклеотидов соответствующих генов. Остальные аминокислоты встречаются как в виде свободных молекул, так и в связанном виде. Многие из аминокислот встречаются лишь в определенных организмах, а есть и такие, которые обнаруживаются только в одном из великого множества описанных организмов. Большинство микроорганизмов и растения синтезируют необходимые им аминокислоты; животные и человек не способны к образованию так называемых незаменимых аминокислот, получаемых с пищей. Аминокислоты участвуют в обмене белков и углеводов, в образовании важных для организмов соединений (например, пуриновых и пиримидиновых оснований, являющихся неотъемлемой частью нуклеиновых кислот), входят в состав гормонов, витаминов, алкалоидов, пигментов, токсинов, антибиотиков и т. д.; некоторые аминокислоты служат посредниками при передаче нервных импульсов.

Аминокислоты

— органические амфотерные соединения, в состав которых входят карбоксильные группы – СООН и аминогруппы -NH 2 .

Аминокислоты

[2]

можно рассматривать как карбоновые кислоты, в молекулах которых атом водорода в радикале замещен аминогруппой.

1. В зависимости от взаимного расположения амино- и карбоксильной групп аминокислоты подразделяют на α-, β-, γ-, δ-, ε- и т. д.

2. В зависимости от количества функциональных групп различают кислые, нейтральные и основные.

3. По характеру углеводородного радикала различают алифатические (жирные), ароматические, серосодержащие и гетероциклические аминокислоты. Приведенные выше аминокислоты относятся к жирному ряду.

Примером ароматической аминокислоты может служить пара -аминобензойная кислота:

Примером гетероциклической аминокислоты может служить триптофан – незаменимая α- аминокислота

По систематической номенклатуре названия аминокислот образуются из названий соответствующих кислот прибавлением приставки амино- и указанием места расположения аминогруппы по отношению к карбоксильной группе. Нумерация углеродной цепи с атома углерода карбоксильной группы.

Часто используется также другой способ построения названий аминокислот, согласно которому к тривиальному названию карбоновой кислоты добавляется приставка амино- с указанием положения аминогруппы буквой греческого алфавита.

Для α-аминокислот R-CH(NH2)COOH

, которые играют исключительно важную роль в процессах жизнедеятельности животных и растений, применяются тривиальные названия.

2.2.7 Химические свойства аминокислот

Химическое поведение аминокислот определяется двумя функциональными группами -NН2 и –СООН. Аминокислотам характерны реакции по аминогруппе, карбоксильной группе и по радикальной части, при этом в зависимости от реагента взаимодействие веществ может идти по одному или нескольким реакционным центрам.

Амфотерный характер аминокислот. Имея в молекуле одновременно кислотную и основную группу, аминокислоты в водных растворах ведут себя как типичные амфотерные соединения. В кислых растворах они проявляют основные свойства, реагируя как основания, в щелочных – как кислоты, образуя соответственно две группы солей:

Благодаря своей амфотерности в живом организме, аминокислоты играют роль буферных веществ, поддерживающих определенную концентрацию водородных ионов. Буферные растворы, полученные при взаимодействии аминокислот с сильными основаниями, широко применяются в биоорганической и химической практике. Соли аминокислот с минеральными кислотами лучше растворимы в воде, чем свободные аминокислоты. Соли с органическими кислотами труднорастворимые в воде и используются для идентификации и разделения аминокислот.

Реакции, обусловленные аминогруппой. С участием аминогруппы аминокислоты образуют аммониевые соли с кислотами, ацилируются, алкилируются, реагируют с азотистой кислотой и альдегидами в соответствии со следующей схемой:

Алкилирование проводится при участии R-На1 или Аr-Наl:

В процессе реакции ацилирования используются хлорангидриды или ангидриды кислот (ацетилхлорид, уксусный ангидрид, бензилоксикарбонилхлорид):

Реакции ацилирования и алкилировнаия применяется для защиты NН2–группы аминокислот в процессе синтеза пептидов.

