Аминокислоты виды и функции

Важная и проверенная информация на тему: "аминокислоты виды и функции" от профессионалов для спортсменов и новичков.

Аминокислоты — что это и как принимать.

Аминокислотами называют органические вещества, состоящие из углеводородного скелета в комплексе с двумя группами: аминной плюс карбоксильной. Наличие последних двух радикалов является причиной наличия уникальных свойств, которые одновременно обладать свойствами кислот либо щелочей: 1-вые обусловлены наличием карбоксильной группы, 2-рые — наличием аминогруппы.

Незаменимые аминокислоты эффективно используются в качестве строительного материала для белков, необходимых нашему организму, для образования мышц, сухожилий, связок, кожи и волос. Они способствуют повышению эффективности тренировок в комплексе с наращиванием мышечной массы. Аминокислоты эффективно способствуют быстрому восстановлению и избавлению от болей после интенсивных тренировок. Отметим, что затраты, связанные с усвоением данного «строительного материала», достаточно высоки. Следовательно, процесс эффективно и непосредственно способствует снижению веса.

[3]

Аминокислоты в организме человека

Перейдем к рассмотрению влияния аминокислот для спортсменов для физических упражнений в целом. Для каждого человека, предпочитающего активный образ жизни, именно АК являются важными участниками протеинового обмена. Они участвуют в строительстве протеинов, способствующих наращиванию мышечной массы: от скелетной до печеночной, от мышечной до соединительной ткани. Некоторые непосредственно участвуют в обмене веществ. Аргинин – участник орнитинового цикла мочевины, являющегося уникальным механизмом, способствующим обезвреживанию аммиака, который способен образовываться в печени во время переваривания белков.

Тирозин участвует в синтезе катехоламинов – адреналина и норадреналина – гормонов, поддерживающих в тонусе сердечно-сосудистую систему, реагируя мгновенно на возникновение стрессовых ситуаций.

Аминокислота триптофан является предшественником мелатонина, являющегося гормоном сна, образующегося в области эпифиза, являющегося шишковидным телом головного мозга. При нехватке данного элемента происходит усложнение процесса засыпания, развитие бессонницы и иных заболеваний, связанных с ней.

Содержание в продуктах

Принимаемый нами комплекс аминокислот способствует поддержанию нормального азотистого равновесия. Достающийся здоровым людям с пищей азот при нормальном рационе питания, равняется выделяемой мочевине, аммониевым солям. После сложного заболевания либо при растущем организме происходит нарушение равновесия и сдвиг баланса в сторону несколько меньшего выведения азота в сравнении с полученным. С отрицательным балансом сталкиваются при старении организма, в связи с голоданием либо недостатком белков.

Аминокислоты bcaa созданы для восполнения недостатка конкретных веществ. Хотя получать элементы в натуральной форме также необходимо, что обеспечивается сбалансированным питанием. Наш организм не обходится без белковой пищи. К наиболее полноценным белкам относят молоко, а ценность растительного белка гораздо ниже. Благодаря правильному комбинированию продуктов можно добиться обеспечения необходимого количества важных для нас 20 аминокислот,например, благодаря смеси бобов и кукурузы. В этих продуктах содержится органичное сочетание необходимых веществ. Для получения суточной нормы достаточно 500-т грамм молочных продуктов, не забывая и о другой еде.

Аминокислоты в спортивном питанииэффективны в качестве незаменимого источника восполнения энергии и содержатся в следующих продуктах:

Лейцин: от орехах до нешлифованного, бурого риса, от соевой муки до чечевицы, от овса до всех семян.

Фенилаланин: от молочных продуктов до авокадо, от бобовых до семечек и орехов. Образуется в процессе распада аспартама — сахарозаменителя, зачастую используемого в пищевых продуктах.

Валин аминокислота: от всех молочных продуктов до соевого протеина, от зерновых до грибов и арахиса.

Триптофан: от овса до бобовых, от молока до творога, от йогурта до кедровых орешков, от арахиса до кунжута и семечек.

Изолейцин: от орехов, особенно миндаля и кешью, до всех семян, от ржи до сои, от гороха до чечевицы.

Лизин аминокислота: от сыра до молочных продуктов, от пшеницы до картофеля.

Метионин: от чечевицы до фасоли, от чеснока до лука, от сои до бобов, от всех семян до молочных продуктов.

Треонин: от молока до йогурта, от творога до сыра, от зелёных овощей до зерновых, от бобов до орехов.

Аргинин: от тыквенных семечек до кунжута, от арахиса до изюма, от швейцарского сыра до шоколада.

Гистидин: от молочных продуктов до риса, от пшеницы до ржи, от соевых бобов до арахиса.

