Аминокислоты входящие в состав белковых молекул

Важная и проверенная информация на тему: "аминокислоты входящие в состав белковых молекул" от профессионалов для спортсменов и новичков.

Аминокислоты — главные составные части белков

Физико-химические и биологические свойства белков определяются их аминокислотным составом. Аминокислоты — это аминопроизводные класса карбоновых кислот. Аминокислоты входят не только в состав белков. Многие из них выполняют специальные функции. Поэтому в живых организмах различают аминокислоты протеиногенные (кодируются генетически) и непротеиногенные (не кодируются генетически). Протеиногенных аминокислот 20. 19 из них являются a-аминокислотами. Это означает, что аминогруппа у них присоединена к a-углеродному атому той карбоновой кислоты, производным которой они являются. Общая формула этих аминокислот выглядит следующим образом:

Только одна аминокислота — пролин не соответствует этой общей формуле. Ее относят к иминокислотам.

a-углеродный атом аминокислот является ассимметричным (исключение составляет аминопроизводное уксусной килоты — глицин). Это означает, что у каждой аминокислоты имеются, как минимум, 2 оптически активных антипода. Природа выбрала для создания белков L-форму. Поэтому природные белки построены из L-a- аминокислот.

Во всех случаях, когда в молекуле органического соединения атом углерода связан с 4 разными атомами или функциональными группами, этот атом ассиметричен, поскольку он может существовать в двух изомерных формах, называемых энантиомерами или оптическими (стерео-) изомерами. Соединения с ассимметричными атомами «С» встречаются в виде двух форм (хиральных соединений) — левой и правой, в зависимости от направления вращения плоскости поляризации плоскополяризованного света. Все стандартные аминокислоты кроме одной (глицин) содержат в a-положении ассимметричный атом углерода, с которым связаны 4 замещающих группы. Поэтому они обладают оптической активностью, то есть способны вращать плоскость

поляризации света в том или ином направлении.

Однако в основе системы обозначения стереоизомеров лежит не вращение плоскости поляризации света, а абсолютная конфигурация молекулы стереоизомера. Для выяснения конфигурации оптически активных аминокислот их сравнивают с глицериновым альдегидом — простейшим трехуглеродным углеводом, который содержит ассимметричный атом углерода. Стереоизомеры всех хиральных соединений, независимо от направления вращения плоскости поляризации плоскополяризованного света, соответствующие по конфигурации L-глицериновому альдегиду, обозначаются буквой L, а соответствующие D-глицериновому альдегиду — буквой D. Таким образом, буквы L и D относятся к абсолютной конфигурации 4 замещающих групп при хиральном атоме «С», а не к направлению вращения плоскости поляризации.

Классификация аминокислот проводится по строению их радикала. Существуют разные подходы к классификации. Большая часть аминокислот — это алифатические соединения. 2 аминокислоты являются представителями ароматического ряда и 2 — гетероциклического.

Аминокислоты можно разделить, по их свойствам, на основные, нейтральные и кислые. Они отличаются числом амино- и карбоксильных групп в молекуле. Нейтральные — содержат по одной амино- и одной карбоксильной группе (моноаминомонокарбоновые). Кислые имеют 2 карбоксильные и одну аминогруппу (моноаминодикарбоновые), основные -2 аминогруппы и одну карбоксильную (диаминомонокарбоновые).

1. Собственно алифатическими можно назвать 5 аминокислот. Глицин или гликокол (Гли),

[2]

при работе с компьютером — (G), — a-аминоуксусная кислота. Является единственной оптически неактивной аминокислотой. Глицин используется не только для синтеза белков. Его атомы входят в состав нуклеотидов, гема, он входит в состав важного трипептида — глутатиона.

Аланин (Ала), при работе с компьютером — (А) — a-аминопропионовая кислота. Аланин нередко используется в организме для синтеза глюкозы.

По структуре все аминокислоты, за исключением глицина, можно рассматривать как производные аланина, у которого один или несколько атомов водорода в составе радикала замещены различными функциональными группами.

Валин (Вал), при работе с компьютером (V) — аминоизовалериановая кислота. Лейцин (Лей, L) — аминоизокапроновая кислота. Изолейцин (Иле, I) — a-амино-b-этил-b-метилпропионовая кислота. Эти три аминокислоты, обладая выраженными гидрофобными свойствами, играют важную роль в формировании пространственной структуры белковой молекулы.

2. Гидроксиаминокислоты. Серин (Сер, S) — a-амино-b-гидроксипропионовая кислота и треонин (Тре, T) — a-амино-b-гидроксимасляная кислота играют важную роль в процессах ковалентной модификации структуры белков. Их гидроксильная группа легко взаимодействует с фосфорной кислотой, что бывает необходимым для изменения функциональной активности белков.

