Аминокислоты состав и строение

Важная и проверенная информация на тему: "аминокислоты состав и строение" от профессионалов для спортсменов и новичков.

Аминокислоты состав и строение

Аминокислотами называют гетерофункциональные соединения, содержащие одновременно аминогруппу и карбоксильную группы в составе одной молекулы. Классифицируют аминокислоты, основываясь на типе углеводородного радикала, на ароматические и алифатические, последние, в свою очередь, подразделяются на α-, β-, γ-, δ- и ω-аминокислоты, химические свойства которых ощутимо различаются.

Представители алифатических аминокислот

Наибольшее значение в химии имеют α-аминокислоты, в основном потому, что они являются мономерами белков – их можно назвать основой жизни. В состав важнейших α-аминокислот входят не только алифатические, но и ароматические и гетероароматические радикалы. Номенклатура аминокислот подразумевает использование названия соответствующей карбоновой кислоты в качестве основы, положение заместителей обозначают цифрами, начиная от карбонильного углерода (IUPAC), либо буквами греческого алфавита, начиная от соседнего атома углерода (рациональная). Широко используются и тривиальные названия. Тривиальные названия обычно связаны с источниками выделения аминокислот. Например, серин выделен из шелка (serieus (лат.) – шелковистый), тирозин – из сыра (tyros (греч.) – сыр). Для удобства написания полипептидных молекул используют сокращенные обозначения аминокислотных остатков.

Общее число встречающихся в природе α-аминокислот достигает 180, из них 20 постоянно присутствуют во всех белковых молекулах. Растения и некоторые микроорганизмы синтезируют все необходимые им аминокислоты. В животном организме некоторые аминокислоты синтезируются, некоторые – нет и должны поступать извне. Такие аминокислоты называют незаменимыми. К незаменимым относятся – валин, лизин, фенилалалнин, лейцин, треонин, триптофан, изолейцин, метионин.

Важнейшие α-аминокислоты

Сокращенное обозначение аминокислотного остатка

Аминокислоты — номенклатура, получение, химические свойства. Белки

Строение аминокислот

Аминокислоты — гетерофункциональные соеди­нения, которые обязательно содержат две функцио­нальные группы: аминогруппу — NH2 и карбоксиль­ную группу —СООН, связанные с углеводородным радикалом.Общую формулу простей­ших аминокислот можно за­писать так:

Так как аминокислоты со­держат две различные функ­циональные группы, которые оказывают влияние друг на друга, характерные реакции отличают­ся от характерных реакций карбоновых кислот и аминов.

Свойства аминокислот

Аминогруппа — NH2 определяет основные свой­ства аминокислот, т. к. способна присоединять к себе катион водорода по донорно-акцепторному механизму за счет наличия свободной электронной пары у атома азота.

Группа —СООН (карбоксильная группа) опреде­ляет кислотные свойства этих соединений. Следовательно, аминокислоты — это амфотерные орга­нические соединения. Со щелочами они реагируют как кислоты:

С сильными кислотами- как основания-амины:

Кроме того, аминогруппа в аминокислоте всту­пает во взаимодействие с входящей в ее состав кар­боксильной группой, образуя внутреннюю соль:

Ионизация молекул аминокислот зависит от кислотного или щелочного характера среды:

Так как аминокислоты в водных растворах ве­дут себя как типичные амфотерные соединения, то в живых организмах они играют роль буферных веществ, поддерживающих определенную концен­трацию ионов водорода.

Аминокислоты представляют собой бесцветные кристаллические вещества, плавящиеся с разло­жением при температуре выше 200 °С. Они растворимы в воде и нерастворимы в эфире. В зависи­мости от радикала R— они могут быть сладкими, горькими или безвкусными.

