Аминокислоты являются мономерами в молекулах

Важная и проверенная информация на тему: "аминокислоты являются мономерами в молекулах" от профессионалов для спортсменов и новичков.

После изучения темы «Белки» контрольной работы не предусмотрено, однако вполне уместен контроль знаний в форме теста.

1.

Мономерами молекул белка являются:

а) глюкоза; б) жирные кислоты;

в) глицерин; г) аминокислоты.

2. Структурная особенность молекул аминокислот, отличающая их друг от друга:

а) радикал; б) аминогруппа;

в) карбоксильная группа; г) нитрогруппа.

3. В первичной структуре молекул белка остатки аминокислот соединены между собой посредством следующей химической связи:

а) дисульфидная; б) пептидная;

в) водородная; г) ионная.

4. Синтез белков происходит в органоидах клетки, называемых:

а) хлоропласты; б) рибосомы;

в) митохондрии; г) аппарат Гольджи.

5. При расщеплении 1 г белка освобождается количество энергии (кДж):

а) 17,6; б) 38,9; в) 44,5; г) 56,7.

6. При последовательной обработке белка растворами щелочи и сульфата меди(II) (биуретовая реакция) появляется:

а) желтое окрашивание;

б) красно-фиолетовая окраска;

в) черный осадок;

г) осадок голубого цвета.

7. Составьте формулу дипептида, состоящего из остатков аминоуксусной кислоты (глицина) и
2-амино-3-гидроксипропановой кислоты (серина).

8. Напишите схему реакции гидролиза трипептида – глицилсерилаланина (аланин –
2-аминопропановая кислота).

1.

Общепринятое число аминокислот, участвующих в синтезе белков:

а) 35; б) 50; в) 20; г) 23.

2. Для всех аминокислот две общие структурные единицы:

а) радикал; б) аминогруппа;

в) карбоксильная группа; г) гидроксигруппа.

3. Пространственная конфигурация белковой молекулы, напоминающая спираль (вторичная структура белка), образуется благодаря многочисленным:

а) дисульфидным связям;

б) пептидным связям;

в) водородным связям;

г) сложноэфирным мостикам.

4. Процесс необратимого свертывания белков называется:

а) денатурация; б) полимеризация;

в) поликонденсация; г) гибридизация.

5. Первым белком, у которого удалось расшифровать первичную структуру (в 1954 г.), был:

а) казеин; б) инсулин;

в) глиадин; г) кератин.

6. При действии концентрированной азотной кислоты на белки (ксантопротеиновая реакция) появляется:

а) желтое окрашивание;

б) красно-фиолетовая окраска;

в) черный осадок;

г) осадок голубого цвета.

7. Составьте формулу дипептида, состоящего из остатков аминокислот – аланина и лейцина
(2-амино-4-метилпентановой кислоты).

8. Напишите схему реакции гидролиза трипептида – аланиллейцилглицина.

7

8

7

8

ТЕСТ ПО ТЕМЕ «МОЛЕКУЛЯРНЫЙ УРОВЕНЬ»
тест по биологии (9 класс) на тему

Вложение Размер
test_po_teme_9kl.doc 34 КБ

Предварительный просмотр:

ТЕСТ ПО ТЕМЕ «МОЛЕКУЛЯРНЫЙ УРОВЕНЬ»

1. Какое из названных химических соединений не является биополимером?

в) дезоксирибонуклеиновая кислота;

2. Изменяемыми частями аминокислоты являются:

а) аминогруппа и карбоксильная группа;

в) карбоксильная группа;

г) радикал и карбоксильная группа.

3. В процессе биохимических реакций ферменты:

а) ускоряют реакции, а сами при этом не изменяются;

б) ускоряют реакции и изменяются в результате реакции;

в) замедляют реакции, не изменяясь;

г) замедляют реакции, изменяясь.

4. Мономерами ДНК и РНК являются:

а) азотистые основания;

б) дезоксирибоза и рибоза;

в) азотистые основания и фосфатные группы;

5. Вторичная структура белка поддерживается:

а) пептидными связями;

б) водородными связями;

в) дисульфидными связями;

г) связями между радикалами кислот;

г) всеми перечисленными видами связи.

6. К полимерам относятся:

а) крахмал, белок, целлюлоза;

б) белок, гликоген, жир;

в) целлюлоза, сахароза, крахмал;

г) рибоза, белок, жир.

7. Из аминокислотных остатков построены молекулы:

8. К моносахаридам относятся:

а) лактоза, глюкоза;

б) дезоксирибоза, сахароза;

в) глюкоза, фруктоза;

г) гликоген, мальтоза.