Реакции, обусловленные карбоксильной группой. При участии карбоксильной группы аминокислоты образуют cоли, сложные эфиры, амиды, хлорангидриды в соответствии со схемой, представленной ниже:

Если при -углеродном атоме в углеводородном радикале имеется электроноакцепторный заместитель (NO2, СС13, СООН, COR и т.д.), поляризующий связь ССООН, то у карбоновых кислот легко протекают реакции декарбоксилирования. Декарбоксилирование -аминокислот, содержащих в качестве заместителя + NH3-группу, приводит к образованию биогенных аминов. В живом орга­низме данный процесс протекает под действием фермента декарбоксилазы и витамина пиридоксальфосфата.

Читайте так же:  Л карнитин при диабете 2 типа
Видео (кликните для воспроизведения).

В лабораторных условиях реакцию осуществляется при на­гревании -аминокислоты в присутствии поглотителей СО2, например, Ва(ОН)2.

При декарбоксилировании -фенил--аланина, лизина, серина и гистидина образуются, соответственно, фенамин, 1,5-диаминопентан (кадаверин), 2-аминоэтанол-1 (коламин) и триптамин.

Реакции аминокислот с участием боковой группы. При нитровании аминокислоты тирозин азотной кислотой происходит образование динитропроизводного соединения, окрашенного в оранжевый цвет (ксантопротеиновая проба):

Окислительно-восстановительные переходы имеют место в системе цистеин – цистин:

В некоторых реакциях аминокислоты реагируют по обеим функциональным группам одновременно.

Образование комплексов с металлами. Почти все -аминокислоты образуют комплексы с ионами двухвалентных металлов. Наиболее устойчивыми являются комплексные внутренние соли меди (хелатные соединения), образующиеся в результате взаимодействия с гидроксидом меди (II) и окрашенные в синий цвет:

Действие азотистой кислоты на алифатические аминокислоты приводит к образованию гидроксикислот, на ароматические — диазосоединений.

Диазосоединение далее может реагировать по двум направлениям:

с выделением молекулярного азота N2:

2. без выделения молекулярного азота N2:

Хромофорная группа азобензола -N=N в азосоединениях обуславливает желтую, желтую, оранжевую или другого цвета окраску веществ при поглощении в видимой области света ( 400-800 нм). Ауксохромная группа

-СООН изменяет и усиливает окраску за счет π, π — сопряжения с π — электронной системой основной группы хромофора.

Отношение аминокислот к нагреванию. При нагревании аминокислоты разлагаются с образованием различных продуктов в зависимости от их типа. При нагревании -аминокислот в результате межмолекулярной дегидратации образуются циклические амиды — дикетопиперазины:

валин (Val) диизопропильное производное

При нагревании -аминокислот от них отщепляется аммиак с образованием α, β-непредельных кислот с сопряженной системой двойных связей:

β-аминовалериановая кислота пентен-2-овая кислота

Нагревание — и -аминокислот сопровождается внутримолекулярной дегидратацией и образованием внутренних циклических амидов лактамов:

γ-аминоизовалериановая кислота лактам γ-аминоизовалериановой

Амфотерные органические и неорганические соединения

К амфотерным неорганическим соединениям относят оксиды и гидроксиды следующих металлов – Al, Zn, Be, Cr (в степени окисления +3) и Ti (в степени окисления +4). Амфотерными органическими соединениями являются аминокислоты – NH2–CH(R)-COOH.

Получение амфотерных соединений

Амфотерные оксиды получают путем реакции горения соответствующего металла в кислороде, например:

Амфотерные гидроксиды получают по реакции обмена между щелочью и солью, содержащий «амфотерный» металл:

Если щелочь присутствует в избытке, то есть вероятность получения комплексного соединения:

Органические амфотерные соединения – аминокислоты получают путем замещения галогена на аминогруппу в галогензамещенных карбоновых кислотах. В общем виде уравнение реакции будет выглядеть так:

Химические амфотерных соединений

Главным химическим свойством амфотерных соединений является их способность реагировать с кислотами и щелочами:

Специфические свойства амфотерных органических соединений

При растворении аминокислот в воде аминогруппа и карбоксильная группа взаимодействуют друг с другом с образованием соединений, называемых внутренними солями:

Молекулу внутренней соли называют биполярным ионом.

Две молекулы аминокислоты могут взаимодействовать друг с другом. При этом происходит отщепление молекулы воды и образуется продукт, в котором фрагменты молекулы связаны между собой пептидной связью (-CO-NH-). Например:

Также для аминокислот характерны все химические свойства карбоновых кислот (по карбоксильной группе) и аминов (по аминогруппе).