Аминокислоты подразделяют на природные (обнаруженные в живых организмах) и синтети­ческие. Среди природных аминокислот (около 150) выделяют протеиногенные аминокислоты (около 20), которые входят в состав белков. Они представляют собой L-формы. Примерно полови­на из этих аминокислот относятся к незамени­мым, т. к. они не синтезируются в организме че­ловека. Незаменимыми являются такие кислоты, как валин, лейцин, изолейцин, фенилаланин, ли­зин, треонин, цистеин, мети­онин, гистидин, триптофан. В организм человека данные вещества поступают с пи­щей. Если их количество в пище будет недостаточ­ным, нормальное развитие и функционирование орга­низма человека нарушаются. При отдельных заболеваниях организм не в состоянии син­тезировать и некоторые другие аминокислоты. Так, при фенилкетонурии не синтезируется тирозин. Важнейшим свойством аминокислот является способность вступать в молекулярную конденса­цию с выделением воды и образованием амидной группировки —NH—СО—, например:

Получаемые в результате такой реакции высокомолекулярные соединения содержат большое число амидных фрагментов и поэтому получили название полимамидов.

К ним, кроме названного выше синтетического волок­на капрона, относят, напри­мер, и энант, образующийся при поликонденсации аминоэнантовой кислоты. Для получения синтетических во­локон пригодны аминокис­лоты с расположением амино- и карбоксильной групп на концах молекул.

[2]

Полиамиды альфа-аминокислот называются пепти­дами. В зависимости от числа остатков аминокислот различают дипептиды, трипептиды, полипепти­ды. В таких соединениях группы —NH—СО— на­зывают пептидными.

Читайте так же:  Как работает креатин в организме

Изомерия и номенклатура аминокислот

Изомерия аминокислот определяется различ­ным строением углеродной цепи и положением аминогруппы, например:

Широко распространены также названия ами­нокислот, в которых положение аминогруппы обо­значается буквами греческого алфавита: α, β, у и т. д. Так, 2-аминобутановую кислоту можно на­звать также α-аминокислотой:

Способы получения аминокислот

В биосинтезе белка в живых организмах уча­ствуют 20 аминокислот.

Аминокислоты

Характеристики и физические свойства аминокислот

Аминокислоты представляют собой твердые кристаллические вещества, характеризующиеся высокими температурами плавления и разлагающиеся при нагревании. Они хорошо растворяются в воде. Данные свойства объясняются возможностью существование аминокислот в виде внутренних солей (рис. 1).

Рис. 1. Внутренняя соль аминоуксусной кислоты.

[1]

Получение аминокислот

Исходными соединениями для получения аминокислот часто служат карбоновые кислоты, в молекулу которых вводится аминогруппа. Например, получение их из галогензамещенных кислот

Кроме этого исходным сырьем для получения аминокислот могут служить альдегиды (1), непредельные кислоты (2) и нитросоединения (3):

Химические свойства аминокислот

Аминокислота как гетерофункциональные соединения вступают в большинство реакций, характерных для карбоновых кислот и аминов. Наличие в молекулах аминокислот двух различных функциональных групп приводит к появлению ряда специфических свойств.

Аминокислоты – амфотерные соединения. Они реагируют как с кислотами, так и с основаниями:

Водные растворы аминокислот имеют нейтральную, щелочную и кислотную среду в зависимости от количества функциональных групп. Например, глутаминовая кислота образует кислый раствор, поскольку в её составе две карбоксильные группы и одна аминогруппа, а лизин – щелочной раствор, т.к. в её составе одна карбоксильная группа и две аминогруппы.

Две молекулы аминокислоты могут взаимодействовать друг с другом. При этом происходит отщепление молекулы воды и образуется продукт, в котором фрагменты молекулы связаны между собой пептидной связью (-CO-NH-). Например:

Полученное соединение называют дипептидом. Вещества, построенные из многих остатков аминокислот, называются полипептидами. Пептиды гидролизуются под действием кислот и оснований.

Применение аминокислот

Аминокислоты, необходимые для построения организма, как человек, так и животные получают из белков пищи.

γ-Аминомасляная кислота используется в медицине (аминалон / гаммалон) при психических заболеваниях; на её основе создан целый ряд ноотропных препаратов, т.е. оказывающих влияние на процессы мышления.

ε-Аминокапроновая кислота также используется в медицине (кровоостанавливающее средство), а кроме того представляет собой крупнотоннажный промышленный продукт, использующийся для получения синтетического полиамидного волокна – капрона.

Антраниловая кислота используется для синтеза красителей, например синего индиго, а также участвует в биосинтезе гетероциклических соединений.