3. Серусодержащие аминокислоты. Цистеин (Цис, C) — a-амино- b-тиопропионовая кислота. Специальным свойством цистеина является способность к окислению (в присутствии кислорода) и взаимодействию с другой молекулой цистеина с образованием дисульфидной связи и нового соединения — цистина. Эта аминокислота благодаря активной -SH группе легко вступает в окислительно-восстановительные реакции, защищая клетку от действия окислителей, участвует в образовании дисульфидных мостиков, стабилизирующих структуру белков, входит в состав активного центра ферментов.

Метионин (Мет, M) — a-амино-b-тиометилмасляная кислота. Выполняет функцию донора подвижной метильной группы, необходимой для синтеза биологически активных соединений: холина, нуклеотидов и т.д. Это гидрофобная аминокислота.

4. Дикарбоновые аминокислоты. Глутаминовая (Глу, E) — a-аминоглутаровая кислота и аспарагиновая кислота (Асп, D) — a-аминоянтарная кислота. Это наиболее распространенные аминокислоты белков животных организмов. Обладая дополнительной карбоксильной группой в радикале, эти аминокислоты способствуют ионному взаимодействию, придают заряд белковой молекуле. Эти аминокислоты могут образовывать амиды.

5. Амиды дикарбоновых аминокислот. Глутамин (Глн, Q) и аспарагин (Асн, N). Эти аминокислоты выполняют важную функцию в обезвреживании и транспорте аммиака в организме. Амидная связь в их составе частично имеет характер двойной. За счет этого амидная группа обладает частичным положительным зарядом и не будет диссоциировать.

[1]

6. Циклические аминокислоты имеют в своем радикале ароматическое или гетероциклическое ядро. Фенилаланин (Фен, F) — a-амино-b-фенилпропионовая кислота. Тирозин (Тир, Y) — a-амино-b-параоксифе-нилпропионовая кислота. Эти 2 аминокислоты образуют взаимосвязанную пару, выполняющую важные функции в организме, среди которых следует отметить использование их клетками для синтеза ряда биологически активных веществ (адреналина, тироксина).

Читайте так же:  Какой креатин лучше для набора мышечной массы

Триптофан (Три, W) — a-амино-b-индолилпропионовая кислота. Используется для синтеза витамина PP, серотонина, гормонов эпифиза.

Гистидин (Гис, H) — a-амино-b-имидазолилпропионовая кислота. Может использоваться при образовании гистамина, регулирующего проницаемость тканей и проявляющего свое действие при аллергии.

7. Диаминомонокарбоновые аминокислоты. Лизин (Лиз, K) — диаминокапроновая кислота. Аргинин (Арг, R) — a-амино-b-гуанидин-валериановая кислота. Эти аминокислоты имеют дополнительную аминогруппу, которая придает основные свойства белкам, содержащим много таких аминокислот. Образование аргинина является частью метаболического пути обезвреживания аммиака (синтез мочевины).

8. Иминокислота — пролин (Про, P). Отличается от других аминокислот по строению. Её радикал образует с a-аминогруппой единую циклическую структуру. Благодаря этой особенности вокруг связи между a-аминогруппой и a-углеродным атомом невозможно никакое вращение. У всех других аминокислот возможность вращения вокруг этой связи имеется. Вдобавок в состав пролина входит вторичная аминогруппа (с азотом азота связан только один атом водорода), которая отличается, по своим химическим характеристикам от первичной аминогруппы (-NH2) в составе других аминокислот. Особое место отводится этой аминокислоте в структуре коллагена, где пролин, в процессе синтеза коллагена, может превращаться в гидроксипролин.

В скобках указаны сокращенные обозначения аминокислот, которые образуются из первых трех букв их тривиального названия. В последнее время для записи первичной структуры используются и однобуквенные символы, что важно при использовании ЭВМ в работе с белками.