Примеры решения задач

Задание Осуществите ряд превращений: а) Al → Al(OH)3 → AlCl3 → Na[Al(OH)4]; б) Al → Al2O3 → Na[Al(OH)4] → Al(OH)3 → Al2O3 → Al
Решение a) 2Al +6H2O = 2Al(OH)3 + 3H2
Задание Вычислите массу соли, которую можно получить при взаимодействии 150 г 5%-го раствора аминоуксусной кислоты с необходимым количеством гидроксида натрия. Сколько граммов 12%-го раствора щелочи для этого потребуется?
Решение Запишем уравнение реакции:

Вычислим массу кислоты, вступившей в реакцию:

Найдем количество вещества этой кислоты:

[1]

Найдем массу соли, которая образовалась в ходе реакции:

Найдем массу гидроксида натрия:

m(NaOH)= 0,1 × 40 = 4 г

Найдем массу раствора гидроксида натрия:

msolution(NaOH) = 4/0,12 = 33,3 г

17. Α-Аминокислоты. Строение, классификация α-Аминокислот по природе радикала: алифатические, ароматические, гетероциклические. Заменимые и незаменимые α-Аминокислоты. Привести примеры.

α-Аминокислоты — гетерофункциональные соединения, молекулы которых содержат одновременно аминогруппу и карбоксильную группу у одного и того же атома углерода.

Многие α-аминокислоты синтезируются в организме. Некоторые аминокислоты, необходимые для синтеза белков, в организме не образуются и должны поступать извне. Такие аминокислоты называют незаменимыми

Читайте так же:  Таблица аминокислот и триплетов

К незаменимым α-аминокислотам относятся:

валин изолейцин метионин триптофан

лейцин лизин треонин фенилаланин

Алифатические α-аминокислоты. Это наиболее многочисленная группа. Внутри нее аминокислоты подразделяют с привлечением дополнительных классификационных признаков.

В зависимости от числа карбоксильных групп и аминогрупп в молекуле выделяют:

• нейтральные аминокислоты — по одной группе NH2 и СООН;

• основные аминокислоты — две группы NH2 и одна группа

• кислые аминокислоты — одна группа NH2 и две группы СООН.

Можно отметить, что в группе алифатических нейтральных аминокислот число атомов углерода в цепи не бывает больше шести. При этом не существует аминокислоты с четырьмя атомами углерода в цепи, а аминокисоты с пятью и шестью атомами углерода имеют только разветвленное строение (валин, лейцин, изолейцин).

В алифатическом радикале могут содержаться «дополнительные» функциональные группы:

• гидроксильная — серин, треонин;

• карбоксильная — аспарагиновая и глутаминовая кислоты;

• амидная — аспарагин, глутамин.

Ароматические α-аминокислоты. К этой группе относятся фенилаланин и тирозин, построенные таким образом, что бензольные кольца в них отделены от общего α-аминокислотного фрагмента метиленовой группой -СН2-.

Гетероциклические α-аминокислоты. Относящиеся к этой группе гистидин и триптофан содержат гетероциклы — имидазол и индол соответственно. Строение и свойства этих гетероциклов рассмотрены ниже (см. 13.3.1; 13.3.2). Общий принцип построения гетероциклических аминокислот такой же, как и ароматических.

Гетероциклические и ароматические α-аминокислоты можно рассматривать как β-замещенные производные аланина.

К героциклическим относится также аминокислота пролин, в которой вторичная аминогруппа включена в состав пирролидинового

18. Свойства α-Аминокислот. Кислотно-основные свойства. Понятие об изоэлектрической точке (рI).

Пояснить на конкретном примере.

Амфотерность аминокислот обусловлена кислотными (СООН) и основными (NH2) функциональными группами в их молекулах. Аминокислоты образуют соли как со щелочами, так и с кислотами.

В кристаллическом состоянии α-аминокислоты существуют как диполярные ионы H3N+ — CHR-COO- (обычно используемая запись

строения аминокислоты в неионизированной форме служит лишь для удобства).

В водном растворе аминокислоты существуют в виде равновесной смеси диполярного иона, катионной и анионной форм.

Положение равновесия зависит от рН среды. У всех аминокислот преобладают катионные формы в сильнокислых (рН 1-2) и анион- ные — в сильнощелочных (рН >11) средах.