Примеры решения задач

Задание Напишите уравнения реакций аланина с: а) гидроксидом натрия; б) гидроксидом аммония; в) соляной кислотой. За счет каких групп внутренняя соль проявляет кислотные и основные свойства?
Ответ Аминокислоты часто изображают как соединения, содержащие аминогруппу и карбоксильную группу, однако с такой структурой не согласуются некоторые их физические и химические свойства. Строение аминокислот соответствует биполярному иону:

Запишем формулу аланина как внутренней соли:

Исходя из этой структурной формулы, напишем уравнения реакций:

Внутренняя соль аминокислоты реагирует с основаниями как кислота, с кислотами – как основание. Кислотная группа – N + H3, основная – COO — .

Задание При действии на раствор 9,63 г неизвестной моноаминокарбоновой кислоты избытком азотистой кислоты было получено 2,01 л азота при 748 мм. рт. ст. и 20 o С. Определите молекулярную формулу этого соединения. Может ли эта кислоты быть одной из природных аминокислот? Если да, то какая это кислота? В состав молекулы этой кислоты не входит бензольное кольцо.
Решение Напишем уравнение реакции:

Найдем количество вещества азота при н.у., применяя уравнение Клапейрона-Менделеева. Для этого температуру и давление выражаем в единицах СИ:

Читайте так же:  Можно ли принимать креатин с аргинином

T = 273 + 20 = 293 K;

P = 101,325 × 748 / 760 = 99,7 кПа;

n(N2) = 99,7 × 2,01 / 8,31 × 293 = 0,082 моль.

По уравнению реакции находим количество вещества аминокислоты и её молярную массу.

Определим аминокислоту. Составим уравнение и найдем x:

14x + 16 + 45 = 117;

Из природных кислот такому составу может отвечать валин.

«Аминокислоты строение, классификация, свойства, биологическая роль»

Дата 27.04.2016
Размер 112.77 Kb.
Тип Лекция
    Навигация по данной странице:
  • Классификация аминокислот
  • Гидрофобные аминокислоты (неполярные).
  • Гидрофильные незаряженные (полярные) аминокислоты
  • Положительно заряженные аминокислоты
  • Биологическая классификация
  • Химическая классификация
  • НОМЕНКЛАТУРА
  • R-CH(NH 2 )COOH
  • –диовая или -триовая кислота
  • Суточная потребность в аминокислотах
  • Потребность в аминокислотах возрастает
  • Потребность в аминокислотах снижается
  • Усваиваемость аминокислот
  • Полезные свойства аминокислот, их влияние на организм
  • Аминокислоты для здоровья, энергичности и красоты
  • Лекция №3

    Тема: «Аминокислоты – строение, классификация, свойства, биологическая роль»

    Аминокислоты – азотосодержащие органические соединения, в молекулах которых содержатся аминогруппа –NH2 и карбоксильная группа -СООН

    Простейшим представителем является аминоэтановая кислота H2N — CH2 — COOH

    Существует 3 основные классификации аминокислот:

    Физико-химическая – основана на различиях в физико-химических свойствах аминокислот

    • Гидрофобные аминокислоты (неполярные). Компоненты радикалов содержат обычно углеводородные группы, где равномерно распределена электронная плотность и нет никаких зарядов и полюсов. В их составе могут присутствовать и электроотрицательные элементы, но все они находятся в углеводородном окружении.
    • Гидрофильные незаряженные (полярные) аминокислоты . Радикалы таких аминокислот содержат в своем составе полярные группировки: -ОН, — SH, -CONH2
    • Отрицательно заряженные аминокислоты. Сюда относятся аспарагиновая и глутаминовая кислоты. Имеют дополнительную СООН-группу в радикале — в нейтральной среде приобретают отрицательный заряд.
    • Положительно заряженные аминокислоты : аргинин, лизин и гистидин. Имеют дополнительную NH2-группу (или имидазольное кольцо, как гистидин) в радикале — в нейтральной среде приобретают положительный заряд.

    Биологическая классификация по возможности синтеза в организме человека

    • Незаменимые аминокислоты, их еще называют «эссенциальные». Они не могут синтезироваться в организме человека и должны обязательно поступать с пищей. Их 8 и еще 2 аминокислоты относятся к частично незаменимым.

    Незаменимые: метионин, треонин, лизин, лейцин, изолейцин, валин, триптофан, фенилаланин.