9. Какую функцию выполняет рибосомальная РНК?

а) Формирует рибосомы;

б) снятие и перенос информации с ДНК;

в) перенос аминокислоты на рибосомы;

г) все перечисленные функции.

10. Соединение двух цепей ДНК в спираль осуществляют связи:

11. Белковая оболочка, в которую заключен геном вируса, называется

12. Вирусы размножаются

а) только в клетке хозяина

б) самостоятельно, вне клеток хозяина

в) оба варианта верные

Задача : фрагмент одной из цепей ДНК имеет следующее строение: ААГ-ГЦТ-АЦГ-ТТГ. Постройте на ней и-РНК.

1. Какое из веществ хорошо растворяется в воде?

2. Молекулы белков отличаются друг от друга:

а) последовательностью чередования аминокислот;

б) количеством аминокислот в молекуле;

в) формой третичной структуры;

г) всеми указанными особенностями.

3. В каком случае правильно указан состав нуклеотида ДНК:

а) рибоза, остаток фосфорной кислоты, тимин;

б) фосфорная кислота, урацил, дезоксирибоза;

в) остаток фосфорной кислоты, дезоксирибоза, аденин;

г) фосфорная кислота, рибоза, гуанин.

4. Мономерами нуклеиновых кислот являются:

а) азотистые основания;

б) рибоза или дезоксирибоза;

в) дезоксирибоза и фосфатные группы;

5. Аминокислоты в молекуле белка соединены посредством:

б) пептидной связи;

в) водородной связи;

г) связи между радикалами кислот.

6. Какую функцию выполняет транспортная РНК?

а) Перенос аминокислоты на рибосомы;

б) снятие и перенос информации с ДНК;

в) формирует рибосомы;

г) все перечисленные функции.

7. Ферменты – это биокатализаторы, состоящие:

8. К полисахаридам относятся:

а) крахмал, рибоза;

б) гликоген, глюкоза;

в) целлюлоза, крахмал;

г) крахмал, сахароза.

9. Углерод как элемент входит в состав:

а) белков и углеводов;

б) углеводов и липидов;

в) углеводов и нуклеиновых кислот;

г) всех органических соединений клетки.

10. Клетка содержит ДНК:

а) в ядре и митохондриях:

б) ядре, цитоплазме и различных органоидах;

в) ядре, митохондриях и цитоплазме;

г) ядре, митохондриях и хлоропластах.

а) неклеточная форма жизни

Читайте так же:  Какие витамины нужно пить

б) древнейшие эукариоты

в) примитивные бактерии

12. Вирусы состоят из

а) белков и нуклеиновой кислоты

б) целлюлозы и белков

г) ядра и цитоплазмы

Задача : фрагмент и-РНК имеет следующее строение: ГАУ-ГАГ-УАЦ-УУЦ-ААА. Определите антикодоны т-РНК. Также напишите фрагмент молекулы ДНК, на котором была синтезирована эта и-РНК.

Вариант I: 1 – б, 2 – б, 3 – а, 4 – г, 5 – б, 6 – а, 7 – б, 8 – в, 9 – а, 10 – б, 11-г, 12-а.

Решение: по правилу комплементарности определяем фрагмент и-РНК и разбиваем его на триплеты: УУЦ-ЦГА-УГЦ-ААЦ.

Вариант II: 1 – в, 2 – г, 3 – в, 4 – г, 5 – б, 6 – а, 7 – а, 8 – в, 9 – г, 10 – г, 11-а, 12-в.

Решение : разбиваем и-РНК на триплеты ГАУ-ГАГ-УАЦ-УУЦ-ААА. В данном фрагменте содержится 5 триплетов, поэтому в синтезе будет участвовать 5 т-РНК. Их антикодоны определяем по правилу комплементарности: ЦУА-ЦУЦ-АУГ-ААГ-УУУ. Также по правилу комплементарности определяем фрагмент ДНК (по и-РНК. ): ЦТАЦТЦАТГААГТТТ.

По теме: методические разработки, презентации и конспекты

Эффективность усвоения учащимися учебной информации повышается в случае проведения с ними фронтальных текущих форм контроля. Такой формой контроля является биологический диктант, который целесообразно.

Видео (кликните для воспроизведения).

работа расчитана на 2 варианта в каждом по 15 вопросов.

Урок обобщения, систематизации и контроля знаний, умений и навыков по учебнику А.А. Каменского, Е.А. Криксунова, В.В. Пасечника «Биология. Введение в общую биологию и экологию. 9 класс. Технология — и.

