Аминокислоты в живых организмах

Важная и проверенная информация на тему: "аминокислоты в живых организмах" от профессионалов для спортсменов и новичков.

АМИНОКИСЛОТЫ

Смотреть что такое «АМИНОКИСЛОТЫ» в других словарях:

АМИНОКИСЛОТЫ — АМИНОКИСЛОТЫ, класс органических соединений, содержащих карбоксильные ( COOH) и аминогруппы ( NH2); обладают свойствами и кислот, и оснований. Участвуют в обмене азотистых веществ всех организмов (исходные соединения при биосинтезе гормонов,… … Современная энциклопедия

АМИНОКИСЛОТЫ — класс органических соединений, содержащих карбоксильные ( COOH) и аминогруппы ( NH2); обладают свойствами и кислот, и оснований. Участвуют в обмене азотистых веществ всех организмов (исходное соединение при биосинтезе гормонов, витаминов,… … Большой Энциклопедический словарь

АМИНОКИСЛОТЫ — АМИНОКИСЛОТЫ, от, ед. аминокислота, ы, жен. (спец.). Класс органических соединений, обладающих свойствами и кислот, и оснований. | прил. аминокислотный, ая, ое. Толковый словарь Ожегова. С.И. Ожегов, Н.Ю. Шведова. 1949 1992 … Толковый словарь Ожегова

АМИНОКИСЛОТЫ — орг. соединения с двойной функцией кислотной, обусловленной присутствием карбоксильной группы (см. Карбоксил), и основной, связанной с наличием аминогруппы (NH2) или (реже) иминогруппы (NH), входящей обычно в состав гетероцикла. Примеры … Геологическая энциклопедия

аминокислоты — органические соединения, содержащие одну или две аминогруппы; производные карбоновых кислот, у которых в радикале водород замещен на аминогруппу; структурные единицы белковой молекулы. белковые: аланин. аргинин. аспарагин. пролин. аспарагиновая… … Идеографический словарь русского языка

аминокислоты — – карбоновые кислоты, у которых, как минимум, один атом углерода углеводородной цепи замещен на аминогруппу … Краткий словарь биохимических терминов

АМИНОКИСЛОТЫ — АМИНОКИСЛОТЫ, органические кислоты (содержащие группу СООН), в к рых один или несколько атомов Н в алкогольном радикале замещены щелочными амино группа ми (NHa), вследствие чего А. принадлежат к г. н. амфотерным соединениям. В зависимо сти от… … Большая медицинская энциклопедия

Аминокислоты — * амінакіслоты * amino ac >Генетика. Энциклопедический словарь

АМИНОКИСЛОТЫ — класс органических соединений, молекулы которых содержат аминогруппы ( NH2) и карбоксильные группы ( СООН). А. широко распространены в природе, входят в состав белковых молекул. Все А. твёрдые кристаллические вещества, хорошо растворяются в воде… … Большая политехническая энциклопедия

Аминокислоты — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете … Википедия

Аминокислоты — номенклатура, получение, химические свойства. Белки

Строение аминокислот

Аминокислоты — гетерофункциональные соеди­нения, которые обязательно содержат две функцио­нальные группы: аминогруппу — NH2 и карбоксиль­ную группу —СООН, связанные с углеводородным радикалом.Общую формулу простей­ших аминокислот можно за­писать так:

Так как аминокислоты со­держат две различные функ­циональные группы, которые оказывают влияние друг на друга, характерные реакции отличают­ся от характерных реакций карбоновых кислот и аминов.

Свойства аминокислот

Аминогруппа — NH2 определяет основные свой­ства аминокислот, т. к. способна присоединять к себе катион водорода по донорно-акцепторному механизму за счет наличия свободной электронной пары у атома азота.

Группа —СООН (карбоксильная группа) опреде­ляет кислотные свойства этих соединений. Следовательно, аминокислоты — это амфотерные орга­нические соединения. Со щелочами они реагируют как кислоты:

С сильными кислотами- как основания-амины:

Кроме того, аминогруппа в аминокислоте всту­пает во взаимодействие с входящей в ее состав кар­боксильной группой, образуя внутреннюю соль:

Ионизация молекул аминокислот зависит от кислотного или щелочного характера среды:

Так как аминокислоты в водных растворах ве­дут себя как типичные амфотерные соединения, то в живых организмах они играют роль буферных веществ, поддерживающих определенную концен­трацию ионов водорода.

Аминокислоты представляют собой бесцветные кристаллические вещества, плавящиеся с разло­жением при температуре выше 200 °С. Они растворимы в воде и нерастворимы в эфире. В зависи­мости от радикала R— они могут быть сладкими, горькими или безвкусными.