    Частично незаменимые: аргинин, гистидин.

    • Заменимые (могут синтезироваться в организме человека). Их 10: глутаминовая кислота, глутамин, пролин, аланин, аспарагиновая кислота, аспарагин, тирозин, цистеин, серин и глицин.

    Химическая классификация в соответствии с химической структурой радикала аминокислоты (алифатические, ароматические).

    Аминокислоты классифицируют по структурным признакам.

    1. В зависимости от взаимного расположения амино- и карбоксильной групп аминокислоты подразделяют на α-, β-, γ-, δ-, ε- и т. д.

    2. В зависимости от количества функциональных групп различают кислые, нейтральные и основные.

    3. По характеру углеводородного радикала различают алифатические(жирные), ароматические, серосодержащие и гетероциклическиеаминокислоты. Приведенные выше аминокислоты относятся к жирному ряду.

    Примером ароматической аминокислоты может служить пара-аминобензойная кислота:

    Примером гетероциклической аминокислоты может служить триптофан – незаменимая α- аминокислота:

    CH–COOH

    НОМЕНКЛАТУРА

    По систематической номенклатуре названия аминокислот образуются из названий соответствующих кислот прибавлением приставки амино- и указанием места расположения аминогруппы по отношению к карбоксильной группе. Нумерация углеродной цепи с атома углерода карбоксильной группы.

    Часто используется также другой способ построения названий аминокислот, согласно которому к тривиальному названию карбоновой кислоты добавляется приставка амино- с указанием положения аминогруппы буквой греческого алфавита.

    которые играют исключительно важную роль в процессах жизнедеятельности животных и растений, применяются тривиальные названия.

    Таблица. Некоторые важнейшие α-аминокислоты

    Аминокислота

    Сокращённое Строение радикала ( R )

    Глицин

    Gly (Гли) H — Аланин Ala (Ала) CH3 — Валин Val (Вал) (CH3)2CH — Лейцин Leu (Лей) (CH3)2CH – CH2 — Серин Ser (Сер) OH- CH2 — Тирозин Tyr (Тир) HO – C6H4 – CH2 — Аспарагиновая кислота Asp (Асп) HOOC – CH2 — Глутаминовая кислота Glu (Глу) HOOC – CH2 – CH2 — Цистеин Cys (Цис) HS – CH2 — Аспарагин Asn (Асн) O = C – CH2
    Читайте так же:  Применение аминокислот в медицине

    NH2

    Лизин Lys (Лиз) NH2 – CH2— CH2 – CH2 — Фенилаланин Phen (Фен) C6H5 – CH2

    Если в молекуле аминокислоты содержится две аминогруппы, то в ее названии используется приставка диамино-, три группы NH2триамино- и т.д.

    Наличие двух или трех карбоксильных групп отражается в названии суффиксом –диовая или -триовая кислота:

    1) аминокислоты широко распространены в природе;

    2) молекулы аминокислот – это те кирпичики, из которых построены все растительные и животные белки; аминокислоты, необходимые для построения белков организма, человек и животные получают в составе белков пищи;

    3) аминокислоты прописываются при сильном истощении, после тяжелых операций;

    4) их используют для питания больных;

    5) аминокислоты необходимы в качестве лечебного средства при некоторых болезнях (например, глутаминовая кислота используется при нервных заболеваниях, гистидин – при язве желудка);

    6) некоторые аминокислоты применяются в сельском хозяйстве для подкормки животных, что положительно влияет на их рост;

    7) имеют техническое значение: аминокапроновая и аминоэнантовая кислоты образуют синтетические волокна – капрон и энант.


    Суточная потребность в аминокислотах

    В зависимости от типа аминокислоты определяется ее суточная потребность для организма. Общая потребность организма в аминокислотах, зафиксированная в диетологических таблицах — от 0,5 до 2 грамм в день.

    • В период активного роста организма

    • Во время активных профессиональных занятий спортом
    • В период интенсивных физических и умственных нагрузок
    • Во время болезни и в период выздоровления

    Потребность в аминокислотах снижается: При врожденных нарушениях, связанных с усваиваемостью аминокислот. В этом случае, некоторые белковые вещества могут стать причиной аллергических реакций организма, включая появление проблем в работе желудочно-кишечного тракта, зуд и тошноту.
    Усваиваемость аминокислот

    Скорость и полнота усвоения аминокислот зависит от типа продуктов, их содержащих. Хорошо усваиваются организмом аминокислоты, содержащиеся в белке яиц, обезжиренном твороге, нежирном мясе и рыбе.