9 класс (коррекционная школа).

Обобщающий урок по теме «Молекулярный уровень организации живой природы».

Задания для контрольной работы по теме «Молекулярный уровень» в двух вариантах для 9 класса. Контрольная работа состоит из трех частей.

Тест по теме «Молекулярный уровень жизни» для 9 класса. Может быть использован для подготовки к ЕГЭ И ГИА.

Аминокислоты как мономеры биополимеров – белков. Структура природных аминокислот

Аминокислотами называются органические карбоновые кислоты, у которых как минимум один из атомов водорода углеводородной цепи замещен на аминогруппу. В зависимости от положения группы —NН2различают α, β, γ и т. д. L-аминокислоты. К настоящему времени в различных объектах живого мира найдено до 200 различных аминокислот. В организме человека содержится около 60 различных аминокислот и их производных, но не все они входят в состав белков.

Аминокислоты делятся на две группы:

протеиногенные (входящие в состав белков)Среди них выделяют главные (их всего 20) и редкие. Редкие белковые аминокислоты (например, гидроксипролин, гидроксилизин, аминолимонная кислота и др.) на самом деле являются производными тех же 20 аминокислот.Остальные аминокислоты не участвуют в построении белков; они находятся в клетке либо в свободном виде (как продукты обмена), либо входят в состав других небелковых соединений. непротеиногенные (не участвующие в образовании белков)

Непротеиногенные аминокислоты в отличие от протеиногенных более разнообразны, особенно те, которые содержатся в грибах, высших растениях. Протеиногенные аминокислоты участвуют в построении множества разных белков независимо от вида организма, а непротеиногенные аминокислоты могут быть даже токсичны для организма другого вида, т. е. ведут себя как обычные чужеродные вещества. Например, канаванин, дьенколевая кислота и β-циано-аланин, выделенные из растений, ядовиты для человека.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Студент — человек, постоянно откладывающий неизбежность. 10548 —

| 7321 — или читать все.

185.189.13.12 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Аминокислотный состав белков

Строение и функции белков. Ферменты

Строение белков

Белки — высокомолекулярные органические соединения, состоящие из остатков α-аминокислот.

В состав белков входят углерод, водород, азот, кислород, сера. Часть белков образует комплексы с другими молекулами, содержащими фосфор, железо, цинк и медь.

Белки обладают большой молекулярной массой: яичный альбумин — 36 000, гемоглобин — 152 000, миозин — 500 000. Для сравнения: молекулярная масса спирта — 46, уксусной кислоты — 60, бензола — 78.

[3]

Аминокислотный состав белков

Белки — непериодические полимеры, мономерами которых являются α-аминокислоты. Обычно в качестве мономеров белков называют 20 видов α-аминокислот, хотя в клетках и тканях их обнаружено свыше 170.

В зависимости от того, могут ли аминокислоты синтезироваться в организме человека и других животных, различают: заменимые аминокислоты — могут синтезироваться; незаменимые аминокислоты — не могут синтезироваться. Незаменимые аминокислоты должны поступать в организм вместе с пищей. Растения синтезируют все виды аминокислот.

В зависимости от аминокислотного состава, белки бывают: полноценными — содержат весь набор аминокислот;неполноценными — какие-то аминокислоты в их составе отсутствуют. Если белки состоят только из аминокислот, их называютпростыми. Если белки содержат помимо аминокислот еще и неаминокислотный компонент (простетическую группу), их называютсложными. Простетическая группа может быть представлена металлами (металлопротеины), углеводами (гликопротеины), липидами (липопротеины), нуклеиновыми кислотами (нуклеопротеины).

Все аминокислоты содержат: 1) карбоксильную группу (–СООН), 2) аминогруппу (–NH2), 3) радикал или R-группу (остальная часть молекулы). Строение радикала у разных видов аминокислот — различное. В зависимости от количества аминогрупп и карбоксильных групп, входящих в состав аминокислот, различают: нейтральные аминокислоты, имеющие одну карбоксильную группу и одну аминогруппу; основные аминокислоты, имеющие более одной аминогруппы; кислые аминокислоты, имеющие более одной карбоксильной группы.

Аминокислоты являются амфотерными соединениями, так как в растворе они могут выступать как в роли кислот, так и оснований. В водных растворах аминокислоты существуют в разных ионных формах.

Читайте так же:  Сколько грамм креатина нужно в день

Пептидная связь

Пептиды — органические вещества, состоящие из остатков аминокислот, соединенных пептидной связью.

