Аминокислоты строение химические свойства биологическая роль

Важная и проверенная информация на тему: "аминокислоты строение химические свойства биологическая роль" от профессионалов для спортсменов и новичков.

Аминокислоты — номенклатура, получение, химические свойства. Белки

Строение аминокислот

Аминокислоты — гетерофункциональные соеди­нения, которые обязательно содержат две функцио­нальные группы: аминогруппу — NH2 и карбоксиль­ную группу —СООН, связанные с углеводородным радикалом.Общую формулу простей­ших аминокислот можно за­писать так:

Так как аминокислоты со­держат две различные функ­циональные группы, которые оказывают влияние друг на друга, характерные реакции отличают­ся от характерных реакций карбоновых кислот и аминов.

Свойства аминокислот

Аминогруппа — NH2 определяет основные свой­ства аминокислот, т. к. способна присоединять к себе катион водорода по донорно-акцепторному механизму за счет наличия свободной электронной пары у атома азота.

Группа —СООН (карбоксильная группа) опреде­ляет кислотные свойства этих соединений. Следовательно, аминокислоты — это амфотерные орга­нические соединения. Со щелочами они реагируют как кислоты:

С сильными кислотами- как основания-амины:

Кроме того, аминогруппа в аминокислоте всту­пает во взаимодействие с входящей в ее состав кар­боксильной группой, образуя внутреннюю соль:

Ионизация молекул аминокислот зависит от кислотного или щелочного характера среды:

Так как аминокислоты в водных растворах ве­дут себя как типичные амфотерные соединения, то в живых организмах они играют роль буферных веществ, поддерживающих определенную концен­трацию ионов водорода.

Аминокислоты представляют собой бесцветные кристаллические вещества, плавящиеся с разло­жением при температуре выше 200 °С. Они растворимы в воде и нерастворимы в эфире. В зависи­мости от радикала R— они могут быть сладкими, горькими или безвкусными.

Аминокислоты подразделяют на природные (обнаруженные в живых организмах) и синтети­ческие. Среди природных аминокислот (около 150) выделяют протеиногенные аминокислоты (около 20), которые входят в состав белков. Они представляют собой L-формы. Примерно полови­на из этих аминокислот относятся к незамени­мым, т. к. они не синтезируются в организме че­ловека. Незаменимыми являются такие кислоты, как валин, лейцин, изолейцин, фенилаланин, ли­зин, треонин, цистеин, мети­онин, гистидин, триптофан. В организм человека данные вещества поступают с пи­щей. Если их количество в пище будет недостаточ­ным, нормальное развитие и функционирование орга­низма человека нарушаются. При отдельных заболеваниях организм не в состоянии син­тезировать и некоторые другие аминокислоты. Так, при фенилкетонурии не синтезируется тирозин. Важнейшим свойством аминокислот является способность вступать в молекулярную конденса­цию с выделением воды и образованием амидной группировки —NH—СО—, например:

[3]

Получаемые в результате такой реакции высокомолекулярные соединения содержат большое число амидных фрагментов и поэтому получили название полимамидов.

К ним, кроме названного выше синтетического волок­на капрона, относят, напри­мер, и энант, образующийся при поликонденсации аминоэнантовой кислоты. Для получения синтетических во­локон пригодны аминокис­лоты с расположением амино- и карбоксильной групп на концах молекул.

Полиамиды альфа-аминокислот называются пепти­дами. В зависимости от числа остатков аминокислот различают дипептиды, трипептиды, полипепти­ды. В таких соединениях группы —NH—СО— на­зывают пептидными.

Изомерия и номенклатура аминокислот

Изомерия аминокислот определяется различ­ным строением углеродной цепи и положением аминогруппы, например:

Широко распространены также названия ами­нокислот, в которых положение аминогруппы обо­значается буквами греческого алфавита: α, β, у и т. д. Так, 2-аминобутановую кислоту можно на­звать также α-аминокислотой:

Способы получения аминокислот

В биосинтезе белка в живых организмах уча­ствуют 20 аминокислот.

Аминокислоты строение химические свойства биологическая роль

Известно около 200 природных аминокислот, но только 20 из них играют важнейшую роль в жизни человека. Эти аминокислоты называют протеиногеннымистроящими белки.

Первые аминокислоты были открыты в начале XIX века.

В пищевых продуктах наиболее распространены 22 аминокислоты.

В составе белков найдено 20 различных α-аминокислот (одна из них – пролин, является не амино- , а иминокислотой), поэтому их называют белковыми аминокислотами.

Все другие аминокислоты существуют в свободном состоянии или в составе коротких пептидов, или комплексов с другими органическими веществами.