Аминокислоты подразделяют на природные (обнаруженные в живых организмах) и синтети­ческие. Среди природных аминокислот (около 150) выделяют протеиногенные аминокислоты (около 20), которые входят в состав белков. Они представляют собой L-формы. Примерно полови­на из этих аминокислот относятся к незамени­мым, т. к. они не синтезируются в организме че­ловека. Незаменимыми являются такие кислоты, как валин, лейцин, изолейцин, фенилаланин, ли­зин, треонин, цистеин, мети­онин, гистидин, триптофан. В организм человека данные вещества поступают с пи­щей. Если их количество в пище будет недостаточ­ным, нормальное развитие и функционирование орга­низма человека нарушаются. При отдельных заболеваниях организм не в состоянии син­тезировать и некоторые другие аминокислоты. Так, при фенилкетонурии не синтезируется тирозин. Важнейшим свойством аминокислот является способность вступать в молекулярную конденса­цию с выделением воды и образованием амидной группировки —NH—СО—, например:

Получаемые в результате такой реакции высокомолекулярные соединения содержат большое число амидных фрагментов и поэтому получили название полимамидов.

К ним, кроме названного выше синтетического волок­на капрона, относят, напри­мер, и энант, образующийся при поликонденсации аминоэнантовой кислоты. Для получения синтетических во­локон пригодны аминокис­лоты с расположением амино- и карбоксильной групп на концах молекул.

Полиамиды альфа-аминокислот называются пепти­дами. В зависимости от числа остатков аминокислот различают дипептиды, трипептиды, полипепти­ды. В таких соединениях группы —NH—СО— на­зывают пептидными.

Изомерия и номенклатура аминокислот

Изомерия аминокислот определяется различ­ным строением углеродной цепи и положением аминогруппы, например:

Читайте так же:  Ацетил л карнитин аптека

Широко распространены также названия ами­нокислот, в которых положение аминогруппы обо­значается буквами греческого алфавита: α, β, у и т. д. Так, 2-аминобутановую кислоту можно на­звать также α-аминокислотой:

Способы получения аминокислот

В биосинтезе белка в живых организмах уча­ствуют 20 аминокислот.

Аминокислоты

Человеческое тело состоит из клеток, которые в свою очередь состоят из белка и протеина, именно поэтому человек так нуждается в питании, содержащем белки, чтобы восстанавливать потраченные запасы. Но белок бывает разный, есть такие белки, которые не несут ценности для организма, а ценность белка определяется только количеством важных аминокислот. Аминокислоты получаются из пищевого белка, только он способен синтезироваться в организме человека.

Аминокислоты представляют собой структурные химические единицы, образующиеся из белков. В природе известно 150 видов аминокислот, но человеку нужно всего 20 из них, в свою очередь наш организм научился самостоятельно вырабатывать 12 аминокислот при условии, что в организме хватает необходимых веществ. Но оставшиеся 8 аминокислот воспроизвести невозможно, они могут лишь поступать в организм извне, такие кислоты называются незаменимыми и поступают вместе с пищей.

Для чего нужны аминокислоты

Аминокислоты нужны для синтеза белка, из них строится белок для всего организма, из полученного белка строится вся наша плоть, сюда входят связки, железы, сухожилия и мышцы, волосы и ногти, каждый орган организма. Важно понимать, что получаемые белки не все однообразны, а каждый сформированный уже имеет свое назначение для определенной цели.

Еще одна важная функция аминокислот — незаменимость их в работе головного мозга, по сути аминокислоты выполняют роль нейромедиаторов, как бы пропуская нервные импульсы через себя от клетки к клетке. Также стоит знать, что витамины и полезные вещества могут нормально функционировать только тогда, когда в организме достаточно аминокислот всех видов. Из общего числа аминокислот есть те, которые отвечают за мышцы, строя их и снабжая необходимой энергией. Из всех 20 аминокислот стоит выделить особенно важные: метионин, триптофан и лизин, чтобы они правильно функционировали в организме, нужно чтобы они сочетались в следующей пропорции: 5:5, 1:3, 5.