Не нашли то, что искали? Воспользуйтесь поиском:

Аминокислоты, которые входят в состав белка

Читайте также:

  1. II. По принципу организационно-правовых форм предприятий, входящих в состав рыночной инфраструктуры
  2. II.Организация — это составная часть какого либо объекта, его свойство иметь упорядоченную структуру.
  3. IV. Социальный состав.
  4. IV.5. Переходные процессы при КЗ. Начальное значение периодической составляющей тока КЗ. Ударный ток КЗ. Ударный коэффициент КЗ
  5. IX. Состав и назначение основных элементов персонального компьютера.
  6. N Образуется на уровне третичной структуры белка-фермента
  7. N являются белками иммунной системы
  8. А. Сеть и состав архивов
  9. Абстинентный синдром проявляется как психическими, так и неврологическими и соматическими расстройствами, которые смягчаются или проходят после приема новой дозы алкоголя.
  10. Алгоритм составления оптимального маршрута
  11. Анализ возрастного состава

Основных аминокислот всего 20. Их названия связаны со случайными моментами. Все аминокислоты, которые входят в состав природных белков – это α -аминокислоты. Это значит, что амино- и карбоксильная группа находятся у одного углеродного атома.

1.

аминоуксусная кислота (глицин);

2.

α-аминопропанова кислота (аланин);

3.

α- аминопентановая кислота (валин);

4.

α-аминоизокапроновая кислота (лейцин);

5.

α-амино-β-метилвалериановая кислота (изолейцин);

6.

α-амино-β-гидроксипропановая кислота (серин);

7.

α-амино-β-гидроксимасляная кислота (треонин);

Сера-содержащие:

8.

α-амино-β-меркаптопропановая кислота (цистеин);

9.

α-амино-γ-метилтиомасляная кислота (метионин);

10.

α-аминоянтарная кислота (аспарагиновая кислота);

11.

амид аспарагиновой кислоты (аспарагин);

12.

α-аминоглутаровая кислота (глутаминовая кислота);

13.

амид α-аминоглутаровой кислоты (гутамин);

14.

α, ε-диаминокапроновая кислота (лейзин);

15.

α-амино-δ-гуанидиловалериановая кислота

Циклические:

16.

α-амино-β-фенилпропановая кислота (фенилаланин);

17.

α-амино-β-пара-гидроксифенилпроавновая кислота (тирозин);

18.

α-амино-β-имидозолилпропановая ксилота (гистедин);

19.

α-амино-β-индолилпропановая ксилота (триптофан);

20.

α-тетрагидропироллкарбоновая кислота (пролин).

Все природные аминокислоты относятся к L-стереохимическому ряду, D-рядя только как исключение у бактерий, в составе капсул, чтобы защитить бактерии от действия ферментов.

Лекция 3.

Для каждой аминокислоты характерны свои единственные физико-химические свойства – изоэлектрическая точка, т.е. та pH среды, при которой раствор этой аминокислоты электронейтрален. (q = 0).

Если же рассматривать такую кислоту в водной среде, то диссоциация происходит и по кислотному и по основному типу – биполярный ион.

В организме млекопитающих в печени имеется фермент оксидаза-D-аминокислот, который избирательно разрушает D-аминокислоты, которые попадают с продуктами питания. D-аминокислоты обнаружены в составе некоторых пептидов микроорганизмов. Кроме того, D-аминокислоты входят в состав большого числа антибиотиков. Например, D-валин, D-лейцин входят в состав антибиотика границидина, D-фенилаланин входит в состав границидина-С, пенициллин содержит необычный фрагмент D-диметилцистеин.

Процесс рацимизиации (переход D в L) происходит не ферментативно, поэтому очень медленно. На этом основано определение возраста млекопитающих.

Все аминокислоты имеют в своем составе амино- и карбоксильную группу обладают свойствами аминов и карбоновых кислот. Кроме того, для α-аминокислот характерна нингидриновая реакция (общая с белками). Со спиртовым раствором нингидрина очень быстро появляется сине-фиолетовая окраска, с пропином желтая.

В конце XIX века была полемика, каким образом аминокислоты образуют связь если взять две аминокислоты, слить их вместе, то не получится никогда линейной структуры (в силу термодинамики, происходит циклизация). Получить полипептид в XIX веке никак не получалось.

Линейные молекулы никак не получатся. С т.з.термодинамики более выгодно отщепить 2Н2О, чем образовать линейную молекулу.

В 1888 году химик Данилевский предположил, что белки – это полипептиды, линейные молекулы, которые образуются в результате действия карбоксильной группы одной аминокислоты с карбоксильной группой другой аминокислоты с отщеплением воды и образуется дипептид:
Читайте так же:  Можно ли пить изотоник детям

Образуется амидная связь (для белков пептидная), эти пептидные связи разделены только одним углеродным атомом. На основании биуретовой реакции Данилевский сделал такой вывод. Это реакция раствора белка с сульфатом меди в щелочной среде, образуется сине-фиолетовое окрашивание, образуется хилатный комплекс с ионами меди, в результате того, что пептидная связь в белковых молекулах имеет специфическое строение. Вследствие кето-енольной таутомерии она на половину двойная, на половину одинарная. Характерная реакция с Cu(OH)2:

Биуретовая реакция характерна для биурета (рис.1), для малонамида (рис.2) , белков.