Дозировка и правила приема

Производители обязаны указывать, как принимать аминокислоты, размещая информацию на упаковке. Этих рекомендаций следует придерживаться. Хотя иногда можно допускать превышение дозировки, пятью граммами редко ограничиваются. Для организма подобная поддержка окажется практически незаметной. Спортсменам, занимающимся силовыми видами, рекомендуется прием от 20-ти до 30-ти грамм комплексных АК ежесуточно.

Анализ на аминокислоты показывает, что с указанным выше количеством добавок можно добиваться поддержания мускулатуры и прочих положительных эффектов. Желательно прием суточной дозы осуществлять в несколько приемов, чтобы добиться более полного усвоения спортивного питания.

Как же принимать аминокислоты всаа?

До начала тренировки. Это важно для наполнения крови свободными АК и сбережения мышечных волокон от распада в связи с силовыми нагрузками.

В период тренировки. В течение получаса интенсивных занятий организм практически остается без энергетических запасов. Благодаря приему АК можно эффективно поддержать работу тела.

По завершении тренировки. Это поможет снизить воздействие катаболических процессов, уберечь мышцы, подкормить их для восстановления.

В те дни, когда спортсмен делает перерыв между занятиями, принятие АК способствует остановке процесса распада мышечных волокон и поддержке нормального уровня свободных АК. Например, габа аминокислотаспособствует снятию нервного напряжения, оказанию хорошего тонизирующего и успокаивающего эффекта. В целебных целях с помощью данного биогенного вещества улучшают половую дисфункцию, благодаря оказанию сильного релаксирующего влияния.

Для чего нужны аминокислоты в спорте? Существуют комплексные формы, а также изолированные, содержащие единственную АК. Физически активным людям рекомендуется прием незаменимых аминокислот. Они пособствуют значительному повышению работоспособности организма, при сохранении собственных ресурсов. Норма приема соответствует вашим индивидуальным потребностям. Это особенно касается подростков, что обусловлено активным развитием организма.

Читайте так же:  Жиросжигатели для мужчин в домашних

Важно для спортсменов обеспечивать увеличенную дозу данных веществ. Необходимость в незаменимых АК связана с восполнением энергетических запасов, обусловленных интенсивными занятиями. Прием пищевых добавок осуществляется исключительно после консультации с врачом. Продажа добавок осуществляется без рецепта. Не следует заниматься бесконтрольным приемом подобных препаратов. Гораздо эффективней будет употребление этих веществ в натуральной форме.

Если в рацион включать полноценно здоровую пищу, в сочетании с активным образом, можно прекрасно обходиться без пищевых добавок. При этом функционирование организма будет безукоризненным, работа органов будет происходить без единого сбоя.

Норма потребления АК соответствует индивидуальным особенностям. Об их недостатке можно судить по следующим симптомам:

От потери аппетита до общей слабости;

От головокружений до постоянной сонливости;

От ослабления иммунитета до анемии;

От выпадения волос до ухудшения состояния кожи;

От замедления роста до задержек в развитии.

Благодаря употреблению АК можно добиться значительного улучшения тренировочного процесса, насыщения органов и мышц питательными веществами и сокращения периодов восстановления.Необходимо при этом помнить о правильном питании, ведь АК не могут создать полноценную замену пище. Данная добавка является безопасной для употребления, не вызывая привыкания. В соответствии с вашими целями (восстановлением после тренировочного процесса либо набором мышечной массы), можно ограничиться приемом определенной АК.

[2]

Если потребитель будет руководствоваться указанными выше дозировками и правилами приема, никаких проблем не возникнет. Исключительно из-за сильного превышения суточной дозы возможно возникновение нарушений, связанных с работой печени и почек, являющихся главными фильтрами организма.Именно такими критериями определяется вред и польза аминокислот в спорте.

Следует помнить об ограничениях в приеме, при возникновении любых недомоганий начать со снижения дозировки и даже отказа от добавок. Затем обратиться врачу, чтобы проконсультироваться по поводу безопасного спортивного питания.

Для производства АК комплексов зачастую используют сыворотку. Если потребители страдают аллергией, связанной с молочными продуктами и непереносимостью лактозы, с подобными добавками следует обращаться осторожно.

Среди тревожных симптомов упомянем о:

сыпи или раздражении на кожных покровах;

При возникновении данных проявлений следует прекратить прием кето аналогов аминокислот и обратиться на врачебной помощью. Во многих аминокислотных комплексах содержится набор простых углеводов, что проблематично для пользователей, страдающих диабетом. Диабетики могут наблюдать ухудшение самочувствия по следующим симптомам:

Заменимые аминокислоты против незаменимых

Аминокислоты — это важнейшие питательные элементы, от которых зависит здоровье. Они выступают строительным материалом для белка. Таким образом, чтобы организм нормально развивался, процесс наращивания мышцы протекал успешно, а жировая ткань не так быстро формировалось, необходимо следить за уровнем аминокислот.