Образование пептидов происходит в результате реакции конденсации аминокислот. При взаимодействии аминогруппы одной аминокислоты с карбоксильной группой другой между ними возникает ковалентная азот-углеродная связь, которую и называютпептидной. В зависимости от количества аминокислотных остатков, входящих в состав пептида, различают дипептиды, трипептиды, тетрапептиды и т.д. Образование пептидной связи может повторяться многократно. Это приводит к образованиюполипептидов. На одном конце пептида находится свободная аминогруппа (его называют N-концом), а на другом — свободная карбоксильная группа (его называют С-концом).

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: На стипендию можно купить что-нибудь, но не больше. 8997 —

| 7241 — или читать все.

185.189.13.12 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Уроки биологии в классах естественно-научного профиля

Расширенное планирование, 10 класс

6. Верны следующие суждения:

а) молекула воды не имеет заряженных участков;
б) молекула воды – диполь;
в) атом кислорода в молекуле воды несет частично отрицательный, а атомы водорода – частично положительные заряды;
г) атом кислорода в молекуле воды несет частично положительный, а атомы водорода – частично отрицательные заряды.

7. Утверждение: «Дигидрофосфат-ионы способны понизить рН клетки, превращаясь в гидрофосфат-ионы»:

Вариант 1: 1 – б; 2 – в, г; 3 – а, б, в, г, е, ж, з; 4 – б; 5 – б; 6 – б; 7 – б, в.

Вариант 2: 1 – б; 2 – а, б, д, з; 3 – б; 4 – а, б, г, е; 5 – б; 6 – б, в; 7 – а.

II. Изучение нового материала

1. Белки, их содержание в живом веществе и молекулярная масса

Из органических веществ живого вещества на первом месте по количеству и значению стоят белки, или протеины (от греч. протос – основной, первичный). В составе ныне живущих на Земле организмов содержится около 1 трлн т белков. От массы, например животной, клетки белки составляют 10–18%, т.е. половину сухого веса клетки.

Белковых молекул в каждой клетке содержится, по меньшей мере, несколько тысяч.

Белки – это высокомолекулярные полимеры (макромолекулы) с молекулярной массой от 6 тыс. до 1 млн и выше. По сравнению с молекулами спирта или органических кислот белки выглядят просто великанами. Так, молекулярная масса инсулина – 5700, яичного альбумина – 36 000, миозина – 500 000.

В состав белков входят атомы С, Н, О, N, S, Р, иногда Fe, Сu, Zn. Для выяснения химического строения белков знаний их элементарного состава недостаточно. Например, эмпирическая формула гемоглобина – C3032Н4816О872S8Fe4 – ничего не говорит о характере расположения атомов в молекуле. Необходимо познакомиться с особенностями строения белковых молекул подробней.

2. Белки – непериодические полимеры. Строение и свойства аминокислот

Схема строения аминокислоты

По своей химической природе белки являются непериодическими полимерами. Мономерами белковых молекул являются аминокислоты. Вообще аминокислотой можно назвать любое соединение, содержащее одновременно аминогруппу (–NH2) и группировку органических кислот – карбоксильную группу (–СООН). Число возможных аминокислот очень велико, но белки образуют только 20 так называемых золотых, или стандартных, аминокислот (8 из них являются незаменимыми, т.к. не синтезируются в организмах животных и человека). Именно сочетание этих 20 аминокислот и дает все многообразие белков. После того как молекула белка собрана, некоторые аминокислотные остатки в ее составе могут подвергаться химическим изменениям, так что в «зрелых» белках можно обнаружить до 30 различных аминокислотных остатков (но строятся все белки исходно все равно только из 20!). Аминокислоты, образующиеся в результате модификации стандартных аминокислот уже после их включения в полипептидную цепь, называются нестандартными.

В клетке находятся свободные аминокислоты, составляющие аминокислотный фонд, за счет которого происходит синтез новых белков. Этот фонд пополняется аминокислотами, постоянно поступающими в клетку вследствие расщепления пищеварительными ферментами белков пищи или распада собственных запасных белков. В зависимости от аминокислотного состава белки бывают полноценными, содержащими весь набор аминокислот, и неполноценными, в составе которых отсутствуют какие-то аминокислоты.

[2]

Общая формула аминокислот изображена на рисунке. В левой части формулы расположена аминогруппа –NH2 а в верхней – карбоксильная группа –СООН. Группа –NH2 имеет основные свойства, группа –СООН – кислотные свойства. Таким образом, аминокислоты – амфотерные соединения, совмещающие свойства кислоты и основания.