Для того, чтобы окончательно доказать, что бели – это полипептиды в 1901 году Фишер синтезировал полипептид, независимо от него Гофман тоже синтезировал полипептид:

Синтез полипептида по Фишеру:

Продукт давал биуретовую реакцию, плохо растворялся, не обладал биологической активностью, расщеплялся протолитическими ферментами, а ферменты – это специфические биокатализаторы, которые расщеплют природные белки, значит у этого продукта такая же структура, как у природных белков.

В настоящее время синтезировано более 2 тысяч разных белков. Главное в синтезе белка – это защита аминогруппы и активация карбоксильной группы для того, чтобы синтез был направленным. Защита аминогрупп осуществляется ацилированием, для этого обрабатывают ангидридами трихлоруксусной кислоты и вводят трифторацильную группы, либо обрабатывают по Зенерсу (бензиловым эфиром хлоругольной кислоты).

Для синтеза каждого конкретного полипептида, для сшивания конкретного участка могут быть проведены свои собственные методы.

Защита по Зервесу, активация по Курциусу, снятие защиты по Бекману:

Выход продуктов этим методом значительно не сравним с методами, которые применялись до этого. С помощью автоматизации можно использовать этот метод в промышленных масштабах.

У каждого полипептида имеется N-конец, а другой С-конец. Аминокислота, которая принимает участие изменяет окончание на ил

Глицил-валил-тирозил-гистедин-аспарагил-пролин. Для определения аминокислот в полипептиде, необходимо провести гидролиз, его проводят при 100 С в течение 24 часов 6Н соляной кислотой. Далее продукты гидролиза анализируют – разделяют методом ионообменной хроматографии на колонке сульфалированным полистиролом. Потом вымывают цитратным буфером из колонки. По количеству элюента судят о том, какие кислоты, т.е. в начале будут вымываться кислые кислоты, а самыми последними – основные. Таким образом можно определять в какой момент, какая аминокислота прошла, а количество определяется фотометрически с помощью нингдрина, этим методом можно определить 1 мкг. Если необходимо оперделить 1 нг, применяют флуоросканин, он реагирует с α-аминокислотами, образуя сильно флуоросцилирующее соединение. Определяют какие и сколько аминокислот находятся, а последовательность аминокислот определить не удается.

Дата добавления: 2014-01-07 ; Просмотров: 3627 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Аминокислоты, входящие в состав белков, их строение, свойства.

Белки — полимерные молекулы, в которых мономерами служат аминокислоты. В составе белков в организме человека встречают только 20 альфа-аминокислот. Одни и те же аминокислоты присутствуют в различных по структуре и функциям белках. Индивидуальность белковых молекул определяется порядком чередования аминокислот в белке.

Аминокислотами называются органические кислоты, содержащие одну или несколько аминогрупп.

Все α- аминокислоты, кроме аминоуксусной (глицина), имеют асимметрический α-углеродный атом и существуют в виде двух энантиомеров.Практически все белки построены из 20 α -аминокислот, принадлежащих за исключением глицина к L- ряду.

||По физическим и ряду химических свойств аминокислоты резко отличаются от соответствующих кислот и оснований. Они

· лучше растворяются в воде, чем в органических растворителях;

· имеют высокую плотность

· высокие температуры плавления.

Эти свойства указывают на взаимодействие аминных и кислотных групп, вследствие чего аминокислоты в твёрдом состоянии и в растворе (в широком интервале рН) находятся в цвиттер-ионной форме (т.е. как внутренние соли).

Все аминокислоты отличаются характером радикала, который может быть ациклическим или циклическим. В состав радикала может входить дополнительно вторая карбоксильная группа (такие аминокислоты называются моноаминодикарбоновые МАДК) или две аминные группы (диаминомонокарбоновые ДАМК). В составе отдельных аминокислот могут находиться гидроксильные группы (серин, треонин),сульфгидрильная (цистеин), метильная (метионин).

Таблица 1. Важнейшие аминокислоты.

Большинство аминокислот, участвующих в обменных процессах и входящих в состав белков, могут поступать с пищей или синтезироваться в организме в процессе обмена ( из других аминокислот, поступающих в избытке). Они называются заменимыми. Некоторые аминокислоты не могут синтезироваться в организме и должны поступать с пищей — незаменимые аминокислоты. Таких аминокислот девять(гистидин, триптофан, фенилаланин, лизин, метионин, треонин, изолейцин, лейцин, валин).