Многие из них найдены только в определенных организмах, а некоторые – только в одном каком-либо организме.

Большинство микроорганизмов и растения синтезируют необходимые им аминокислоты, животные и человек не способны к образованию так называемых незаменимых аминокислот, получаемых с пищей.

К заменимым относятся аминокислоты, присутствие которых в пище не обязательно для нормального развития организма. В случае их недостаточности они могут синтезироваться из других аминокислот или из небелковых компонентов. Аминокислоты валин, лейцин, изолейцин, лизин, метионин, треонин, триптофан и фенилаланин являются незаменимыми почти для всех видов животных.

Аминокислоты являются наиболее важной составной частью организма. Аминокислоты – строительные блоки, из которых строятся белковые структуры, мышечные волокна. Организм использует их для собственного роста, восстановления, укрепления и выработки различных гормонов, антител и ферментов.

Они содержатся в ядре, протоплазме и стенках клеток, где выполняют разнообразные функции жизнедеятельности.

Аминокислоты участвуют в обмене белков и углеводов, в образовании важных для организмов соединений (например, пуриновых и пиримидиновых оснований, являющихся неотъемлемой частью нуклеиновых кислот), входят в состав гормонов, витаминов, алкалоидов, пигментов, токсинов, антибиотиков и т. д.

Некоторые аминокислоты служат посредниками при передаче нервных импульсов.

С нарушением обмена аминокислот связан ряд наследственных и приобретенных заболеваний, сопровождающихся серьезными проблемами в развитии организма.

Читайте так же:  Бета аланин и аргинин

Главными продуктами разложения аминокислот являются аммиак, мочевина и мочевая кислота. Восполнение потерь аминокислот происходит в основном в результате расщепления белков.

Аминокислоты обеспечивают:

— основные метаболические процессы: синтез и утилизация витаминов, липотропное (жиромобилизующее) действие, гликолиз и гликонеогенез;

— процессы детоксикации организма, в том числе при токсикозе беременных; — формирование иммунной системы организма;

— энергетические потребности клеток и, прежде всего, мозга, участвуют в образовании нейромедиаторов, обладают антидепрессантной активностью, улучшают память;

— метаболизм углеводов, участвуют в образовании и накоплении гликогена в мышцах и печени, обеспечивают наращивание мышечной массы, cнижают утомляемость, улучшают работоспособность;

— стимулируют работу гипофиза, увеличивают выработку гормона роста, гормонов щитовидной железы, надпочечников;

— участвуют в образовании коллагена и эластина, способствуют восстановлению кожи и костной ткани, а также заживлению ран;

— принимают участие в кроветворении, и, прежде всего, в выработке гемоглобина.

Интересно знать

Во время беременности повышается потребность женского организма в триптофане и лизине, у грудных детей – в триптофане и изолейцине.

Особенно увеличивается потребность организма в незаменимых аминокислотах после больших потерь крови, ожогов, а также вовремя других процессов, сопровождаемых регенерацией тканей.

Для птиц незаменимой аминокислотой является глицин.

У жвачных животных биосинтез всех незаменимых аминокислот производится микроорганизмами кишечного тракта.

Для человека высокую «биологическую ценность» имеют лишь немногие животные белки, такие, как белок куриного яйца или белок материнского молока. Они содержат незаменимые аминокислоты не только в достаточном количестве, но и в необходимом для человека соотношении.

Низкая ценность многочисленных растительных белков связана с небольшим содержанием в них отдельных незаменимых аминокислот (главным образом лизина и метионина). В белке соевой муки мало метионина, в кукурузе – лизина и триптофана.

Признаки недостаточности аминокислот в организме

При недостаточном количестве аминокислотных соединений в организме формируется дисбаланс белкового обмена, в результате которого недостающие элементы «извлекаются» из соединительной ткани, мышц, крови и печени.

В первую очередь высвобожденные белки используются для питания мозга и обеспечения работы сердечно-сосудистой системы.

Расходуя собственные аминокислоты и не получая их с пищей, организм начинает слабеть и истощаться, это приводит к сонливости, выпадению волос, анемии, потере аппетита, ухудшению состояния кожи, задержке роста и умственному развитию.

Строение, свойства и биологические функции аминокислот

Модульная единица 4. Аминокислоты, нуклеотиды и белки.

Лекция 2. Строение, свойства и биологические функции аминокислот, нуклеотидов, белков и витаминов.

Аннотация.В данной лекции даётся биохимическая характеристика протеи-ногенных и других аминокислот, пуриновых и пиримидиновых нуклеотидов, основных групп белков и витаминов. Раскрывается биологическая роль этих веществ в растительных и других организмах. Отмечается влияние белков, аминокислот и витаминов на качество растительной продукции. Даются сведения о содержании белков и витаминов в сельскохозяйственных растениях и получаемой из них растительной продукции.