Роль аминокислот в организме

  • Аланин — эта аминокислота является энергетическим источником для нервной системы и головного мозга. Также она отвечает за укрепление иммунной системы, т.к. способна вырабатывать антитела. Аланин задействован в метаболизме органических кислот и сахаров.
  • Аргинин — аминокислота, отвечающая за обмен веществ в мышцах, незаменима для восстановления хрящевой ткани, восстанавливает и поддерживает кожу, укрепляет сердечную мышцу и связки, играет важную роль в иммунной системе, приостанавливает развитие опухоли.
  • Аспарагин — полностью отвечает за работу и регулировку процессов в ЦНС.
  • Валин — аминокислота, отвечающая за поддержание обмена азота в организме.
  • Гамма-аминомасляная кислота — незаменима в случаях заболевания артериальной гипертензией и эпилепсией.
  • Гистидин — это вещество ставит защиту от радиации, является строителем белых и красных кровяных телец, играет важную роль в иммунитете. Кстати, гистамин получается из гистидина.
  • Глутамин — аминокислота, важная для правильного кислотно-щелочного баланса, кроме этого она очень эффективно помогает понизить тягу к курению и алкоголю.
  • Глутаминовая кислота — необходима в случае язв или дистрофии мышц.
  • Глицин — отвечает за скорейшее восстановление поврежденных тканей.
  • Изолейцин — необходим для правильной регулировки уровня сахара в крови.
  • Лейцин — ускоряет восстановлению или лечению мышечной ткани, костей и кожи.
  • Лизин — необходим для правильного усвоения кальция, правильно распределяет его для роста и питания костей. Также он необходим для укрепления сердечного тонуса, усиливает резистентность организма, понижает уровень вредного холестерина в крови.
  • Метионин — нужен для лечения аллергии химического происхождения, а также при остеопорозе.
  • Пролин — отвечает за укрепление сердечной мышцы.
  • Серин — балансирует обмен жирных кислот и жиров в организме.
  • Таурин — просто необходим при гипогликемии, при заболевании атеросклерозом, отвечает за метаболизм желчной кислоты.
  • Треонин — необходим для поддержания иммунитета, регулирует обмен белков и жиров, предотвращает отложение в печени жиров.
  • Тирозин — очень полезен, если у человека хроническая усталость, данная аминокислота стоит перед гормонами щитовидки, также она отвечает за образование адреналина и норадреналина.
  • Триптофан — полезен сердечникам, а также при хронической бессоннице. Вообще триптофан синтезирует в организме огромное количество витамина РР, стоит непосредственно перед нейромедиатором серотонином. Именно серотонин отвечает за эмоциональное состояние человека, при недостатке человек впадает в депрессию.
  • Цистеин — необходим для лечения ревматоидного артрита, используется при лечении рака и болезнях артерий.
  • Фенилаланин — эта аминокислота способствует циркуляции крови, используется при лечении мигрени, улучшает внимание и память, участвует в образовании инсулина, с ее помощью лечат депрессии.

Продукты содержащие аминокислоты

Из 20 аминокислот, 8 необходимо доставлять в организм с пищей: изолейцин, треонин, валин, фенилаланин, лизин, триптофан, лейцин, метионин — это незаменимые кислоты. Есть продукты, в которых содержатся три основных аминокислоты, метионина, триптофана и лизина, причем они практически в идеальной пропорции.

Вот список этих продуктов:

  • мясо 1:2,5:8,5;
  • яйцо куриное 1,6:3,3:6,9;
  • зерно пшеницы 1,2:1,2:2,5;
  • соя 1,0:1,6:6,3;
  • рыба 0,9:2,8:10,1;
  • молоко 1,5:2,1:7,4.

А вообще незаменимые кислоты содержатся во многих продуктах:

  • валин в грибах, молоке, зерновых, арахисе и сое;
  • изолейцин, в достатке в курице, орехах миндаля и кешью, печенке, чечевице, ржи, мясе и во многих семенах;
  • лейцин содержится в буром рисе, рыбе и мясе, чечевице и орехах;
  • лизин в мясе, молоке, пшенице, рыбе и орехах;
  • метионин содержится в мясе, молоке, бобовых, яйцах;
  • треонин в молоке и яйцах;
  • триптофан в бананах, финиках, арахисе, мясе и овсе;
  • фенилаланин есть в сое, курице, молоке, говядине и твороге.
Читайте так же:  Гены состоят из аминокислот

Фенилаланин входит в состав аспартама, это сахарозаменитель, но очень непонятного качества.
Аминокислоты можно получить из БАДов, особенно это рекомендуется тем, кто на диете или же вегетарианцам.

НИЖЕ ПРЕДСТАВЛЕНЫ ЛУЧШИЕ СПЕЦИАЛИСТЫ ВАШЕГО РЕГИОНЫ

Если вы по какой-то причине не употребляете животный белок, то:

  • для пополнения организма принимайте БАД, где есть аминокислоты;
  • кушайте орехи, семечки, бобовые;
  • обязательно совмещайте продукты с белком, к примеру, соевое мясо, фасоль, рис, нут и т.д., таким образом сочетая их между собой вы получите все необходимые аминокислоты из ряда незаменимых.

Стоит провести уточнение, что пищевые белки бывают ненативные и нативные.

  • Ненативные белки считаются неполноценными, в них мало незаменимых аминокислот, однако они очень полезные и богаты веществами и витаминами. Содержатся они в крупе, орехах, бобовых и овощах.
  • Нативные белки — это полноценные белки, в которых очень много аминокислот незаменимого ряда. Их модно найти в морепродуктах, мясе, птице, яйцах, в общем, во всем, что содержит животный белок.