4.Молекулярная масса белков. Размеры и форма белковых молекул.

Первичная структура белков в значительной степени определяет вторичную, третичную структуры и особенности четвертичной структуры. В свою очередь, первичная и пространственная структуры белков, их молекулярная масса, форма и размеры обусловливают их физико-химические свойства.

Видео (кликните для воспроизведения).

Размер белка может измеряться в числе аминокислотных остатков или в дальтонах (молекулярная масса), но из-за относительно большой величины молекулы масса белка выражается в производных единицах — килодальтонах (кДа). Молекулярная масса белков достаточно большая, поэтому они относятся к высокомолекулярным соединениям. Молекулярная масса белков колеблется от 6 000 до 1 000 000 Дальтон и выше, она зависит от количества аминокислотных остатков в полипептидной цепи, а для олигомерных белков имеющих четвертичную структуру – от количества входящих в них протомеров (субъединиц).

Читайте так же:  Витамин в12 в каких продуктах содержится

Молекулярная масса некоторых белков составляет:

· гемоглобин – 65 000Д.

Молекулярную массу белка можно определить по скорости седиментации при ультрацентрифугировании, т.е. при ускорении 100000-500000 G . На основании этого определяют коэффициент седиментации, который обозначают S ( в честь шведского ученого СВЕДБЕРГА). Молекулярная масса большинства белков колеблется в пределах 1-20S.Для вычисления молекулярной массы (М), помимо константы седиментации, необходимы дополнительные сведения о плотности растворителяи белка и другие согласно уравнению Сведберга:

Другим методом определения молекулярной массы является метод гельфильтрации (молекулярное просеивание). Используется искусственно созданные гранулы, имеющие поры (гранулы СЕФАДЕКСА). Внутрь гранулы могут проникать только соединения определённого размера: молекулы небольшого размера входят в гранулы, а большие быстрее вымываются. Молекулярная масса рассчитывается ориентировочно. Буфер не задерживается, а белок движется тем медленнее, чем меньше молекулярная масса.

Белки имеют различную форму, но выделяют две основных группы:

· глобулярные (шарообразные) .Более компактны, в этих белках гидрофильные группы расположены преимущественно снаружи, а гидрофобные – внутри, образуя ядро, водорастворимысвёртываются при нагревании, нейтральны, сравнительно трудно осаждаются растворами солей. (Глобулин, Альбумин)

· фибриллярные (веретенообразные). Образуют полимеры, их структура обычно высокорегулярна и поддерживается, в основном, взаимодействиями между разными цепями. Они образуют микрофиламенты, микротрубочки, фибриллы, поддерживают структуру клеток и тканей. (Актин, Миозин)

На основе различий белков в молекулярной массе, размеров и форме их можно разделить с помощью ультрацентрифугирования (по скорости седиментации), методом гель – фильтрации (молекулярного просеивания в сефадексе).

Последнее изменение этой страницы: 2017-01-24; Нарушение авторского права страницы

Аминокислоты, которые входят в состав белка

Основных аминокислот всего 20. Их названия связаны со случайными моментами. Все аминокислоты, которые входят в состав природных белков – это α -аминокислоты. Это значит, что амино- и карбоксильная группа находятся у одного углеродного атома.

1.

аминоуксусная кислота (глицин);

2.

α-аминопропанова кислота (аланин);

3.

α- аминопентановая кислота (валин);

4.

α-аминоизокапроновая кислота (лейцин);

5.

α-амино-β-метилвалериановая кислота (изолейцин);

6.

α-амино-β-гидроксипропановая кислота (серин);

7.

α-амино-β-гидроксимасляная кислота (треонин);

Сера-содержащие:

8.

α-амино-β-меркаптопропановая кислота (цистеин);

9.

α-амино-γ-метилтиомасляная кислота (метионин);

10.

α-аминоянтарная кислота (аспарагиновая кислота);

11.

амид аспарагиновой кислоты (аспарагин);

12.

α-аминоглутаровая кислота (глутаминовая кислота);

13.

амид α-аминоглутаровой кислоты (гутамин);

14.

α, ε-диаминокапроновая кислота (лейзин);

15.

α-амино-δ-гуанидиловалериановая кислота

Циклические:

16.

α-амино-β-фенилпропановая кислота (фенилаланин);

17.

α-амино-β-пара-гидроксифенилпроавновая кислота (тирозин);

18.

α-амино-β-имидозолилпропановая ксилота (гистедин);

19.

α-амино-β-индолилпропановая ксилота (триптофан);

20.

α-тетрагидропироллкарбоновая кислота (пролин).