Ключевые слова:протеиногенные аминокислоты, незаменимые аминокислоты, меланоидины, меланины, пуриновые нуклеотиды, пиримидиновые нуклеотиды, нуклеозиды, дифосфат- и трифосфатпроизводные нуклеотидов, полипептидная теория строения белков, первичная, вторичная, третичная и четвертичная структура белков, пептидная связь, гидрофобное ядро белковой молекулы, нативная конформация белковой молекулы, денатурация белков, фибриллярные и глобулярные формы белковых молекул, протеины, протеиды, альбумины, глобулины, проламины, глютелины, гликопротеиды, липопротеиды, нуклеопротеиды, гистоны, полноценные и неполноценные белки, биологическая ценность белков, водорастворимые и жирорастворимые витамины, провитамины, антивитамины.

Рассматриваемые вопросы:

1. Строение, свойства и биологические функции аминокислот.

2. Строение, свойства и биологические функции нуклеотидов.

3. Строение, свойства и биологические функции белков.

4. Строение, свойства и биологические функции витаминов.

Цели и задачи изучения модульной единицы.Изучить строение, свойства и биологические функции аминокислот, нуклеотидов, витаминов и основных групп белков. Научить студентов использовать сведения об аминокислотах, нуклеотидах, белках и витаминах при оценке качества растительной продукции.

Аминокислоты — это первичные азотистые вещества растений, которые синтезируются с использованием минерального азота, поступающего главным образом из почвы. В молекулах аминокислот имеются карбоксильные и аминные группировки, соединённые с органическим радикалом алифатической, ароматической или гетероциклической природы. Если аминокислота содержит одну карбоксильную и одну аминную группу, связанную со вторым углеродным атомом ( α-положение), строение такой аминокислоты можно выразить следующей формулой:

Аминокислоты, имеющие одну карбоксильную и одну аминную группу, принято называть моноамuномонокарбоновымu. У боль­шинства из них аминогруппа находится в α-положении по отно­шению к атому углерода карбоксильной группы. Однако известны также некоторые аминокислоты, у которых аминогруппа связана с другими углеродными атомами (_b, γ, d и др., см. табл. 1).

В организмах также синтезируются аминокислоты с двумя кар­боксильными или двумя аминными и другими азотсодержащими группировками. Аминокислоты, содержащие две карбоксильные и одну аминную группы, обычно называют моноамuнодuкaрбоновы.мu, а имеющие две аминные и одну карбоксильную — диаминомоно­карбоновымu. Кроме того, аминокислоты различаются по строению радикала R, который может быть представлен неразветвлённой, а иногда и разветвлённой углеродной цепью, ароматическими и гете­роциклическими производными.

Наряду с аминокислотами важную роль в обмене азотистых веществ играют некоторые иминокислоты (пролин, пипеколиио­вая кислота и др.), содержащие вторичную аминную группировку (═NH). Они близки по физико-химическим свойствам к истинным аминокислотам и выполняют сходные биологические функции.

Читайте так же:  Спортивное питание для быстрого

Важные функции в растительном организме выполняют производные аминокислот – амиды и бетаины, из которых наиболее хорошо изучены аспарагин, глутамин и гликоколбетаин. Аспарагин и глутамин участвуют в построении белковых молекул, являются продуктами обмена многих азотистых веществ. Гликоколбетаин ─ продукт азотного обмена у некоторых растений, служит активным донором метильных групп.

Все аминокислоты, за исключением глицина, содержат асим­метрические атомы углерода и проявляют оптическую активность.

D- и L-формы аминокислот различают по положению водорода и аминогруппы у α-углеродного атома. За эталон сравнения прини­маются конфигурации молекул L- и D-серина. Изомеры аминокис­лот, имеющие расположение в пространстве водорода и амино­группы у α-углеродного атома такое же, как у L-серина, относят L-ряду, а сходное с конфигурацией молекулы D-серина – к D-ряду.

Направление и угол вращения плоскости поляризации света у разных аминокислот и их оптических изомеров зависит от строе­ния радикала R, реакции среды (рН), природы растворителя и раст­ворённых в нём веществ.

Подавляющее большинство природных аминокислот синте­зируется в организмах в виде L-форм, а D-формы аминокислот встречаются редко, чаще всего в клетках микроорганизмов. При химическом синтезе образуется смесь L— и D-изомеров аминокислот.