Ионное строение обусловливает ряд специфических свойств аминокислот: высокую температуру плавления (выше 200 ?С), растворимость в воде и нерастворимость в неполярных органических растворителях. Способность большинства аминокислот хорошо растворяться в воде является важным фактором обеспечения их биологического функционирования, с нею связаны всасывание аминокислот, их транспорт в организме и т. п.

Положение равновесия, т. е. соотношение различных форм аминокислоты, в водном растворе при определенных значениях рН существенно зависит от строения радикала, главным образом от присутствия в нем ионогенных групп, играющих роль дополнительных кислотных и основных центров.

Значение рН, при котором концентрация диполярных ионов максимальна, а минимальные концентрации катионных и анионных форм аминокислоты равны, называется изоэлектрической точкой (p/).

Нейтральные α-аминокислоты. Эти аминокислоты имеют значения рI несколько ниже 7 (5,5-6,3) вследствие большей способности к ионизации карбоксильной группы под влиянием -/-эффекта группы NH2. Например, у аланина изоэлектрическая точка находится при рН 6,0.

Кислые α-аминокислоты. Эти аминокислоты имеют в радикале дополнительную карбоксильную группу и в сильнокислой среде находятся в полностью протонированной форме. Кислые аминокислоты являются трехосновными (по Брёндстеду) с тремя значениями рКа, как это видно на примере аспарагиновой кислоты (р/ 3,0).

У кислых аминокислот (аспарагиновой и глутаминовой) изоэлектрическая точка находится при рН много ниже 7 (см. табл. 12.1). В организме при физиологических значениях рН (например, рН крови 7,3-7,5) эти кислоты находятся в анионной форме, так как у них ионизированы обе карбоксильные группы.

Основные α-аминокислоты. В случае основных аминокислот изоэлектрические точки находятся в области рН выше 7. В сильно- кислой среде эти соединения также представляют собой трехосновные кислоты, этапы ионизации которых показаны на примере лизина (р/ 9,8).

В организме основные аминокислоты находятся в виде катионов, т. е. у них протонированы обе аминогруппы.

В целом ни одна α-аминокислота in vivo не находится в своей изоэлектрической точке и не попадает в состояние, отвечающее наименьшей растворимости в воде. Все аминокислоты в организме находятся в ионной форме.

19. Биологически важные реакции α-Аминокислот: а) трансаминирование; б) декарбоксилирование; в) дезаминирование: окислительное, восстановительное, внутримолекулярное, гидролитическое; г) образование пептидов.

В организме под действием различных ферментов осуществляется ряд важных химических превращений аминокислот. К таким пре- вращениям относятся трансаминирование, декарбоксилирование, элиминирование, альдольное расщепление, окислительное дезаминирование, окисление тиольных групп.

Трансаминирование является основным путем биосинтеза α-ами- нокислот из α-оксокислот. Донором аминогруппы служит аминокислота, имеющаяся в клетках в достаточном количестве или избытке, а ее акцептором — α-оксокислота. Аминокислота при этом превращается в оксокислоту, а оксокислота — в аминокислоту с соответствующим строением радикалов. В итоге трансаминирование представляет обратимый процесс взаимообмена амино- и оксо- групп. Пример такой реакции — получение l-глутаминовой кислоты из 2-оксоглутаровой кислоты. Донорной аминокислотой может служить, например, l-аспарагиновая кислота.

Читайте так же:  Можно ли креатин девушкам

α-Аминокислоты содержат в α-положении к карбоксильной группе электроноакцепторную аминогруппу (точнее, протонированную аминогруппу NH3+), в связи с чем способны к декарбоксилированию.

Окислительное дезаминирование может осуществляться с участием ферментов и кофермента НАД+ или НАДФ+. α-Аминокислоты могут превращаться в α-оксокислоты не только через трансаминирование, но и путем окислительного дезаминирования. Например, из l-глутаминовой кислоты образуется α-оксоглутаровая кислота. На первой стадии реакции осуществляется дегид- рирование (окисление) глутаминовой кислоты до α-иминоглутаровой

кислоты. На второй стадии происходит гидролиз, в результате которого получаются α-оксоглутаровая кислота и аммиак. Стадия гидролиза протекает без участия фермента.