Существует их много видов и разновидностей, однако, ученые выявили порядка 20 штук, которые имеют большую значимость для человеческого тела. При этом они поделены на незаменимые и заменимые аминокислоты. Они содержатся в растительной и животной пище, но в мясе и молочной продукции этих веществ значительно больше, поэтому вегетарианство может нанести вред, если неправильно составлять рацион.

Функции аминокислот и разновидности

Из двадцати аминокислот человеческое тело может производить только одиннадцать. Их называют «заменимыми» аминокислотами («необязательными»). Другие девять — «незаменимые» или «обязательные».

Незаменимые аминокислоты не могут быть синтезированы вашим телом и могут попасть в тело только с пищей.

Итак, существуют следующие виды аминокислот:

1. Заменимые аминокислоты – способны попадать в организм вместе с пищей либо самостоятельно синтезироваться в нем. Это:

  • орнитин – ускоряет метаболизм и повышают эффективность сжигания жира;
  • аланин – контролирует уровень сахара в крови;
  • глютамин – насыщает организм энергией, поддерживает память и концентрацию;
  • пролин – является элементом соединительной ткани;
  • серин – поддерживает работу нервной системы;
  • таурин – тоже влияет на нервную систему;
  • цистеин – благотворно влияет на рост волос;
  • аспарагин – влияет на иммунную систему;
  • глицин – производит креатин.

2. Незаменимые аминокислоты – поступают только с пищей или из спортивных добавок. Это:

  • лизин – увеличивает образование карнитина, который насыщает мышцы кислородом;
  • лейцин – укрепляет иммунную систему;
  • валин – важнейший элемент мышц, который улучшает их структуру и переносимость низких и высоких температур;
  • фенилаланин – участник процесса синтеза соединительной ткани;
  • триптофан – поддерживает нормальный сон, поддерживает выработку серотонина;
  • метионин – способствует восстановлению тканей почек и печени.

3. Полузаменимые аминокислоты (частично заменимые аминокислоты) – организм способен сам вырабатывать, но при необходимости может брать из незаменимых. Это:

  • аргинин – благотворно воздействует на рост мышечной ткани;
  • тирозин – защищает организм от влияния стресса и поддерживает щитовидку в выработке гормонов;
  • гистидин – синтезирует красные и белые кровяные тельца.

Источники аминокислот

Как мы уже говорили, заменимые и незаменимые аминокислоты находятся в белке. Однако, и здесь все будет не так уж и просто. Ведь белковосодержащие продукты между собой делятся на полноценный тип и не полноценный, которые различаются от набора и разнообразия аминокислот.

Полноценные

Главные обладатели невосполняющихся аминокислот, то есть те, которые человек не сможет самостоятельно синтезировать и получает исключительно из продуктов. Сюда входит:

  • мясо различных видов;
  • рыба;
  • яйца – самый полезный вариант, так как в нем правильно сочетание элементов.
  • молочка.

Неполноценные

Это белки в чьем составе отсутствует хотя бы один из указанных незаменимых аминокислот. При этом все эти продукты будут сильно отличаться друг друга по составу. Сюда относятся белки растительного происхождения: фасоль, чечевица, горох, орехи и прочее.

Белок – единственный элемент, который есть абсолютно во всех продуктах. К примеру, в капусте его будет содержаться в семь раз меньше, чем в той же куриной грудке. Однако качество этого элемента будет отличаться, ведь набор аминокислот в продуктах абсолютно разный.

Но какие аминокислоты нужно потреблять — заменимые или незаменимые? Ответ прост: должен быть баланс тех и тех. Правда, относительно конкретного показателя существует множество противоречий. Некоторые диетологи утверждают, что соотношение должно быть 60 и 40%, кто-то говорит о 55 и 45%. Мы все же согласимся с последним предложением, так как полноценных белков должно быть чуть больше из-за своего состава.

Читайте так же:  Как принимать протеин для похудения

Правда, тяжело подобрать весь спектр незаменимых аминокислот, даже если вы будете налегать на полноценные белки. Ведь никто досконально не знает о качестве каждого продукта, точнее, о конкретном содержании той или иной аминокислоты. К примеру, в одном продукте может преобладать лизин, а вот тот же треонин быть в значительном дефиците. Вегетарианцам в этой ситуации намного сложнее. Им необходимо найти способы восполнения важных элементов, ведь их рацион совершенно неполноценен. Поэтому нужно следить, чтобы полноценный и неполноценный белки присутствовали в рационе примерно в одинаковых количествах. При этом учтите, что растительные белки усваиваются намного хуже и медленнее, их стоит употреблять с более «легкими» продуктами.

Важную роль играет и соотношение белков в продукте, преобладание вредных и полезных жиров. Ведь если продукт будет обладать всем набором, но в нем будет избыток животного жира, то он может нанести большой вред. И речь сейчас идет не только о фигуре, животный жир повышает уровень холестерина в крови. На его фоне стенки сосудов ослабевают, и идет нарастание вредных элементов. В итоге могут развиться проблемы с сердечно-сосудистой системой. Из всего этого следует, что дневной рацион человек должен быть максимально разнообразен и сбалансирован.