Ферментные системы растений, человека и животных специ­фически приспособлены катализировать биохимические реакции, происходящие с участием L-изомеров аминокислот, и не способны к превращениям D-изомеров, которые даже могут ингибировать биохимические процессы в организме. В опытах установлено, что только метионин может усваиваться организмами человека и животных как в L-форме, так и D-форме.

Первые аминокислоты были открыты в начале XIX века, а к концу этого века уже были выделены и изучены почти все аминокислоты, входящие в состав белков. В настоящее время известно более 200 аминокислот. Важнейшая биологическая роль аминокислот — пост­роение белковых молекул. Аминокислоты, участвующие в синтезе белков, принято называть протеиногенными, их насчитывается 18. Кроме того, в синтезе белков принимают участие два амида — аспара­гин и глутамин.

После синтеза белковой молекулы в ней могут про­исходить модификации радикалов некоторых аминокислот, поэтому при анализе состава белков, кроме протеиногенных, обнаруживают некоторые другие аминокислоты (оксипролин, оксилизин и др.).

Аминокислоты, не участвующие в синтезе белков, являются важными метаболитами, с участием которых происходит синтез протеиногенных аминокислот, а также всех других азотистых ве­ществ растительного организма: нуклеотидов, амидов, азотистых оснований, алкалоидов, некоторых липидов, многих витаминов, хлорофилла, фитогормонов (ауксинов, цитокининов), некоторых фитонцидов. Строение и биологическая роль важнейших амино­кислот представлены в таблице 1.

Растения и природные формы микроорганизмов способны син­тезировать все необходимые им аминокислоты из других органи­ческих веществ, тогда как организмы человека и животных не спо­собны к синтезу некоторых аминокислот, входящих в состав белков. Эти аминокислоты называют незаменимыми и они должны посту­пать в организм с пищей.

Для взрослого человека незаменимыми являются 8 аминокислот: лизин, триптофан, метионин, треонин, лейцин, валин, изолейцин, фенилаланин. Для детей и некоторых групп животных незаменимыми также являются аргинин, гистидин и цистеин. При недостатке незаменимых аминокислот ослабляется синтез белков, что может быть причиной тяжелых заболеваний. А их недостаток в растительных кормах снижает выход животно­водческой продукции в расчете на единицу массы затраченного корма, в результате чего повышается ее себестоимость.

В целях составления правильного пищевого рациона для каж­дого вида организмов с учетом возрастного и физического состо­яния определены ежедневные нормы потребления незаменимых аминокислот. В среднем для человека они составляют, г: валин–­5,0, лейцин–7,0, изолейцин –4,0, лизин–5,5, триптофан–1,0, треонин–4,0, метионин–3,5, фенилаланин –5,0.

Чаще всего в кормах сельскохозяйственных животных в недоста­точном количестве содержатся такие незаменимые аминокислоты, как лизин, триптофан и метионин. Для балансирования кормов по со­держанию

этих аминокислот разработаны промышленные способы их получения. В связи с тем, что лизин и триптофан усваиваются жи­вотными только в виде Lизомеров, то для производства кормовых препаратов указанных аминокислот применяют микробиологический синтез, при котором реализуется природный механизм образова­ния L-изомеров аминокислот. Поскольку метионин может усваи­ваться животными в виде D- и L-форм, то для его промышленного получения используется менее затратный химический синтез, даю­щий рацемическую смесь оптических изомеров этой аминокислоты.

Содержание свободных аминокислот в растениях зависит от вида органа или ткани, возраста растений, внешних условий и особенно подвержено большим изменениям в зависимости от интенсивности протекания тех биохимических процессов, которые сопряжены с их потреблением (синтез белков, нуклеиновых кислот и других азотис­тых веществ). Концентрация аминокислот повышается при ослабле­нии ростовых процессов, недостатке питательных элементов, избы­точном азотном питании, усилении процессов распада белков при старении растений или прорастании семян.

Концентрации отдельных аминокислот могут возрастать в ре­зультате метаболитных нарушений в организме и под воздействием стрессов. Так, например, при вододефицитном стрессе в клетках растений происходит накопление аминокислоты пролина, а при избыточном аммонийном питании – накопление аспарагина, глутамина и аргинина.

4.1. Строение, свойства и биологические функции аминокислот.

Аминокислоты — это первичные азотистые вещества растений, которые синтезируются с использованием минерального азота, поступающего главным образом из почвы. В молекулах аминокислот имеются карбоксильные и аминные группировки, соединённые с органическим радикалом алифатической, ароматической или гетероциклической природы. Если аминокислота содержит одну карбоксильную и одну аминную группу, связанную со вторым углеродным атомом ( α-положение), строение такой аминокислоты можно выразить следующей формулой:

Читайте так же:  Л аргинин солгар инструкция

Аминокислоты, имеющие одну карбоксильную и одну аминную группу, принято называть моноамuномонокарбоновымu. У боль­шинства из них аминогруппа находится в α-положении по отно­шению к атому углерода карбоксильной группы. Однако известны также некоторые аминокислоты, у которых аминогруппа связана с другими углеродными атомами (_b, γ, d и др., см. табл. 1).