Печень производит такие аминокислоты: гамма-аминомасляная кислота, аланин, пролин, аргинин, таурин, аспарагиновая кислота, цитруллин, орнитин, глютамовая кислота, аспарагин, тирозин, цистеин и прочие.

Если в организме нехватает аминокислот

Известно, что 12 аминокислот вырабатывает организм в печени, однако их недостаточно для полноценной жизни организма, их необходимо поставлять в организм обязательно.

Причинами нехватки важных аминокислот приводят:

  • частые инфекционные заболевания;
  • стрессы;
  • старение;
  • употребление некоторых медпрепаратов;
  • нарушения в ЖКТ;
  • травмы;
  • проблемы с балансом питательных веществ;
  • злоупотребление фаст-фуда.

Из-за нехватки одной кислоты не вырабатывается нужный белок, поэтому отбираются аминокислоты из других белков и нарушают функциональность других органов, мышц, сердца или мозга и это перетекает в заболевание, а также вносит дисбаланс. Белковый недостаток в детстве приводит к физическим и умственным недостаткам.

При нехватке аминокислот появляется анемия, снижается аминокислота, появляются кожные заболевания. При острой нехватке организм черпает свои резервы, в итоге наступает истощение, слабость мышечная и т.д. Вследствие этого тормозится развитие и строительство мышц, пищеварения, наступают депрессии и прочее.

Аминокислоты в живых организмах

Известно около 200 природных аминокислот, но только 20 из них играют важнейшую роль в жизни человека. Эти аминокислоты называют протеиногеннымистроящими белки.

Первые аминокислоты были открыты в начале XIX века.

В пищевых продуктах наиболее распространены 22 аминокислоты.

В составе белков найдено 20 различных α-аминокислот (одна из них – пролин, является не амино- , а иминокислотой), поэтому их называют белковыми аминокислотами.

Все другие аминокислоты существуют в свободном состоянии или в составе коротких пептидов, или комплексов с другими органическими веществами.

Многие из них найдены только в определенных организмах, а некоторые – только в одном каком-либо организме.

Большинство микроорганизмов и растения синтезируют необходимые им аминокислоты, животные и человек не способны к образованию так называемых незаменимых аминокислот, получаемых с пищей.

К заменимым относятся аминокислоты, присутствие которых в пище не обязательно для нормального развития организма. В случае их недостаточности они могут синтезироваться из других аминокислот или из небелковых компонентов. Аминокислоты валин, лейцин, изолейцин, лизин, метионин, треонин, триптофан и фенилаланин являются незаменимыми почти для всех видов животных.

Аминокислоты являются наиболее важной составной частью организма. Аминокислоты – строительные блоки, из которых строятся белковые структуры, мышечные волокна. Организм использует их для собственного роста, восстановления, укрепления и выработки различных гормонов, антител и ферментов.

Они содержатся в ядре, протоплазме и стенках клеток, где выполняют разнообразные функции жизнедеятельности.

Аминокислоты участвуют в обмене белков и углеводов, в образовании важных для организмов соединений (например, пуриновых и пиримидиновых оснований, являющихся неотъемлемой частью нуклеиновых кислот), входят в состав гормонов, витаминов, алкалоидов, пигментов, токсинов, антибиотиков и т. д.

Некоторые аминокислоты служат посредниками при передаче нервных импульсов.

С нарушением обмена аминокислот связан ряд наследственных и приобретенных заболеваний, сопровождающихся серьезными проблемами в развитии организма.

Главными продуктами разложения аминокислот являются аммиак, мочевина и мочевая кислота. Восполнение потерь аминокислот происходит в основном в результате расщепления белков.

Аминокислоты обеспечивают:

— основные метаболические процессы: синтез и утилизация витаминов, липотропное (жиромобилизующее) действие, гликолиз и гликонеогенез;

— процессы детоксикации организма, в том числе при токсикозе беременных; — формирование иммунной системы организма;

— энергетические потребности клеток и, прежде всего, мозга, участвуют в образовании нейромедиаторов, обладают антидепрессантной активностью, улучшают память;

— метаболизм углеводов, участвуют в образовании и накоплении гликогена в мышцах и печени, обеспечивают наращивание мышечной массы, cнижают утомляемость, улучшают работоспособность;

— стимулируют работу гипофиза, увеличивают выработку гормона роста, гормонов щитовидной железы, надпочечников;

— участвуют в образовании коллагена и эластина, способствуют восстановлению кожи и костной ткани, а также заживлению ран;

— принимают участие в кроветворении, и, прежде всего, в выработке гемоглобина.