    Быстро усваиваются также аминокислоты при правильном сочетании продуктов: молоко сочетается с гречневой кашей и белым хлебом, всевозможные мучные изделия с мясом и творогом.
    Полезные свойства аминокислот, их влияние на организм

    Каждая аминокислота оказывает на организм свое воздействие. Так метионин особенно важен для улучшения жирового обмена в организме, используется как профилактика атеросклероза, при циррозе и жировой дистрофии печени.

    При определенных нервно-психических заболеваниях используется глутамин, аминомасляные кислоты. Глутаминовая кислота также применяется в кулинарии как вкусовая добавка. Цистеин показан при глазных заболеваниях.

    Три главные аминокислоты – триптофан, лизин и метионин, особенно необходимы нашему организму. Триптофан используется для ускорения роста и развития организма, также он поддерживает азотистое равновесие в организме.

    Лизин обеспечивает нормальный рост организма, участвует в процессах кровеобразования.

    Основные источники лизина и метионина – творог, говядина, некоторые виды рыбы (треска, судак, сельдь). Триптофан встречается в оптимальных количествах в субпродуктах, телятине и дичи.инфаркта.

    [3]

    Аминокислоты для здоровья, энергичности и красоты

    Видео (кликните для воспроизведения).

    Для успешного наращивания мышечной массы в бодибилдинге нередко используются аминокислотные комплексы, состоящие из лейцина изолейцина и валина.

    Для сохранения энергичности во время тренировок спортсмены в качестве добавок к питанию используют метионин, глицин и аргинин, или продукты, их содержащие.

    Для любого человека, ведущего активный здоровый образ жизни, необходимы специальные продукты питания, которые содержат ряд необходимых аминокислот для поддержания отличной физической формы, быстрого восстановления сил, сжигания лишних жиров или наращивания мышечной массы.

    Аминокислоты. Строение, изомерия, номенклатура, свойства

    Аминокислоты

    -органические бифункциональные соединения, в состав которых входят карбоксильные группы –СООН и аминогруппы NH2

    Строение:-

    этозамещенные карбоновые кислоты ,в молекулах которых один или несколько атомов водорода углеводородного радикала заменены аминогруппами

    Классификация

    : Аминокислоты классифицируют по двум структурным признакам.

    1. В зависимости от взаимного расположения амино- и карбоксильной групп аминокислоты подразделяют на a-, b-, g-, d-, e- и т. д.

    Читайте так же:  Аминокислот глицина аланина валина

    2. По характеру углеводородного радикала различают алифатические (жирные) и ароматические аминокислоты. Приведенные выше аминокислоты относятся к жирному ряду. Примером ароматической аминокислоты может служить пара-аминобензойная кислота:

    Номенклатура:

    По систематической номенклатуре названия аминокислот образуются из названий соответствующих кислот прибавлением приставки амино и указанием места расположения аминогруппы по отношению к карбоксильной группе.

    Часто используется также другой способ построения названий аминокислот, согласно которому к тривиальному названию карбоновой кислоты добавляется приставка амино- с указанием положения аминогруппы буквой греческого алфавита. Пример:

    1. Изомерия углеродного скелета

    2. Изомерия положения функциональных групп

    3. Оптическая изомерия

    Все a-аминокислоты, кроме глицина H2N-CH2-COOH, содержат асимметрический атом углерода (a-атом) и могут существовать в видеоптических изомеров (зеркальных антиподов).

    Оптическая изомерия природных a -аминокислот играет важную роль в процессах биосинтеза белка.

    Физические свойства

    Аминокислоты – твердые кристаллические вещества с высокой т.пл., при плавлении разлагаются. Хорошо растворимы в воде, водные растворы электропроводны. Эти свойства объясняются тем, что молекулы аминокислот существуют в виде внутренних солей, которые образуются за счет переноса протона от карбоксила к аминогруппе.