В организмах также синтезируются аминокислоты с двумя кар­боксильными или двумя аминными и другими азотсодержащими группировками. Аминокислоты, содержащие две карбоксильные и одну аминную группы, обычно называют моноамuнодuкaрбоновы.мu, а имеющие две аминные и одну карбоксильную — диаминомоно­карбоновымu. Кроме того, аминокислоты различаются по строению радикала R, который может быть представлен неразветвлённой, а иногда и разветвлённой углеродной цепью, ароматическими и гете­роциклическими производными.

Наряду с аминокислотами важную роль в обмене азотистых веществ играют некоторые иминокислоты (пролин, пипеколиио­вая кислота и др.), содержащие вторичную аминную группировку (═NH). Они близки по физико-химическим свойствам к истинным аминокислотам и выполняют сходные биологические функции.

Важные функции в растительном организме выполняют производные аминокислот – амиды и бетаины, из которых наиболее хорошо изучены аспарагин, глутамин и гликоколбетаин. Аспарагин и глутамин участвуют в построении белковых молекул, являются продуктами обмена многих азотистых веществ. Гликоколбетаин ─ продукт азотного обмена у некоторых растений, служит активным донором метильных групп.

Видео (кликните для воспроизведения).

Все аминокислоты, за исключением глицина, содержат асим­метрические атомы углерода и проявляют оптическую активность.

D- и L-формы аминокислот различают по положению водорода и аминогруппы у α-углеродного атома. За эталон сравнения прини­маются конфигурации молекул L- и D-серина. Изомеры аминокис­лот, имеющие расположение в пространстве водорода и амино­группы у α-углеродного атома такое же, как у L-серина, относят L-ряду, а сходное с конфигурацией молекулы D-серина – к D-ряду.

Направление и угол вращения плоскости поляризации света у разных аминокислот и их оптических изомеров зависит от строе­ния радикала R, реакции среды (рН), природы растворителя и раст­ворённых в нём веществ.

Подавляющее большинство природных аминокислот синте­зируется в организмах в виде L-форм, а D-формы аминокислот встречаются редко, чаще всего в клетках микроорганизмов. При химическом синтезе образуется смесь L— и D-изомеров аминокислот.

Ферментные системы растений, человека и животных специ­фически приспособлены катализировать биохимические реакции, происходящие с участием L-изомеров аминокислот, и не способны к превращениям D-изомеров, которые даже могут ингибировать биохимические процессы в организме. В опытах установлено, что только метионин может усваиваться организмами человека и животных как в L-форме, так и D-форме.

Первые аминокислоты были открыты в начале XIX века, а к концу этого века уже были выделены и изучены почти все аминокислоты, входящие в состав белков. В настоящее время известно более 200 аминокислот. Важнейшая биологическая роль аминокислот — пост­роение белковых молекул. Аминокислоты, участвующие в синтезе белков, принято называть протеиногенными, их насчитывается 18. Кроме того, в синтезе белков принимают участие два амида — аспара­гин и глутамин.

После синтеза белковой молекулы в ней могут про­исходить модификации радикалов некоторых аминокислот, поэтому при анализе состава белков, кроме протеиногенных, обнаруживают некоторые другие аминокислоты (оксипролин, оксилизин и др.).

Аминокислоты, не участвующие в синтезе белков, являются важными метаболитами, с участием которых происходит синтез протеиногенных аминокислот, а также всех других азотистых ве­ществ растительного организма: нуклеотидов, амидов, азотистых оснований, алкалоидов, некоторых липидов, многих витаминов, хлорофилла, фитогормонов (ауксинов, цитокининов), некоторых фитонцидов. Строение и биологическая роль важнейших амино­кислот представлены в таблице 1.

Растения и природные формы микроорганизмов способны син­тезировать все необходимые им аминокислоты из других органи­ческих веществ, тогда как организмы человека и животных не спо­собны к синтезу некоторых аминокислот, входящих в состав белков. Эти аминокислоты называют незаменимыми и они должны посту­пать в организм с пищей.