Если вы занимаетесь спортом, тогда количество потребляемых аминокислот у вас должно быть выше. Это связанного с тем, что физическая нагрузка сжигает много энергии, вместе с которой и уходят полезные вещества. Помимо этого, в процессе тренировок идет активный рост мышечной ткани. Для этого все спортсмены потребляют дополнительные аминокислоты, которые можно приобрести в магазинах спортивного питания.

Видео: «Белки заменимые и незаменимые аминокислоты».

Заменимые и незаменимые аминокислоты

Аминокислоты

Аминокислоты – мономеры, состоящие из углеводорода, азота и кислорода. Некоторые соединения содержат серу, фосфор и некоторые другие элементы. Это производные карбоновых кислот с группой -COOH. Одна аминокислота может содержать несколько аминогрупп.

Рис. 1. Строение аминокислот.

Аминокислоты – кристаллические соединения, растворимые в воде. Они проявляют амфотерные свойства и могут реагировать с неорганическими веществами – кислородом, водой, кислотами, щелочами.

Аминокислоты образуют полимеры – белки, которые могут состоять из различных мономеров. К примеру, казеин включает тирозин, лизин, валин, пролин и другие аминокислоты.

Заменимые и незаменимые

Всего известно около 500 аминокислот. Аминокислоты классифицируются по разным признакам в зависимости от строения, состава, физических свойств. Из всего количества аминокислот только 22 используются организмом для синтеза в первую очередь различных белков. Важные для организма аминокислоты классифицируют на три группы:

  • заменимые – синтезируются внутри организма;
  • незаменимые – не синтезируются в организме;
  • частично заменимые – не синтезируются в организме в большом количестве.

Рис. 2. Классификация аминокислот.

Заменимые аминокислоты образуются из веществ, поступивших в организм вместе с пищей. Незаменимые не могут образовываться в организме, поэтому поступают к клеткам в готовом виде. Их отсутствие приводит к снижению умственной деятельности, памяти, иммунитета. Частично заменимые или частично незаменимые аминокислоты синтезируются в организме, но большая их часть попадает в организм в готовом виде вместе с пищей.

В таблице заменимых и незаменимых аминокислот перечислены вещества с молекулярными формулами.

Заменимые

Формула

Незаменимые

Формула

Частично заменимые

Аминокислоты и виды аминокислот

Хотите узнать какие виды аминокислот бывают и как их применять? Тогда читайте статью «Аминокислоты и виды аминокислот»…


Все из нас давно уже знают, что аминокислоты — это главная основа строительного материала из которого состоят все белки организма и без которого не обходиться не один процесс в нашем организме будь это выработка различных гормонов, восстановление физического и психического тонуса или же это катаболизм подкожного жира и даже интеллектуальная деятельность нашего мозга.
Видео (кликните для воспроизведения).

Всё это в конечном итоге требует большого количества белка в нашем с вами организме. Не говоря уже о том, что сам белок и аминокислоты являются главным строительным материалом и главным источником для мышечной ткани. Всего существует 20 протеиногенных аминокислот из них девять это – незаменимые аминокислоты.

Именно эти аминокислоты мы получаем лишь вместе с пищей т.к. наш организм не может самостоятельно синтезировать их в нашем организме в достаточном для этого количестве.

А вот все остальные аминокислоты являются заменимыми и в достаточном количестве вырабатываются в нашем организме.

Помимо этого также существует ряд некоторых важных аминокислот, которые не входят в структуру белка это (карнитин, орнитин, таурин, ГАМК), но тем не менее они играют важную роль в метаболизме.

Какие бывают аминокислоты?

Аминокислотные комплексы отличаются по составу, соотношению аминокислот и степени гидролизации.

Аминокислоты в свободной форме, обычно это изолированные (глютамин, аргинин, глицин и другие), однако встречаются также и комплексы.

Преимущества: Не требуют переваривания. Всасываются в кровь быстро и также быстро попадают в мышцы, что в конечном итоге и помогает предотвратить мышечный катаболизм. Их рекомендуется принимать только до, во время и после тренировки.

Гидролизаты — это уже разрушенные белки, в которых находятся короткие аминокислотные цепочки, способные быстро усваиваться.

Преимущества: Самая быстроусвояемая форма (как показали исследования, усваивается значительно быстрее, чем свободная форма). Они активно питают мышцы, предотвращая катаболизм, запуская анаболические реакции.

Для максимального роста силы и массы: Принимать по 10 г до и 10 г после тренинга. Также еще можно принимать 10 г утром.

Ди- и трипептидные формы — это по сути тоже гидролизаты, только цепочки аминокислот более короткие, и состоят из 2 и 3 аминокислот соответственно, усваиваются очень быстро.