    Химические св-ва

    1.Аминокислоты реагируют как с кислотами, так и с основаниями:

    Н2N-СН2-СООН + HCl→ Сl[Н3N-СН2-СООН],

    Н2N-СН2-СООН + NaOH → H2N-CH2-COONa + Н2О.

    Белки.Классификация, строение, качественные реакции, биологическое значение.

    Белки

    -это высокомолекулярные органические вещества, построенные из аминокислот и других соединений; играют фундаментальную роль в структуре и жизнедеятельности живых организмов.

    Классификация: Простые(ПРОТЕИНЫ) Сложные(СЛОЖНЫЕ БЕЛКИ или ПРОТЕИДЫ)

    Строение:

    Молекула аминокислоты состоит из двух одинаковых для всех аминокислот частей, одна из которых является аминогруппой (—NH2) с основными свойствами, другая — карбоксильной группой (—COOH) с кислотными свойствами. Часть молекулы, называемая радикалом (R), у разных аминокислот имеет различное строение.

    Биологическое значение:

    Биологическое значение белков чрезвычайно велико. Упомя­нем только важнейшие функции белков в живых организмах.

    1. Абсолютно все химические реакции в организме протекают в присутствии катализаторов — ферментов. Даже такая простая реакция как гидратация углекислого газа катализируется ферментом карбоангидразой. Все известные ферменты представляют со­бой белковые молекулы. Белки — это очень мощные и, самое главное, селективные катализаторы. Они ускоряют реакции в миллионы раз, причем для каждой реакции существует свой единственный фермент.

    2. Некоторые белки выполняют транспортные функции и пе­реносят молекулы или ионы в места синтеза или накопления. На­пример, содержащийся в крови белок гемоглобин переносит кис­лород к тканям, а белок миоглобин запасает кислород в мышцах.

    3. Белки — это строительный материал клеток. Из них постро­ены опорные, мышечные, покровные ткани.

    4. Белки играют важную роль в иммунной системе организма.

    Существуют специфические белки (антитела), которые способ­ны распознавать и связывать чужеродные объекты — вирусы, бактерии, чужие клетки.

    5. Белки-рецепторы воспринимают и передают сигналы, по­ступающие от соседних клеток или из окружающей среды. На­пример, действие света на сетчатку глаза воспринимается фото­рецептором родопсином. Рецепторы, активизируемые низкомолекулярными веществами типа ацетилхолина, передают нервные импульсы в местах соединения нервных клеток.

    Из приведенного перечня функций белков ясно, что белки жизненно необходимы любому организму и являются, следова­тельно, важнейшей составной частью продуктов питания. В про­цессе пищеварения белки гидролизуются до аминокислот, кото­рые служат исходным сырьем для синтеза белков, необходимых данному организму. Существуют аминокислоты, которые орга­низм не в состоянии синтезировать сам и приобретает их только с пищей. Эти аминокислоты называются незаменимыми. Для чело­века незаменимы триптофан, лейцин, изолейцин, валин, треонин, лизин, метионин и фенилаланин.

    Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

    Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

    Аминокислоты состав и строение

    Аминокислоты являются амфотерными соединениями, для них характерны кислотно-основные свойства. Это обусловлено наличием в их молекулах функциональных групп кислотного (-СООН) и основного (-NH2) характера.

    Кислотно-основное равновесие в водных растворах

    В водных растворах и твердом состоянии аминокислоты существуют в виде внутренних солей.

    Читайте так же:  Аминокислоты и органические кислоты

    Ионизация молекул аминокислот в водных растворах зависит от кислотного или щелочного характера среды:

    В кислой среде молекулы аминокислот представляю собой катион. В щелочной среде молекулы аминокислот представляют собой анион. В нейтральной среде аминокислоты представляют собой цвиттер-ион или биполярный ион.

    Аминокислоты в твердом состоянии всегда существуют в виде биполярного, двухзарядного иона — цвиттер-иона.

    Водные растворы аминокислот в кислой и щелочной среде проводят электрический ток.

    1. Взаимодействие внутри молекулы – образование внутренних солей (биполярных ионов)

    Молекулы аминокислот существуют в виде внутренних солей, которые образуются за счет переноса протона от карбоксила к аминогруппе.

    Карбоксильная группа аминокислоты отщепляет ион водорода, который затем присоединяется к аминогруппе той же молекулы по месту неподеленной электронной пары азота. В результате действие функциональных групп нейтрализуется, образуется так называемая внутренняя соль.