Для взрослого человека незаменимыми являются 8 аминокислот: лизин, триптофан, метионин, треонин, лейцин, валин, изолейцин, фенилаланин. Для детей и некоторых групп животных незаменимыми также являются аргинин, гистидин и цистеин. При недостатке незаменимых аминокислот ослабляется синтез белков, что может быть причиной тяжелых заболеваний. А их недостаток в растительных кормах снижает выход животно­водческой продукции в расчете на единицу массы затраченного корма, в результате чего повышается ее себестоимость.

В целях составления правильного пищевого рациона для каж­дого вида организмов с учетом возрастного и физического состо­яния определены ежедневные нормы потребления незаменимых аминокислот. В среднем для человека они составляют, г: валин–­5,0, лейцин–7,0, изолейцин –4,0, лизин–5,5, триптофан–1,0, треонин–4,0, метионин–3,5, фенилаланин –5,0.

Чаще всего в кормах сельскохозяйственных животных в недоста­точном количестве содержатся такие незаменимые аминокислоты, как лизин, триптофан и метионин. Для балансирования кормов по со­держанию

этих аминокислот разработаны промышленные способы их получения. В связи с тем, что лизин и триптофан усваиваются жи­вотными только в виде Lизомеров, то для производства кормовых препаратов указанных аминокислот применяют микробиологический синтез, при котором реализуется природный механизм образова­ния L-изомеров аминокислот. Поскольку метионин может усваи­ваться животными в виде D- и L-форм, то для его промышленного получения используется менее затратный химический синтез, даю­щий рацемическую смесь оптических изомеров этой аминокислоты.

Читайте так же:  Жиросжигатели коктейли для похудения

Содержание свободных аминокислот в растениях зависит от вида органа или ткани, возраста растений, внешних условий и особенно подвержено большим изменениям в зависимости от интенсивности протекания тех биохимических процессов, которые сопряжены с их потреблением (синтез белков, нуклеиновых кислот и других азотис­тых веществ). Концентрация аминокислот повышается при ослабле­нии ростовых процессов, недостатке питательных элементов, избы­точном азотном питании, усилении процессов распада белков при старении растений или прорастании семян.

Концентрации отдельных аминокислот могут возрастать в ре­зультате метаболитных нарушений в организме и под воздействием стрессов. Так, например, при вододефицитном стрессе в клетках растений происходит накопление аминокислоты пролина, а при избыточном аммонийном питании – накопление аспарагина, глутамина и аргинина.

Общие свойства аминокислот

Макасеева О.Н., Дудинская, О.В., Ткаченко Л.М., Ильичева Н.И.

Р… Биологическая химия. Раздел «Белки и нуклеиновые кислоты»: конспект лекций /О.Н. Макасеева, О.В. Дудинская, Л.М. Ткаченко, Н.И. Ильичева. – Могилев : МГУП, 2014. – …… с.

Конспект лекций по дисциплине «Биологическая химия». Раздел «Белки и нуклеиновые кислоты» является дополнительным источником, который поможет студентам всех форм обучения освоить данную дисциплину. Конспект лекций содержит основные темы раздела «Белки и нуклеиновые кислоты» курса в соответствии с учебной программой.

Предназначается для студентов технологических специальностей пищевой промышленности.

УДК…. 547

ББК…. 24.2

…ISBN 978-985-6979-70-8 (Ч. 1) …ISBN 978-985-6979-69-2 © О.В. Дудинская, Л.М. Ткаченко, Н.И. Ильичева.2014 © Учреждение образования «Могилевский государственный университет продовольствия», 2014

Содержание

1 АМИНОКИСЛОТЫ.. 4

1.1 Строение аминокислот. 4

1.2 Классификация аминокислот. 7

1.3 Общие свойства аминокислот. 9

1.3.1 Оптические свойства. 9

1.3.2 Кислотно-основные свойства аминокислот. Изоэлектрическая точка. 10

1.3.1 Химические свойства аминокислот. 14

1.3.2 Реакция меланоидинообразования. 14

[2]

3.1 Функции белков. 20

3.2 Строение белковой молекулы.. 23

3.3 Физико-химические свойства белков. 34

3.3.1 Амфотерные свойства белков. Изоэлектрическая точка белков. 34

3.3.2 Денатурация белков. 34

3.3.3 Гидрофильные свойства белков. Высаливание белков. 37

3.4 Методы выделения белков. 40

3.5 Классификация белков. 43

4 НУКЛЕИНОВЫЕ КИСЛОТЫ.. 46

4.1 Состав нуклеиновых кислот. 46

4.2 Нуклеозиды.. 49

4.3 Нуклеотиды.. 51

4.4 Первичная структура нуклеиновых кислот. 54

4.5 Вторичная и третичная структуры ДНК.. 55

4.6 Структура РНК.. 59

Рекомендуемая литература. 62

АМИНОКИСЛОТЫ

[1]