Читайте так же:  Витамин в1 в таблетках

Преимущества: Ди- и трипептидные формы аминокислот снабжают питанием наши с вами мышцы, предотвращая таким образом общий катаболизм и запуская в них анаболические реакции.

При этом они очень быстро усваиваются и поступают в наши с вами мышцы. Для максимального роста силы и массы стоит принимать также как и «гидролизаты» то есть по: 10 г до и 10 г после тренинга. Также еще можно принимать 10 г утром.

BCAA — это комплекс из трех аминокислот — лейцина, изолейцина и валина, которые наиболее востребованы в мышцах, всасываются очень быстро.

Также BCAA являются основным материалом для построения новых мышц, эти незаменимые аминокислоты составляют целых 35% всех аминокислот в мышцах и принимают важное участие почти во всех процессах анаболизма и восстановления мышц, при этом они также обладают антикатаболическим действием.

Аминокислоты BCAA не могут синтезироваться в организме, поэтому человек их может получать только лишь с пищей или специальными добавками. Они отличаются от остальных 17 аминокислот тем, что в первую очередь они метаболизируются в мышцах,.

Также их можно рассматривать как основное «топливо» для наших с вами мышц, которое повышает спортивные показатели и улучшает состояние здоровья, к тому же они абсолютно безопасны для нашего здоровья.

Преимущества: Это главные аминокислоты в строительстве наших с вами мышц, которые служат при этом самым главным источником энергии. А также они предотвращают катаболизм и запускают рост мышц. Сами по себе аминокислоты BCAA обладают очень широким спектром положительных эффектов. Быстро всасываются в кровь, а затем и в сами мышцы.

После тяжелого тренинга следует принимать: по 4-5 г до и после тренировки. Я же рекомендую принимать их ещё и вовремя своей тренировки. Это повышает скорость восстановления мышц после физических нагрузок.

Приём BCAA
Оптимальная разовая доза BCAA составляет 4-8 граммов, как при похудении, так и при наборе мышечной массы. Оптимальный приём 1-3 раза в сутки. Меньшие дозы BCAA тоже эффективны, однако они уже не будут полностью покрывать потребности организма. При этом продолжительность приема BCAA в принципе также не ограничено, перерывы и циклирование не требуется.

BCAA при наборе мышечной массы
Наиболее подходящее время для приема BCAA — перед, во время и сразу после тренировки. Лучше всего готовить такой энергетический напиток, растворяя порцию аминокислот и несколько ложек сахара в воде. Это обеспечит постоянное поступление жидкости, углеводов и аминокислот в кровь во время всей тренировки.

Как уже было сказано выше, организм нуждается в BCAA только во время и по окончании тренировки, именно тогда BCAA и проявляют наибольшую эффективность. Поэтому принимать их нужно в момент перед началом, и сразу же после тренировки, а также во время нее, если это растворимая форма.

Также можно принимать порцию аминокислот сразу после сна для подавления утреннего катаболизма. Исследования показали, что ВСАА эффективны даже при смешивании с протеиновым коктейлем.

Формы аминокислот
Аминокислоты выпускаются в виде порошка, таблеток, растворов, капсул, однако все эти формы равнозначны по эффективности и выбираются по желанию индивидуально.

Когда принимать аминокислоты
При наборе мышечной массы наиболее целесообразно принимать аминокислоты только «до и во время самой тренировки», а также утром, так как в эти моменты требуется очень высокая скорость поступления аминокислот в наши мышцы.

В другое время разумнее принимать протеин. При похудении аминокислоты можно принимать чаще: до и после тренировок, с утра и в перерывах между едой, так как цель их употребления — подавить катаболизм, снизить аппетит и сохранить мышцы.

Оптимальные дозы
Сами аминокислоты в бодибилдинге применяются в очень широком диапазоне доз. Желательно чтобы однократная доза была не менее 5 г, хотя максимальный результат достигается при употреблении 10 — 20 г однократно. При покупке таких аминокислотных комплексов обращайте внимание на размеры дозы в самой добавки. Некоторые производители делают свои дозы очень малыми с целью увеличения стоимости единицы веса продукта.

Сочетание с другими добавками
Сами аминокислоты можно сочетать со всеми видами спортивного питания, однако их не всегда можно смешивать и при этом также пить одновременно с другими добавками. Не принимайте вместе аминокислотные комплексы с протеином, гейнером, заменителем пищи или едой, так как это снижает скорость их усвоения, а значит теряется смысл их применения. Всегда очень внимательно читайте рекомендации производителя.

4.1. Строение, свойства и биологические функции аминокислот.