Все природные аминокислоты относятся к L-стереохимическому ряду, D-рядя только как исключение у бактерий, в составе капсул, чтобы защитить бактерии от действия ферментов.

Лекция 3.

Для каждой аминокислоты характерны свои единственные физико-химические свойства – изоэлектрическая точка, т.е. та pH среды, при которой раствор этой аминокислоты электронейтрален. (q = 0).

Если же рассматривать такую кислоту в водной среде, то диссоциация происходит и по кислотному и по основному типу – биполярный ион.

В организме млекопитающих в печени имеется фермент оксидаза-D-аминокислот, который избирательно разрушает D-аминокислоты, которые попадают с продуктами питания. D-аминокислоты обнаружены в составе некоторых пептидов микроорганизмов. Кроме того, D-аминокислоты входят в состав большого числа антибиотиков. Например, D-валин, D-лейцин входят в состав антибиотика границидина, D-фенилаланин входит в состав границидина-С, пенициллин содержит необычный фрагмент D-диметилцистеин.

Процесс рацимизиации (переход D в L) происходит не ферментативно, поэтому очень медленно. На этом основано определение возраста млекопитающих.

Все аминокислоты имеют в своем составе амино- и карбоксильную группу обладают свойствами аминов и карбоновых кислот. Кроме того, для α-аминокислот характерна нингидриновая реакция (общая с белками). Со спиртовым раствором нингидрина очень быстро появляется сине-фиолетовая окраска, с пропином желтая.

В конце XIX века была полемика, каким образом аминокислоты образуют связь если взять две аминокислоты, слить их вместе, то не получится никогда линейной структуры (в силу термодинамики, происходит циклизация). Получить полипептид в XIX веке никак не получалось.

Линейные молекулы никак не получатся. С т.з.термодинамики более выгодно отщепить 2Н2О, чем образовать линейную молекулу.

В 1888 году химик Данилевский предположил, что белки – это полипептиды, линейные молекулы, которые образуются в результате действия карбоксильной группы одной аминокислоты с карбоксильной группой другой аминокислоты с отщеплением воды и образуется дипептид:

Образуется амидная связь (для белков пептидная), эти пептидные связи разделены только одним углеродным атомом. На основании биуретовой реакции Данилевский сделал такой вывод. Это реакция раствора белка с сульфатом меди в щелочной среде, образуется сине-фиолетовое окрашивание, образуется хилатный комплекс с ионами меди, в результате того, что пептидная связь в белковых молекулах имеет специфическое строение. Вследствие кето-енольной таутомерии она на половину двойная, на половину одинарная. Характерная реакция с Cu(OH)2:

Биуретовая реакция характерна для биурета (рис.1), для малонамида (рис.2) , белков.

Для того, чтобы окончательно доказать, что бели – это полипептиды в 1901 году Фишер синтезировал полипептид, независимо от него Гофман тоже синтезировал полипептид:

Читайте так же:  Глютамин от тяги к сладкому

Синтез полипептида по Фишеру:

Продукт давал биуретовую реакцию, плохо растворялся, не обладал биологической активностью, расщеплялся протолитическими ферментами, а ферменты – это специфические биокатализаторы, которые расщеплют природные белки, значит у этого продукта такая же структура, как у природных белков.

В настоящее время синтезировано более 2 тысяч разных белков. Главное в синтезе белка – это защита аминогруппы и активация карбоксильной группы для того, чтобы синтез был направленным. Защита аминогрупп осуществляется ацилированием, для этого обрабатывают ангидридами трихлоруксусной кислоты и вводят трифторацильную группы, либо обрабатывают по Зенерсу (бензиловым эфиром хлоругольной кислоты).

Для синтеза каждого конкретного полипептида, для сшивания конкретного участка могут быть проведены свои собственные методы.

Защита по Зервесу, активация по Курциусу, снятие защиты по Бекману:

Выход продуктов этим методом значительно не сравним с методами, которые применялись до этого. С помощью автоматизации можно использовать этот метод в промышленных масштабах.

У каждого полипептида имеется N-конец, а другой С-конец. Аминокислота, которая принимает участие изменяет окончание на ил

Глицил-валил-тирозил-гистедин-аспарагил-пролин. Для определения аминокислот в полипептиде, необходимо провести гидролиз, его проводят при 100 С в течение 24 часов 6Н соляной кислотой. Далее продукты гидролиза анализируют – разделяют методом ионообменной хроматографии на колонке сульфалированным полистиролом. Потом вымывают цитратным буфером из колонки. По количеству элюента судят о том, какие кислоты, т.е. в начале будут вымываться кислые кислоты, а самыми последними – основные. Таким образом можно определять в какой момент, какая аминокислота прошла, а количество определяется фотометрически с помощью нингдрина, этим методом можно определить 1 мкг. Если необходимо оперделить 1 нг, применяют флуоросканин, он реагирует с α-аминокислотами, образуя сильно флуоросцилирующее соединение. Определяют какие и сколько аминокислот находятся, а последовательность аминокислот определить не удается.