Строение аминокислот

Основной структурной единицей белков являются a-аминокислоты. В природе известно свыше 300 аминокислот, однако в состав белков входит лишь 20 a-аминокислот (одна из них – пролин, является не амино-, а иминокислотой), получивших название белковых, или протеиногенных, аминоктслот (см. Таблица 1). Все другие аминокислоты существуют в свободном состоянии или в составе коротких пептидов, или комплексов с другими органическими веществами.

a-Аминокислоты представляют собой производные карбоновых кислот, у которых один водородный атом у a-углеродного атома замещен на аминогруппу (–NН2), например:

Различаются аминокислоты строением и свойствами радикалов ®. Радикалы аминокислот могут быть алифатическими, ароматическими и гетероциклическими. Благодаря этому каждая аминокислота наделена специфическими свойствами, определяющими химические, физические свойства и физиологические функции белков в организме.

Именно благодаря радикалам аминокислот, белки обладают рядом уникальных функций, не свойственных другим биополимерам, и обладают химической индивидуальностью.

Значительно реже в живых организмах встречаются аминокислоты с b- или g-положением аминогруппы, например:

Кроме 20 стандартных аминокислот, встречающихся почти во всех белках, существуют еще нестандартные аминокислоты, являющиеся компонентами лишь некоторых типов белков – эти аминокислоты называют еще модифицированными. Около 150 из них уже выделены. Эти аминокислоты образуются после завершения синтеза белка в рибосоме клеток путем посттрансляционной химической модификации.

Таблица №1 – Строение протеиногенных аминокислот

Один из примеров особенно важной модификации – окисление двух-SН–групп цистеиновых остатков с образованием аминокислоты цистина, содержащей дисульфидную связь. Так же легко происходит и обратный переход.

Таким путем образуется одна из важнейших окислительно-восстановительных систем живых организмов. В больших количествах цистин содержится в белках злаковых – клейковине, в белках волос, рогов.

Другие примеры аминокислотной модификации — гидроксипролин и гидроксилизин, которые входят в состав коллагена-основного белка соединительной ткани животных.

В состав белка протромбина (белок свертывания крови) входит
g-карбоксиглутаминовая кислота, а в ферменте глутатионпероксидазе открыт селеноцистеин, в котором ( S ) сера заменена на ( Se ) селен.

Классификация аминокислот

Существует несколько видов классификаций аминокислот входящих в состав белка.

В основу первойклассификации положено химическое строение радикалов аминокислот. Различают аминокислоты:

— алифатические– глицин, аланин, валин, лейцин, изолейцин, лизин;

— гидроксилсодержащие– серин, треонин;

— серосодержащие – цистеин, метионин;

— ароматические – фенилаланин, тирозин, триптофан;

— гетероциклические – пролин, гистидин;

Второй вид классификации основан на полярности R-групп аминокислот. Различают:

неполярные (гидрофобные) аминокислоты, у которых в радикале есть неполярные связи между атомами С–С, С–Н, таких аминокислот восемь: глицин, аланин, валин, лейцин, изолейцин, фенилаланин, триптофан, пролин;

полярные незаряженные(гидрофильные) аминокислоты, у которых в радикале есть полярные связи между атомами С–О, С–N, О–Н, S–H, таких аминокислот пять: серин, треонин, метионин, аспарагин, глутамин;

Читайте так же:  Витамины с гиалуроновой кислотой

полярные отрицательно заряженныеаминокислоты, у которых в радикале есть группы, которые в водной среде при рН=7 несут отрицательный заряд, таких аминокислот четыре: тирозин, цистеин, аспарагиновая кислота, глутаминовая кислота;

полярные положительно заряженныеаминокислоты, у которых в радикале есть группы, которые в водной среде при рН=7 несут положительный заряд, таких аминокислот три: лизин, аргинин, гистидин.

Чем больше в белке аминокислот с полярными группами, тем выше его реакционная способность. От реакционной способности во многом зависят функции белка. Особенно большим числом полярных групп, характеризуются ферменты. И наоборот, их очень мало в таком белке как кератин (волосы, ногти).