Аминокислоты — это первичные азотистые вещества растений, которые синтезируются с использованием минерального азота, поступающего главным образом из почвы. В молекулах аминокислот имеются карбоксильные и аминные группировки, соединённые с органическим радикалом алифатической, ароматической или гетероциклической природы. Если аминокислота содержит одну карбоксильную и одну аминную группу, связанную со вторым углеродным атомом ( α-положение), строение такой аминокислоты можно выразить следующей формулой:

Аминокислоты, имеющие одну карбоксильную и одну аминную группу, принято называть моноамuномонокарбоновымu. У боль­шинства из них аминогруппа находится в α-положении по отно­шению к атому углерода карбоксильной группы. Однако известны также некоторые аминокислоты, у которых аминогруппа связана с другими углеродными атомами (_b, γ, d и др., см. табл. 1).

В организмах также синтезируются аминокислоты с двумя кар­боксильными или двумя аминными и другими азотсодержащими группировками. Аминокислоты, содержащие две карбоксильные и одну аминную группы, обычно называют моноамuнодuкaрбоновы.мu, а имеющие две аминные и одну карбоксильную — диаминомоно­карбоновымu. Кроме того, аминокислоты различаются по строению радикала R, который может быть представлен неразветвлённой, а иногда и разветвлённой углеродной цепью, ароматическими и гете­роциклическими производными.

Наряду с аминокислотами важную роль в обмене азотистых веществ играют некоторые иминокислоты (пролин, пипеколиио­вая кислота и др.), содержащие вторичную аминную группировку (═NH). Они близки по физико-химическим свойствам к истинным аминокислотам и выполняют сходные биологические функции.

Читайте так же:  Сколько раз пить креатин

Важные функции в растительном организме выполняют производные аминокислот – амиды и бетаины, из которых наиболее хорошо изучены аспарагин, глутамин и гликоколбетаин. Аспарагин и глутамин участвуют в построении белковых молекул, являются продуктами обмена многих азотистых веществ. Гликоколбетаин ─ продукт азотного обмена у некоторых растений, служит активным донором метильных групп.

Все аминокислоты, за исключением глицина, содержат асим­метрические атомы углерода и проявляют оптическую активность.

D- и L-формы аминокислот различают по положению водорода и аминогруппы у α-углеродного атома. За эталон сравнения прини­маются конфигурации молекул L- и D-серина. Изомеры аминокис­лот, имеющие расположение в пространстве водорода и амино­группы у α-углеродного атома такое же, как у L-серина, относят L-ряду, а сходное с конфигурацией молекулы D-серина – к D-ряду.

Направление и угол вращения плоскости поляризации света у разных аминокислот и их оптических изомеров зависит от строе­ния радикала R, реакции среды (рН), природы растворителя и раст­ворённых в нём веществ.

Подавляющее большинство природных аминокислот синте­зируется в организмах в виде L-форм, а D-формы аминокислот встречаются редко, чаще всего в клетках микроорганизмов. При химическом синтезе образуется смесь L— и D-изомеров аминокислот.

Ферментные системы растений, человека и животных специ­фически приспособлены катализировать биохимические реакции, происходящие с участием L-изомеров аминокислот, и не способны к превращениям D-изомеров, которые даже могут ингибировать биохимические процессы в организме. В опытах установлено, что только метионин может усваиваться организмами человека и животных как в L-форме, так и D-форме.

Первые аминокислоты были открыты в начале XIX века, а к концу этого века уже были выделены и изучены почти все аминокислоты, входящие в состав белков. В настоящее время известно более 200 аминокислот. Важнейшая биологическая роль аминокислот — пост­роение белковых молекул. Аминокислоты, участвующие в синтезе белков, принято называть протеиногенными, их насчитывается 18. Кроме того, в синтезе белков принимают участие два амида — аспара­гин и глутамин.

После синтеза белковой молекулы в ней могут про­исходить модификации радикалов некоторых аминокислот, поэтому при анализе состава белков, кроме протеиногенных, обнаруживают некоторые другие аминокислоты (оксипролин, оксилизин и др.).

Аминокислоты, не участвующие в синтезе белков, являются важными метаболитами, с участием которых происходит синтез протеиногенных аминокислот, а также всех других азотистых ве­ществ растительного организма: нуклеотидов, амидов, азотистых оснований, алкалоидов, некоторых липидов, многих витаминов, хлорофилла, фитогормонов (ауксинов, цитокининов), некоторых фитонцидов. Строение и биологическая роль важнейших амино­кислот представлены в таблице 1.

Растения и природные формы микроорганизмов способны син­тезировать все необходимые им аминокислоты из других органи­ческих веществ, тогда как организмы человека и животных не спо­собны к синтезу некоторых аминокислот, входящих в состав белков. Эти аминокислоты называют незаменимыми и они должны посту­пать в организм с пищей.

Для взрослого человека незаменимыми являются 8 аминокислот: лизин, триптофан, метионин, треонин, лейцин, валин, изолейцин, фенилаланин. Для детей и некоторых групп животных незаменимыми также являются аргинин, гистидин и цистеин. При недостатке незаменимых аминокислот ослабляется синтез белков, что может быть причиной тяжелых заболеваний. А их недостаток в растительных кормах снижает выход животно­водческой продукции в расчете на единицу массы затраченного корма, в результате чего повышается ее себестоимость.