В обратном направлении протекает реакция восстановительного аминирования α-оксокислот. Всегда содержащаяся в клетках α-оксоглутаровая кислота (как продукт метаболизма углеводов) превращается этим путем в L-глутаминовую кислоту.

Внутримолекулярное дезаминирование характерно для гистидина. Реакцию катализирует гистидаза (гистидин-аммиаклиаза). Эта реакция происходит только в печени и коже.

Гидролитиическое дезаминирование происходит при помощи фермента аденозин дезаминаза и выглядит следующим образом:

В результате образуются, как мы уже поняли, гидроксикислоты…

Пептидную и белковую молекулу формально можно представить как продукт поликонденсации α-аминокислот, протекающей с обра- зованием пептидной (амидной) связи между мономерными звеньями

20. Аминоспирты: коламин (2-аминоэтанол), холин. Бетаин как продукт окисления холина. Строение, биологическая роль. Аминофенолы. Катехоламины: дофамин, норадреналин, адреналин. Строение, биологическая роль.

Аминоспиртами называют соединения, содержащие в молекуле одновременно амино- и гидроксигруппы.

Эти две функциональные группы непрочно удерживаются у одного атома углерода, в результате чего происходит отщепление аммиака или воды. Простейшим представителем аминоспиртов является 2-аминоэтанол — соединение, в котором обе группы расположены у соседних атомов углерода. 2-Аминоэтанол (тривиальное название коламин) является структурным компонентом сложных липидов — фосфатидилэтаноламинов (см. 10.4.1).

С сильными кислотами 2-аминоэтанол образует устойчивые соли.

Четвертичное аммониевое основание — гидроксид (2-гидрокси- этил)триметиламмония [HOCH2CH2N+(CH3)3]OH- — имеет большое значение как витаминоподобное вещество, регулирующее жировой обмен. Его катион называют холином

В организме холин образуется с участием кофермента S-аде- нозилметионина (SAM), являющегося переносчиком метильных групп. В молекуле этого кофермента метильная группа «активирована» вследствие того, что находится в составе сульфониевой группировки.

При метилировании коламина в реакции участвует атом азота, более нуклеофильный, чем атом кислорода

В результате окисления холина in vivo образуется диполярный ион бетаин, который также может служить источником метильных групп, входящих в состав аммониевой группировки.

Сложноэфирные производные холина выполняют в организме различные биологические функции. Замещенные фосфаты холина являются структурной основой фосфолипидов — фосфатидилхолинов — важнейшего строительного материала клеточных мембран (см. 10.4.1). Сложный эфир холина и уксусной кислоты — ацетилхолин — наиболее распространенный посредник при передаче нервного возбуждения в нервных тканях (нейромедиатор). Он образуется в организме при ацетилировании холина с помощью ацетилкофермента А

Важная роль в организме принадлежит аминоспиртам, содержащим в качестве структурного фрагмента остаток пирокатехина. Они носят общее название катехоламинов. К этой группе относятся представители образующихся в организме биогенных аминов. К катехоламинам принадлежат дофамин, норадреналин и адреналин, выполняющие, как и ацетилхолин, роль нейромедиаторов. Адреналин участвует в регуляции сердечной деятельности, при физиологических стрессах он выделяется в кровь («гормон страха»).

В ароматическом ряду основу важных природных биологически активных соединений и синтетических лекарственных средств составляют и-аминофенол, и-аминобензойная, салициловая и сульфаниловая кислоты.

Видео (кликните для воспроизведения).

и-Аминофенол и его производные. Как гетерофункциональное соединение п-аминофенол может образовывать производные по каждой функциональной группе в отдельности и одновременно по двум функциональным группам. Сам п-аминофенол ядовит; интерес для медицины представляет его производное — парацетамол, оказывающий анальгетическое (обезболивающее) и жаропонижающее действие.

Источники


  1. Анищенкова, Е. С. Артикуляционная гимнастика для развития речи дошкольников / Е.С. Анищенкова. — М.: АСТ, Астрель, 2010. — 849 c.

  2. Королев, А. А. Гигиена питания / А.А. Королев. — М.: Академия, 2008. — 528 c.

  3. Данилова, Н. А. Диабет. Законы сохранения полноценной жизни / Н.А. Данилова. — М.: Вектор, 2013. — 224 c.
Аминокислоты проявляют амфотерные свойства
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here