Таблица 2 – Классификация аминокислот на основе полярности

Аминокислоты Принятые однобуквенные обозначения и символы Изоэлектрическая точка, рI Среднее содержание в белках,%
Англ. символ Русск.
1. Неполярные R-группы
Глицин GLy G Гли 5,97 7,5
Аланин ALa A Ала 6,02 9,0
Валин VaL V Вал 5,97 6,9
Лейцин Leu L Лей 5,97 7,5
Изолейцин Lie I Иле 5,97 4,6
Пролин Pro P Про 6,10 4,6
Фенилаланин Phe F Фен 5,98 3,5
Триптофан Trp W Трп 5,88 1,1
2. Полярные, незаряженные R-группы
Серин Ser S Сер 5,68 7,1
Треонин Thr T Тре 6,53 6,0
Метионин Met M Мет 5,75 1,7
Аспарагин Asn N Асн 5,41 4,4
Глутамин GLn Q Глн 5,65 3,9
3. Отрицательно заряженные R-группы
Тирозин Tyr Y Тир 5,65 3,5
Цистеин Cys C Цис 5,02 2,8
Аспарагиновая к-та Asp D Асп 2,97 5,5
Глутаминовая к-та GLy E Глу 3,22 6,2
Продолжение таблицы 2
4. Положительно заряженные R-группы
Лизин Lys K Лиз 9,74 7,0
Аргинин Arg R Арг 10,76 4,7
Гистидин His N Гис 7,59 2,1

Третийвид классификации основан на количестве аминных и карбоксильных групп аминокислот. Они делятся на моноаминамонокарбоновые, содержащие по одной карбоксильной и амино- группе; моноаминодикарбоновые (две карбоксильные и одна амино-группа); диаминомонокарбоновые (две амино- и одна карбоксильная группа).

Четвертый вид классификации основан на способности аминокислот синтезироваться в организме человека и животных. Все аминокислоты делятся на заменимые, незаменимые и частично незаменимые.

Незаменимые аминокислоты не могут синтезироваться в организме человека и животных, они обязательно должны поступать вместе с пищей. Абсолютно незаменимых аминокислот восемь: валин, лейцин, изолейцин, треонин, триптофан, метионин, лизин, фенилаланин.

Частично незаменимые — синтезируются в организме, но в недостаточном количестве, поэтому частично должны поступать с пищей. Такими аминокислотами являются арганин, гистидин.

Заменимые аминокислоты синтезируются в организме человека в достаточном количестве из других соединений. Растения могут синтезировать все аминокислоты.

Общие свойства аминокислот

Оптические свойства

В молекулах всех природных аминокислот ( за исключением глицина) у a-углеродного атома все четыре валентные связи заняты различными заместителями, такой атом углерода является асимметрическим, и получил название хирального атома. Вследствие этого растворы аминокислот обладают оптической активностью – вращают плоскость плоскополяризованного света. Причем, при прохождении через них поляризованного луча происходит поворот плоскости поляризации либо в право (+), либо влево (–). По расположению атомов и атомных группировок в пространстве относительно асимметрического атома различают L— и D-стереоизомеры аминокислот. Знак и величина оптического вращения зависят от природы боковой цепи аминокислот (R-группы).

Число возможных стереоизомеров N=2 n , где n – число асимметрических атомов углерода. У глицина n = 0, у треонина n = 2. Все остальные 17 белковых аминокислот содержат по одному асимметрическому атому углерода, они могут существовать в виде двух оптических изомеров.

В качестве стандарта при определении L и D-конфигураций аминокислот используется конфигурация стереоизомеров глицеринового альдегида.

Расположение в проекционной формуле Фишера NH2-группы слева соответствуют L-конфигурации, а справа – D-конфигурации.

Следует отметить, что буквы L и D означают принадлежность того или иного вещества по своей стереохимической конфигурации к L или D ряду, независимо от направленности вращения.

В составе белков обнаруживаются только L-изомеры аминокислот.
D-формы аминокислот в природе встречаются редко и обнаружены лишь в составе белков клеточной стенки (гликопротеинов) некоторых бактерий и в пептидных антибиотиках (грамицидин, актиномицин и т.д.). L-формы хорошо усваиваются растениями и животными и легко включаются в обменные процессы. D-формы не ассимилируются этими организмами, а иногда даже ингибируют процессы обмена. Это объясняется тем, что ферментативные системы организмов специфически приспособлены к L формам аминокислот.

Видео (кликните для воспроизведения).

L и D формы аминокислот оказывают различное физиологическое воздействие на организм человека – различаются по вкусу: D-изомеры сладкие, L-формы горькие или безвкусные.

Источники


  1. Семеновой, О. Н. Гигиена физической культуры и спорта / Под редакцией В.А. Маргазина, О.Н. Семеновой. — М.: СпецЛит, 2010. — 192 c.

  2. Данилова, Н. А. Диабет. Законы сохранения полноценной жизни / Н.А. Данилова. — М.: Вектор, 2013. — 224 c.

  3. Ольшевская, Н. 365 золотых упражнений по дыхательной гимнастике / Н. Ольшевская. — М.: АСТ, 2010. — 871 c.
Аминокислоты строение химические свойства биологическая роль
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here