В целях составления правильного пищевого рациона для каж­дого вида организмов с учетом возрастного и физического состо­яния определены ежедневные нормы потребления незаменимых аминокислот. В среднем для человека они составляют, г: валин–­5,0, лейцин–7,0, изолейцин –4,0, лизин–5,5, триптофан–1,0, треонин–4,0, метионин–3,5, фенилаланин –5,0.

Чаще всего в кормах сельскохозяйственных животных в недоста­точном количестве содержатся такие незаменимые аминокислоты, как лизин, триптофан и метионин. Для балансирования кормов по со­держанию

этих аминокислот разработаны промышленные способы их получения. В связи с тем, что лизин и триптофан усваиваются жи­вотными только в виде Lизомеров, то для производства кормовых препаратов указанных аминокислот применяют микробиологический синтез, при котором реализуется природный механизм образова­ния L-изомеров аминокислот. Поскольку метионин может усваи­ваться животными в виде D- и L-форм, то для его промышленного получения используется менее затратный химический синтез, даю­щий рацемическую смесь оптических изомеров этой аминокислоты.

Содержание свободных аминокислот в растениях зависит от вида органа или ткани, возраста растений, внешних условий и особенно подвержено большим изменениям в зависимости от интенсивности протекания тех биохимических процессов, которые сопряжены с их потреблением (синтез белков, нуклеиновых кислот и других азотис­тых веществ). Концентрация аминокислот повышается при ослабле­нии ростовых процессов, недостатке питательных элементов, избы­точном азотном питании, усилении процессов распада белков при старении растений или прорастании семян.

Концентрации отдельных аминокислот могут возрастать в ре­зультате метаболитных нарушений в организме и под воздействием стрессов. Так, например, при вододефицитном стрессе в клетках растений происходит накопление аминокислоты пролина, а при избыточном аммонийном питании – накопление аспарагина, глутамина и аргинина.

Аминокислоты, их виды

Все живые организмы, как растения, так и животные, сходны в том, что содержат вещество, без которого жизнь была бы невозможна. Это вещество называется белок, или протеин (от греческого «протос» — первый). Белки состоят аз аминокислот.

Мышцы, связки, сухожилия, различные органы, железы, ногти, волосы, энзимы, гормоны состоят из протеинов, которые необходимы также, для роста костей.

Аминокислоты являются химическими компонентами молекул протеинов. Различные сочетания 28 известных аминокислот образуют в нашем организме 50 тысяч различных протеинов и 20 тысяч энзимов. Человеческий организм может синтезировать любой необходимый белок из этих 28 аминокислот. Количество их комбинаций превышает всякое воображение — более чем 10 в 130-й степени! В каждой аминокислоте есть аминогруппа, содержащая, помимо всего прочего, азот.

Читайте так же:  Домашний протеин для набора веса

При отсутствии или недостаточном количестве хотя бы одной аминокислоты необходимые белки не образуются.

Аминокислоты являются передатчиками нервных импульсов, т.е. участвуют в работе центральной нервной системы, позволяя ей принимать и посылать сигналы. Очевидно, 80% аминокислот синтезируются в печени, а остальные мы получаем с пищей. У человека различают незаменимые аминокислоты, условно-незаменимые и заменимые.

Незаменимыми называются те, которые не синтезируются в организме человека, но необходимы для нормальной жизнедеятельности. Они должны поступать в организм с пищей. При недостатке незаменимых аминокислот задерживается рост и развитие организма. Оптимальное содержание незаменимых аминокислот в пищевом белке зависит от возраста, пола и профессии человека, а также от других причин.

Незаменимые аминокислоты

Валин — аминокислота с разветвленными боковыми цепочками. Не перерабатывается в печени и активно используется мышцами.

Гистидин — поглощает ультрафиолетовые лучи. Важен для производства красных и белых кровяных телец, применяется для лечения анемии, аллергических заболеваний, ревматоидных артритов и язв желудка и кишечника.

Изолейцин — аминокислота с разветвленными боковыми цепочками. Обеспечивает мышечные ткани энергией. Помогает справиться с усталостью мышц при переутомлении. Играет ключевую роль в выработке гемоглобина.

Лейцин — аминокислота с разветвленными боковыми цепочками, используется как источник энергии. Замедляет распад мышечного протеина. Способствует заживлению ран и сращиванию костей.

Лизин — его нехватка может замедлить синтез протеина в мышцах и соединительной ткани. Лизин и витамин С вместе образуют L-карнитин вещество, которое помогает мышцам более эффективно использовать кислород, повышая их выносливость. Способствует росту костей, помогает вырабатывать коллаген — волокнистый протеин, входящий в состав костей, хрящей и других соединительных тканей.