Какие группы аминокислот входят в состав белков?

Спортсмены и многие другие люди помнят курс биологии, в котором говорилось о важности белка в организме. Об аминокислотах упоминалось меньше, но они являются основой всех белковых соединений. В состав природных белков входит много различных аминокислот, все они отвечают за разные функции и нужны организму. Важность аминокислот и сколько из них находится в составе белка – это основная тема статьи.

[3]

Аминокислоты – содержат две функциональные группы – аминогруппу -NH2 и карбоксильную COOH

Аминокислоты, входящие в состав белков

Аминокислоты – это соединения органического происхождения, они формируют структуру белков и являются основой для их синтеза. Белки участвуют в ряде процессов жизнедеятельности, особенно важны для развития мускулатуры и других тканей.

Наибольшее количество аминокислот попадает в организм через пищу, а затем они способствуют формированию белков. При необходимости набора мышечной массы акцент нужно ставить на аминокислоты в составе белков.

Белковая структура довольно сложна, в рамках статьи возможно только базовое её рассмотрение, так как этому вопросу посвящено немало научных трудов. Аминокислоты соединяются посредством пептидных связей, формируя единое целое. Они выполняют задачи восстановления организма и заживления ран.

Существует понятие идеального белка, в котором строго указано из скольких аминокислот он состоит, но в действительности определить, сколько аминокислот входит в состав, бывает сложнее. Согласно научным исследованиям, всего выделено 20 аминокислот, которые и должны составлять белок. В большинстве структур содержится 20 аминокислот, но их количество может отличаться. При длительном нарушении состава будут появляться нарушения, в том числе опасные для жизни.

Чаще всего разделяют 2 основные группы – заменимые и незаменимые. Среди заменимых компонентов большая часть из всех веществ – 12 шт. Их отличие заключается в выработке внутри организма в достаточных количествах при условии наличия нужного «строительного материала». Несложно определить число незаменимых – 8 штук. Они наиболее важны, так как поступают исключительно из внешней среды: пищи, добавок или уколов.

Аминокислоты могут реагировать друг с другом

Подошло время определить, сколько незаменимых аминокислот входит в состав белка:

  • лейцин защищает мышцы и восстанавливает их. Способствует набору мышечной массы;
  • изолейцин стимулирует выделение энергии;
  • лизин укрепляет иммунитет;
  • фенилаланин – это альфа-аминокислота, она влияет на правильную работу ЦНС;
  • метионин способствует сжиганию подкожного жира;
  • треонин влияет на ЦНС, ССС и иммунитет;
  • триптофан участвует в выделении серотонина;
  • валин ускоряет восстановление мышц и улучшает обменные процессы.

Заменимые аминокислоты лучше пополнять с пищей, иначе организм в полной мере покрыть необходимость спортсмена не всегда может.

Среди них:

  • аланин ускоряет процессы углеводного обмена и стимулирует выведение токсинов. Содержится в мясе, рыбе и молочных продуктах;
  • аспарагиновая кислота – это универсальный источник энергии. Поступает в организм из говядины, курятины, молока и сахара (только тростникового);
  • аспарагин улучшает функцию ЦНС. Его много во всех белках животного происхождения, картофеле, орехах и злачных культурах;
  • гистидин относится к ключевым строительным веществам для тела и способствует выделению кровяных телец. Его относительно много в молоке, злаках и мясе;
  • серин усиливает функцию головного мозга и ЦНС. Поступает в организм с арахисом, мясом, злаками и соей;
Читайте так же:  Протеин для сушки тела

Расщепление белков на аминокислоты

Виды и задачи белка

Белок покрывает различные задачи в организме, его роль зависит от типа структуры:

    миозин является одним из основных составных частей для роста мышц. Характерной особенностью миозина является участие в нормальной жизнедеятельности сердечной мышцы и системы пищеварения. При употреблении в достаточном количестве нормализуется течение крови;

Что такое белок

Каждый фрагмент белка имеет в своем составе аминокислоты и 4 ключевых компонента: азот, водород, углерод и кислород. Практически не уступает по важности фосфор с серой.