Читайте так же:  Какой протеин выбрать девушке

Интересно знать

Во время беременности повышается потребность женского организма в триптофане и лизине, у грудных детей – в триптофане и изолейцине.

Особенно увеличивается потребность организма в незаменимых аминокислотах после больших потерь крови, ожогов, а также вовремя других процессов, сопровождаемых регенерацией тканей.

Для птиц незаменимой аминокислотой является глицин.

У жвачных животных биосинтез всех незаменимых аминокислот производится микроорганизмами кишечного тракта.

Для человека высокую «биологическую ценность» имеют лишь немногие животные белки, такие, как белок куриного яйца или белок материнского молока. Они содержат незаменимые аминокислоты не только в достаточном количестве, но и в необходимом для человека соотношении.

Низкая ценность многочисленных растительных белков связана с небольшим содержанием в них отдельных незаменимых аминокислот (главным образом лизина и метионина). В белке соевой муки мало метионина, в кукурузе – лизина и триптофана.

Признаки недостаточности аминокислот в организме

При недостаточном количестве аминокислотных соединений в организме формируется дисбаланс белкового обмена, в результате которого недостающие элементы «извлекаются» из соединительной ткани, мышц, крови и печени.

В первую очередь высвобожденные белки используются для питания мозга и обеспечения работы сердечно-сосудистой системы.

Расходуя собственные аминокислоты и не получая их с пищей, организм начинает слабеть и истощаться, это приводит к сонливости, выпадению волос, анемии, потере аппетита, ухудшению состояния кожи, задержке роста и умственному развитию.

Аминокислоты, их состав и химические свойства: взаимодействие с соляной кислотой, щелочами, друг с другом. Биологическая роль аминокислот и их применение.

Аминокислоты – соединения, которые содержат в молекуле одновременно аминогруппу и карбоксильную группу. Простейшим представителем аминокислот является аминоуксусная (глицин) кислота: NH2-CH2-COOH

Так как аминокислоты содержат две функциональные группы, то и свойства их зависят от этих групп атомов: NH2— и –CООН. Аминокислоты – амфотерные органические вещества, реагирующие как основание и как кислота.

Физические свойства.

Аминокислоты представляют собой бесцветные кристаллические вещества, хорошо растворимые в воде и малорастворимые в органических растворителях. Многие аминокислоты имеют сладкий вкус.

+ кислоты (проявляются основные свойства)

Видео (кликните для воспроизведения).

+основания
(Проявляются кислотные свойства)

+оксиды металлов

+аминокислоты – образование пептидов

Аминокислоты не изменяют окраску индикатора, если количество аминогрупп и карбоксильных групп одинаково.

Биологическая роль аминокислот заключается в том, что из их остатков образуется первичная структура белка. Существует 20 аминокислот, которые являются исходными веществами для производства белков в нашем организме. Некоторые аминокислоты применяются в качестве лечебных средств, например глутаминовую кислоту — при нервных заболеваниях, гистидин – при язве желудка. Некоторые аминокислоты находят применение в пищевой промышленности, их добавляют в консервы и пищевые концентраты для улучшения пищи.

Анилин – представитель аминов. Химическое строение и свойства, получение и практическое применение.

Амины — это органические соединения, представляющие собой производные аммиака, в молекуле которого один, два или три атома водорода замещены на углеводородный радикал.

Анилин- бесцветная маслянистая жидкость со слабым характерным запахом, малорастворим в воде, но хорошо растворим в спирте, эфире, бензоле. Температура кипения 184°C. Анилин- сильный яд, действует на кровь.

+кислоты (реакции по аминогруппе)

Химические свойства анилина обусловлены наличием в его молекуле аминогруппы —NH2 и бензольного ядра, которые оказывают взаимное влияние друг на друга.

Получение.

Восстановление нитросоединений – реакция Зинина

Применение.

Анилин применяется в производстве фотоматериалов, анилиновых красителей. Получают полимеры, взрывчатые вещества, лекарственные препараты.

Белки — как биополимеры. Строение, свойства и биологические функции белков.

Белки (протеины, полипептиды) — высокомолекулярные органические вещества, состоящие из соединённых в цепочку пептидной связью аминокислот. В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 стандартных аминокислот.

Структура белка

Молекулы белков представляют собой линейные полимеры, состоящие из α -аминокислот (которые являются мономерами) и, в некоторых случаях, из модифицированных основных аминокислот . Последовательность аминокислот в белке соответствует информации, содержащейся в гене данного белка.

· Первичная структура — последовательность аминокислот в полипептидной цепи-линейно.

· Вторичная структура — закручивание полипептидной цепи в спираль, поддерживающееся водородными связями.

· Третичная структура —упаковка вторичной спирали в клубок. Поддерживают третичную структуру: дисульфидные связи, водородные связи.