Метионин — предшественник цистина и креатина. Может повышать уровень антиоксидантов(глютатиона) и снижать холестерин. Помогает выводить токсины и восстанавливать ткани печени и почек.

Треонин — обезвреживает токсины. Помогает предотвратить накопление жира в печени. Важный компонент коллагена.

Триптофан — предшественник нейропередатчика серотонина, который создает успокаивающий эффект. Стимулирует выработку гормона роста. Поступает в организм с естественной пищей.

Фенилаланин — главный предшественник тирозина. Усиливает умственные способности, укрепляет память, поднимает настроение и тонус. Основной элемент в производстве коллагена. Подавляет аппетит.

Условно-незаменимые – это те, которые, при определенном состоянии обмена веществ, не производятся в достаточном количестве, при наличии азота из незаменимых аминокислот.

Условно-незаменимые аминокислоты

Агринин — усиливает высвобождение инсулина, глюкагона и гормона роста. Помогает залечивать раны, образовывать коллаген, стимулирует иммунную систему. Предшественник креатина. Может увеличить количество спермы и реакцию Т-лимфоцитов.

Тирозин — предшественник нейролередатчиков допамина, норэлинефрина и эпинефрина, а также тиреоидина, гормона роста и меланина (пигмент, ответственный за цвет кожи и волос). Повышает настроение.

Цистеин — в комбинации с L-аспарагиновой кислотой и L -цитруллином обезвреживает вредные химические вещества. Уменьшает вред от употребления табака и алкоголя. Стимулирует активность белых кровяных телец.

Заменимые аминокислоты синтезируются в организме человека

Аланин — основной компонент соединительных тканей. Главный посредник в глюкозо-аланиновом цикле, позволяющий мышцам и другим тканям получать энергию из аминокислот. Укрепляет иммунную систему.

Аспарагиновая кислота — помогает преобразовывать углеводы в мышечную энергию. Из нее строятся иммуноглобулины и антитела. Уменьшает уровень аммиака после тренировок.

Глицин — помогает вырабатывать другие аминокислоты, является частью структуры гемоглобина и цитохромов (ферментов, участвующих в производстве энергии). Обладает успокаивающим эффектом, иногда применяется для лечения людей, страдающих припадками агрессивности и маниакально- депрессивным психозом. Производит глюкагон, который приводит в действие гликоген. Уменьшает желание есть сладкое.

Глутаминовая кислота — главный — предшественник глутамина, пролина, агринина и глутатиона. Потенциальный источник энергии. Важная кислота для обменных процессов в мозгу и для обменных, процессов других аминокислот.

Глутамин — наиболее распространенная кислота. Играет ключевую роль в работе иммунной системы. Важный источник энергии, особенно для почек и кишечника, когда приходится ограничить число калорий. Топливо для мозга — стимулирует умственную деятельность, способствует концентрации, укрепляет память.

Орнитин — в больших, дозах может увеличить секрецию гормона роста. Помогает работать печени и иммунной системе.

[1]

Пролин — основной элемент для образования соединительных тканей и сердечной мышцы. Отвечает за мышечную энергию. Главный составной элемент коллагена.

Серин — важная кислота для производства клеточной энергии. Стимулирует функции памяти и нервной системы. Укрепляет, иммунную систему.

Таурин — помогает поглощению и уничтожению жиров. Может действовать как нейропередатчик в некоторых участках мозга и сетчатой оболочки глаза.

Цистин — укрепляет соединительные ткани и усиливает антиокислительные процессы в организме. Способствует процессам заживления, стимулирует деятельность белых кровяных телец, помогает уменьшить болевые ощущения при воспалениях. Очень важная кислота для кожи и волос. Способствует заживлению ран.

Все природные аминокислоты являются альфа-аминокислотами L -ряда. Они лучше усваиваются организмом, чем аминокислоты D -ряда. Исключение составляет фенилаланин, который может иметь формулу DL -фенилаланина.

В организме непрерывно идут процессы с использованием аминокислот. И недостаточность любой из них неизбежно приводит к заболеваниям. Недостаточность может быть результатом неправильного, несбалансированного питания или плохого усвоения протеинов системой пищеварения.

Видео (кликните для воспроизведения).

В нашем интернет-магазине представлен широкий выбор аминокислот и ВСАА.

Источники


  1. Вейсман, Михаил Диабет. Все о чем умолчали врачи / Михаил Вейсман. — М.: Вектор, 2012. — 160 c.

  2. Александров, Н.П. Знахари и заговоры: лечебные молитвы / Н.П. Александров, В.Н. Александров, А.Н. Александров. — М.: СПб: КСП, Респекс, 1995. — 208 c.

  3. Велла, Марк Анатомия фитнеса и силовых упражнений для женщин / Марк Велла. — М.: Попурри, 2011. — 140 c.
Аминокислоты виды и функции
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here