Белки разделяются на 2 категории в зависимости от скорости действия в организме:

  • быстрые – это сывороточный протеин, организм получает его из молока и продуктов из него. Характеристика белка заключается в быстром процессе переваривания и разделения на аминокислотный состав белков. После употребления подобного белка заметно быстрее формируется мышечная масса, после занятий организм восстанавливается значительно быстрее, активно пополняется энергетический состав и подпитываются участки строительным материалом;
  • медленные белки состоят из более сложных соединений, которые обрабатываются организмом за более длительное время. Чаще они имеют пролонгированное действие на протяжении 6–8 часов. Представителями группы медленных белков является соевый вид и казеин. Их используют спортсмены для подавления катаболизма и устранения излишнего количества жировых отложений.

Организм одинаково нуждается в обоих типах белков, иначе могут развиться последствия дефицита. Обычному человеку, не занимающемуся спортом или тяжёлой работой, достаточно 1 г на 1 кг массы. Если человек испытывает интенсивные нагрузки, дозировку следует увеличивать в 2–3 раза.

Суть аминокислот

Продукты богатые важными аминокислотами

Протеин – это результат участия аминокислот и такие знания можно использовать для повышения эффективности тренировок. Нельзя забывать об этой основе, иначе успешного построения мышечной массы добиться будет невозможно. Принципы построения белков стали раскрываться с 1810 года, а полностью состав был расшифрован до 1930 года. По результатам исследования было обнаружено 20 аминокислот, которые и составляют белок. С помощью различной структуры молекул они участвуют в создании миллионов различных белков.

Характерное свойство аминокислот – это растворимость в жидкости и способность лёгкого вступления в химические реакции со щелочными и кислотными растворами. Суть разных аминокислот заключается в способности выступать регулятором метаболизма и в участии в строении клеток мышц. Каждая группа обладает собственным радикалом R, это помогает разделять их на группы по природе происхождения.

Если будет недостаточно 1 аминокислоты в составе, организм возьмёт её из запаса, но постепенно резерв исчерпается. При дефиците даже одного элемента можно столкнуться с тяжёлыми осложнениями, а о росте мышц можно забыть. За счёт других аминокислот не удаётся покрыть недостаток другого типа элемента.

В химии и биологии есть понятие биологически полноценных белков. Оно означает, что присутствуют все аминокислоты с активным действием, входящие в состав белков. Для получения полноценного питания организма стоит добавить в рацион бобовые культуры. Определить, какие аминокислоты входят в состав белков конкретного человека, в домашних условиях невозможно, судить можно только на основании симптомов. Для обеспечения биологической ценности белков нужно воспользоваться лабораторным исследованием, оно выявит, сколько видов аминокислот входит в состав белков и поможет скорректировать питание или назначить добавки.

После получения нужного количества аминокислот, они подвергаются многоэтапным преобразованиям, которые сделают их пригодными для построения белка. Минимальное количество преобразований проходит куриный белок из яиц, так как его состав идеально подходит для усвоения человеком.

Зачем нужны аминокислоты в организме

Особенности и функции основных аминокислот

Наибольшее значение и риск появления дефицита отмечается в отношении незаменимых аминокислот.

Сколько аминокислот входит в состав белка из незаменимой группы:

Стоит рассмотреть важнейшие аминокислоты, формирующие состав белка:

  • гистидин. Был выявлен в 1896 году, а научились синтезировать его в 1911 году. Основная его роль заключается в поддержании уровня гемоглобина, участии в выработке кровяных телец. Примечательно, что гистидин причисляется к медиаторам ЦНС;
  • тирозин относится к одной из ключевых аминокислот. Была обнаружена в 1846 году. Функции: ускорение процесса восстановления сил мышц, улучшение настроения, нормализация обмена веществ. Тирозин помещают практически во всё спортивное питание;

Строение протеиногенных аминокислот

Видео (кликните для воспроизведения).

Разобравшись с вопросами, сколько видов аминокислот входит в состав белков, и определившись с важностью этих веществ, можно сделать вывод о жизненной необходимости этих компонентов. При составлении рациона нужно учитывать необходимость в аминокислотах, это позволит защититься от последствий их дефицита.

Источники


  1. Лыжный спорт / ред. В.Э. Нагорный. — М.: Физкультура и спорт, 2007. — 256 c.

  2. Говорим правильно. Речевая гимнастика. Буквы и звуки. — М.: Современная школа, ЮниверсПресс, 2011. — 168 c.

  3. Дубровская, С. В. Здоровье и питание. Лечебное питание при сахарном диабете / С.В. Дубровская. — М.: Рипол Классик, 2011. — 192 c.
Аминокислоты входящие в состав белковых молекул
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here