Свойства

Белки являются амфотерными веществами, также как и аминокислоты.

Отличаются по степени растворимости в воде, но большинство белков в ней растворяются.

Денатурация: Резкое изменение условий, например, нагревание или обработка белка кислотой или щёлочью приводит к потере четвертичной, третичной и вторичной структур белка. Денатурация в некоторых случаях обратима.

Гидролиз: Под воздействием ферментов происходит гидрол белка до составляющих его аминокислот. Этот процесс происходит, например, в желудке человека под воздействием таких ферментов как пепсина и трипсина.

Функции белков в организме

Каталитическая функция

Ферменты — группа белков, обладающая специфическими каталитическими свойствами. Среди ферментов можно отметить такие белки : трипсин, пепсин, амилаза, липаза.

Структурная функция

Белки – это строительный материал почти всех тканей: мышечных, опорных, покровных.

[1]

Защитная функция

Белки антитела, способные обезвреживать вирусы, болезнетворные бактерии.

Сигнальная функция

Белки-рецепторы воспринимают и передают сигналы, поступившие от соседних клеток.

[2]

Транспортная функция

Гемоглобин переносит кислород из лёгких к остальным тканям и углекислый газ от тканей к лёгким.

Запасающая функция

Читайте так же:  Бса аминокислоты для чего

К таким белкам относятся так называемые резервные белки, которые запасаются в качестве источника энергии и вещества в семенах растений и яйцеклетках животных. Они служат строительным материалом.

Двигательная функция

Белки, осуществляющие сократительную деятельность это актин и миозин

1. Общая характеристика высокомолекулярных соединений: состав, строение, реакции, лежащие в основе их получения ( на примере полиэтилена).

Высокомолекулярные соединения (полимеры) – это вещества, макромолекулы которых состоят из многократно повторяющихся звеньев. Их относительная молекулярная масса может измеряться от нескольких тысяч до многих миллионов.

Мономер – это низкомолекулярное вещество из которого получают полимер.

Структурное звено – многократно повторяющиеся в макромолекуле полимера группы атомов.

Степень полимеризации – количество повторяющихся структурных звеньев.

Полимеры могут быть получены в результате реакций полимеризации и поликонденсации.

Признаки реакции полимеризации:

1. Не образуется побочных веществ.

2. Реакция идет за счет двойных или тройных связей.

nСН2=СН2 → (-СН2-СН2-)n– реакция полимеризации этилена — образование полиэтилена.

Признаки реакции поликонденсации:

1. Образуются побочные вещества.

2. Реакция идет за счет функциональных групп.

Пример: образование фенолформальдегидной смолы из фенола и формальдегида, полипептидной связи из аминокислот. При этом образуется кроме полимера побочный продукт – вода.

Высокомолекулярные соединения имеют определенные преимущества перед другими материалами: они устойчивы к действию реагентов, не проводят ток, механически прочные, легкие. На основе полимеров получают пленки, лаки, резину, пластмассы.

АМИНОКИСЛО́ТЫ

  • В книжной версии

    Том 1. Москва, 2005, стр. 612

    Скопировать библиографическую ссылку:

    АМИНОКИСЛО́ТЫ, ор­га­нич. со­еди­не­ния, со­дер­жа­щие кар­бок­силь­ные COOH и ами­но­груп­пы NH 2

    . Ис­клю­че­ние со­став­ля­ет про­лин. Об­ла­да­ют свой­ст­ва­ми и ки­слот и ос­но­ва­ний. В за­ви­си­мо­сти от по­ло­же­ния ами­но­груп­пы в уг­ле­род­ной це­пи от­но­си­тель­но кар­бок­силь­ной груп­пы раз­ли­ча­ют α -, β -, γ — и др. А. У ω -А. ами­но­груп­па на­хо­дит­ся на кон­це це­пи. Уча­ст­ву­ют в об­ме­не азо­ти­стых ве­ществ всех ор­га­низ­мов, яв­ля­ясь ис­ход­ны­ми со­еди­не­ния­ми при био­син­те­зе бел­ков, пеп­ти­дов, пу­ри­но­вых и пи­ри­ми­ди­но­вых ос­но­ва­ний, ря­да ви­та­ми­нов, пиг­мен­тов, ал­ка­лои­дов и др.

    Аминокислоты и их функции в организме человека

    Аминокислоты — полифункциональные соединения, содержащие по меньшей мере две разные химические группировки, способные реагиро­вать друг с другом с образованием ковалентной пептидной (амидной) связи.

    Общее число встречающихся в природе аминокислот достигает око­ло 300. Среди них различают: а) аминокислоты, входящие в состав бел­ков; б)аминокислоты, образующиеся из других аминокислот, но только после включения последних в процесс синтеза белка (их обнаруживают в гидролизатах белков); в) свободные аминокислоты. С точки зрения питания выделяют эссенциальные (незаменимые) аминокислоты. Эти аминокислоты не могут синтезироваться в организме человека и долж­ны поступать с пищей.