    Водные растворы аминокислот в зависимости от количества функциональных групп имеют нейтральную, кислую или щелочную среду.

    Аминокислоты с одной карбоксильной группой и одной аминогруппой имеют нейтральную реакцию.

    Видеоопыт «Свойства аминоуксусной кислоты»

    а) моноаминомонокарбоновые кислоты (нейтральные кислоты)

    Внутримолекулярная нейтрализация — образуется биполярный цвиттер-ион.

    Водные растворы моноаминомонокарбоновых кислот нейтральны (рН≈7).

    б) моноаминодикарбоновые кислоты (кислые аминокислоты)

    Водные растворы моноаминодикарбоновых кислот имеют рН + .

    в) диаминомонокарбоновые кислоты (основные аминокислоты)

    Водные растворы диаминомонокарбоновых кислот имеют рН>7 (щелочная среда), так как в результате образования внутренних солей этих кислот в растворе появляется избыток гидроксид-ионов ОН — .

    2. Взаимодействие с основаниями и кислотами

    Аминокислоты как амфотерные соединения образуют соли как с кислотами (по группе NH2), так и со щелочами (по группе СООН).

    Как кислота (участвует карбоксильная группа)

    Как карбоновые кислоты α-аминокислоты образуют функциональные производные: соли, сложные эфиры, амиды.

    а) взаимодействие с основаниями

    б) взаимодействие со спиртами (р. этерификации)

    Аминокислоты могут реагировать со спиртами в присутствии газообразного хлороводорода, превращаясь в сложный эфир. Сложные эфиры аминокислот не имеют биполярной структуры и являются летучими соединениями.

    в) взаимодействие с аммиаком

    Как основание (участвует аминогруппа)

    а) взаимодействие с сильными кислотами

    Подобно аминам, аминокислоты реагируют с сильными кислотами с образованием солей аммония:

    б) взаимодействие с азотистой кислотой (р. дезаминирования)

    Подобно первичным аминам, аминокислоты реагируют с азотистой кислотой, при этом аминогруппа превращается в гидроксогруппу, а аминокислота – в гидроксикислоту:

    Измерение объёма выделившегося азота позволяет определить количество аминокислоты (метод Ван-Слайка).

    3. Внутримолекулярное взаимодействие функциональных групп ε-аминокапроновой кислоты, в результате которого образуется ε-капролактам (полупродукт для получения капрона).

    4. Межмолекулярное взаимодействие α-аминокислот – образование пептидов (р. поликонденсации)

    При взаимодействии карбоксильной группы одной молекулы аминокислоты и аминогруппы другой молекулы аминокислоты образуются пептиды. При взаимодействии двух α-аминокислот образуется дипептид.

    Межмолекулярная реакция с участием трех α-аминокислот приводит к образованию трипептида и т.д.

    Важнейшие природные полимеры – белки (протеины) – относятся к полипептидам, т.е представляют собой продукт поликонденсации a-аминокислот.

    5. Качественные реакции!

    а) нингидриновая реакция

    Все аминокислоты окисляются нингидрином с образованием продуктов сине-фиолетового цвета:

    Иминокислота пролин дает с нингидрином желтое окрашивание.

    б) с ионами тяжелых металлов α-аминокислоты образуют внутрикомплексные соли. Комплексы меди (II), имеющие глубокую синюю окраску, используются для обнаружения α-аминокислот.

    Видео (кликните для воспроизведения).

    Видеоопыт «Образование медной соли аминоуксусной кислоты»

    Источники


    1. Бременер, С.М. Гигиена питания / С.М. Бременер. — М.: Государственное издательство торговой литературы, 1977. — 328 c.

    2. Салова, О. В. Диеты астронавтов: проверенные на практике и рекомендованные лучшими диетологами / О.В. Салова. — М.: АСТ, Харвест, 2005. — 196 c.

    3. Круглов, В.И. Диагноз: сахарный диабет / В.И. Круглов. — М.: Феникс, 2010. — 241 c.
    Аминокислоты состав и строение
    Оценка 5 проголосовавших: 1

    ОСТАВЬТЕ ОТВЕТ

    Please enter your comment!
    Please enter your name here