    Аминокислоты играют большую роль в синтезе важнейших физиологически актив­ных соединений в организме и обеспечении некоторых свойств пищево­го сырья и продуктов.

    Все живые организмы различаются по способности синтезировать ами­нокислоты, необходимые для биосинтеза белков. В организме человека синтезируется только часть аминокислот, другие должны доставляться с пищей. Первые из них называются заменимыми, вторые — неза­менимыми. Заменимые аминокислоты способны заме­нять одна другую в рационе, так как они превращаются друг в друга или синтезируются из промежуточных продуктов углеводного или липидного обмена. Для незаменимых аминокислот такие пути обмена существуют только у растений и некоторых микроорганизмов.

    Жизнедеятельность человека обеспечивается ежедневным потребле­нием с пищей сбалансированной смеси, содержащей восемь незамени­мых аминокислот и две частично заменимые.

    Незаменимые представле­ны аминокислотами с разветвленной цепью углерода — лейцином, изолейцином и валином, ароматическими — фенилаланином, триптофаном и алифатическими — треонином, лизином и метионином. Так как из метионина и фенилаланина в организме синтезируется цистеин и тирозин, соответственно, то наличие в пище в достаточном количестве этих двух заменимых аминокислот сокращает потребность в незаменимых пред­шественниках.

    К частично заменимым аминокислотам относят аргинин и гистидин, так как в организме они синтезируются довольно медленно. Недостаточ­ное потребление аргинина и гистидина с пищей у взрослого человека в целом не сказывается на развитии, однако может возникнуть экзема или нарушиться синтез гемоглобина. В аргинине и гистидине особенно нуж­дается молодой организм.

    Отсутствие в пище хотя бы одной незаменимой аминокислоты вызы­вает отрицательный азотистый баланс, нарушение деятельности цент­ральной нервной системы, остановку роста и тяжелые клинические по­следствия типа авитаминоза. Нехватка одной незаменимой аминокис­лоты приводит к неполному усвоению других. Данная закономерность подчиняется закону Либиха, по которому развитие живых организмов определяется тем незаменимым веществом, которое присутствует в наи­меньшем количестве.

    Зависимость функционирования организма от количества незамени­мых аминокислот используется при определении биологической ценно­сти белков химическими методами. Наиболее широко используется ме­тод X. Митчела и Р. Блока (Mitchell, Block, 1946), в соответствии с кото­рым рассчитывается показатель аминокислотного скора (АС).

    Скор выражают в процентах или безразмерной величиной, представля­ющей собой отношение содержания незаменимой аминокислоты в исследуемом белке к ее количеству в эталонном белке.

    Аминокислота, скор которой имеет самое низкое значение, называ­ется первой лимитирующей аминокислотой. Значение скора этой ами­нокислоты определяет биологическую ценность и степень усвоения бел­ков.

    Не нашли то, что искали? Воспользуйтесь поиском:

    Аминокислоты. Многие микроорганизмы способны синтезировать аминокислоты

    Многие микроорганизмы способны синтезировать аминокислоты.

    Аминокислоты — важнейшие органические соединения, содержащие азот, являющиеся основными строительными «кирпичиками» белка. Аминокислоты необходимы для синтеза биологических катализаторов — ферментов. Ни одна химическая реакция в организме не протекает без ферментов. Поэтому обмен веществ живого организма невозможен без аминокислот. В центре обмена веществ организма стоит белковый обмен. Рост, развитие организма, передача наследственности, изменчивость — все это связано с синтезом белков. Поэтому значение аминокислот — основных структурных единиц белка — трудно переоценить. При нарушении белкового обмена в организме животного и человека наступают патологические явления, связанные с недостатком тех или иных аминокислот.

    Читайте так же:  Состоят из остатков молекул аминокислот выполняют

    Часть аминокислот организмы животного и человека синтезируют сами, а некоторые, необходимые как человеку, так и животным, не синтезируются или синтезируются недостаточно быстро, чтобы удовлетворять потребности в них организма. Поэтому такие соединения надо вводить в организм с пищей или кормом. Аминокислоты, которые организм человека или животных не может синтезировать, но которые необходимы для нормальной жизнедеятельности, называются незаменимыми.

    Животные белки богаты аминокислотами, они полноценны. Низкая питательная ценность белков растительного происхождения, например хлебных злаков, объясняется отсутствием или недостатком в них важных незаменимых аминокислот. Так, пшеница и рис бедны лизином и треонином, кукуруза — лизином и триптофаном, бобы и горох — метионином. Биологическая ценность растительных белков может быть значительно повышена путем добавления тех или иных недостающих аминокислот.

    В пище населения некоторых стран преобладают белки растительного происхождения (до 90%). Недостаток в полноценных белках приводит к тяжелым заболеваниям (особенно детей).

    Учитывая огромное значение злаков в мировой экономике и заметное улучшение качества белков зерна при добавлении недостающих аминокислот, можно предполагать, что свободные аминокислоты будут играть значительную роль в попытках восполнить общий недостаток ценных белков на Земле.

    Аминокислоты используются в медицинской практике. Аминокислотная терапия применяется в послеоперационные периоды и при тяжелых ожогах.

    Широко используются аминокислоты в пищевой промышленности для повышения питательных и вкусовых качеств продуктов. Соль глу-таминовой кислоты — глутамат натрия — называют «фактором вкуса»: при его добавлении пищевые продукты приобретают более высокие вкусовые качества. Аминокислоты используют при составлении синтетической пищи.

    Аминокислоты все шире используются в сельском хозяйстве для подкормки животных, особенно молодняка. Рационально сбалансированное питание животных в настоящее время не мыслится без использования аминокислот. Аминокислоты в рационе животных и птиц резко сокращают расход белка и корма вообще, увеличивают суточный привес и укорачивают период откармливания.

    В области микробиологии аминокислоты получили широкое применение для приготовления сред, например при выращивании тканевых культур, для приготовления вакцин.

    [3]

    Аминокислоты используются в качестве исходного материала при синтезе пептидов, гормонов, антибиотиков.

    Посредством полимеризации аминокислот, прежде всего глутаминовой кислоты и аланина, предполагают получать синтетические волокна.

    Помимо описанных практических сторон биосинтеза аминокислот микроорганизмами, они необходимы для решения ряда теоретических вопросов. Потребности народного хозяйства в аминокислотах огромны.

    До недавнего времени аминокислоты вырабатывали в основном из растительных и животных белков путем их гидролиза. На это затрачивалось огромное количество ценного пищевого сырья. Химически синтез аминокислот очень сложен и дорог, а главное — при химическом синтезе получаются рацематы — биологически неактивные формы аминокислот.

    Поэтому огромное значение приобретает синтез аминокислот с помощью микроорганизмов.

    Как показали исследования зарубежных и советских ученых, микроорганизмы при росте на простых синтетических питательных средах с сахарами (в качестве источников углерода) и солями аммония или мочевины (в качестве источника азота) способны в определенных условиях выращивания накапливать в среде значительное количество (десятки граммов на 1 л среды) тех или иных аминокислот.

    Это удивительное свойство микроорганизмов — выделять в среду, «выбрасывать» столь необходимые для жизни самой микробной клетки соединения, которые идут на построение белка. Человек заинтересован в том, чтобы микроорганизмы продуцировали как можно больше аминокислот; для этого получают так называемые «мутанты» — микробы с измененными свойствами. Микробную клетку обрабатывают различными химическими соединениями или облучают ультрафиолетовым светом; в результате происходят изменения в обмене веществ, и микроорганизмы начинают выделять нужные для человека соединения.

    Так были получены многие активные продуценты. Так, Micrococcus glutamicus и Brevi-bacterium divaricatum выделяют до 50—60 г на 1 л питательной среды глутаминовой кислоты; Brevibact. monoflagellum и Br. pento-soalaninicum — до 50 г!л аланина; мутанты продуцентов лизина выделяют его до 30 г/л, валин накапливается в среде активными штаммами — около 20 г/л. Гораздо меньше (4— 10 г/л) образуют микробы триптофана — важнейшей, необходимой для животного организма аминокислоты, которую человек и животные сами не могут синтезировать.

    Способность микробных клеток образовывать повышенное количество аминокислот успешно используется для получения аминокислот в промышленном масштабе.

    Видео (кликните для воспроизведения).

    Не нашли то, что искали? Воспользуйтесь поиском:

    Источники


    1. Гаин, Ю. М. Заболевания органов пищеварения. От ахалазии до язвы / Ю.М. Гаин, С.А. Алексеев. — М.: Феникс, Цитадель-трейд, 2006. — 128 c.

    2. Собянин, Ф.И. Основы теории физической культуры. 10-11 класс / Ф.И. Собянин. — М.: Книга по Требованию, 2015. — 152 c.

    3. Дан, Ольга Большая книга лифтинг-гимнастики. Лучшие упражнения для молодости и стройности (+ DVD-ROM) / Ольга Дан. — М.: Питер, 2010. — 208 c.
    Аминокислоты в живых организмах
    Оценка 5 проголосовавших: 1

    ОСТАВЬТЕ ОТВЕТ

    Please enter your comment!
    Please enter your name here