Аминокислоты отличаются своими радикалами (R), в роли которых могут быть самые разные соединения (работа с рисунками учебника). Это обусловливает большое разнообразие аминокислот.

Амфотерными свойствами аминокислот обусловлена их способность взаимодействовать друг с другом. Две аминокислоты соединяются за счет реакции конденсации в одну молекулу путем установления связи между углеродом кислотной и азотом основной групп с выделением молекулы воды.

Образование пептидной связи

Связь, изображенная слева, называется пептидной (от греч. пепсис – пищеварение). Этот термин напоминает нам о том, что эта связь гидролизуется пищеварительным ферментом желудочного сока пепсином. По природе пептидная связь является ковалентной.

Соединение двух аминокислот называется дипептидом, трех – трипептидом и т.д. Примером трипептида может служить белок глютатион, состоящий из остатков глицина, цистеина и глютаминовой кислоты. Он содержится во всех живых клетках (особенно много его в зародыше пшеничного зерна и дрожжах) и активно участвует в обмене веществ.

Читайте так же:  Сколько нужно пить л карнитина

В основном же белки, входящие в состав живых организмов, включают в себя сотни и тысячи аминокислот (чаще всего от 100 до 300), поэтому их называют полипептидами. Аминокислоты в составе белковой полипептидной цепи называют аминокислотными остатками.

Пептиды различаются числом (n), природой, порядком или последовательностью своих аминокислотных остатков. Их можно сравнить со словами разной длины, в написании которых использован алфавит, состоящий из 20 букв. Из 20 аминокислот можно теоретически получить 1020 возможных вариантов цепей, длиной каждая не менее чем 10 аминокислотных остатков. Белки же, выделенные из живых организмов, образованы сотнями, а иногда и тысячами аминокислотных остатков. В этом кроется источник бесконечного разнообразия белковых молекул, что является важной предпосылкой эволюционного процесса.

3. Первичная, вторичная, третичная и четвертичная структуры белка

Как показало изучение свойств белков в растворах, макромолекулы белков имеют форму компактных шаров (глобул) или вытянутых структур – фибрилл. Исследования показали, что в укладке пептидной цепи нет ничего случайного или хаотичного. Она свертывается упорядоченно, для каждого белка определенным образом. Полярные боковые группы аминокислот стремятся расположиться на поверхности глобулы, где могут взаимодействовать с водой, а неполярные группы располагаются внутри.

Образование глобулы

Для того, чтобы разобраться в замысловатой укладке (архитектонике) белковой макромолекулы, следует рассмотреть в ней несколько уровней организации.

Первичной структурой белка называется полная последовательность аминокислотных остатков в полипептидной цепи.

Она определяется генотипом, т.е. генами организма. В первичной структуре все связи между аминокислотными остатками являются ковалентными и, следовательно, прочными. Разные белки отличаются друг от друга по первичной структуре: кератин имеет одну последовательность аминокислот, пепсин – другую, соматотропин (гормон роста) – третью и т.д. В первичной структуре белка можно различить N-конец цепочки, содержащий свободную NH2-группу, и С-конец, содержащий свободную СООН-группу.

Первым белком, у которого была выявлена аминокислотная последовательность, стал гормон инсулин. Исследования проводились в Кембриджском университете Ф.Сэнгером в 1944–1954 гг. Было выявлено, что молекула инсулина состоит из двух полипептидных цепей (из 21 и 30 аминокислотных остатков), удерживаемых друг около друга дисульфидными мостиками.

Однако молекула белка в виде цепи аминокислот, последовательно соединенных пептидными связями, еще не способна выполнять специфические функции. Для этого необходим более высокий уровень структурной организации, выражающийся в усложнении пространственного расположения мономеров.

Вторичная структура белка представлена спиралью, в которую закручивается полипептидная цепь. Группы N–H и С=О, входящие в пептидную связь, заметно поляризованы: азот обладает большей электроотрицательностью, чем водород, а кислород – большей, чем углерод.

Кислород группы С=О может образовывать водородные связи с водородом группы N–H (разумеется, расположенной в другой пептидной связи).

Одной из разновидностей вторичной структуры является

спираль, где каждый атом кислорода связан с атомом водорода четвертой по ходу спирали NH-группы.

-спираль

Любопытно, что эта сложная красивая структура сперва была предсказана известным биохимиком Л.Полингом теоретически и лишь потом обнаружена экспериментально.

Альтернативная вторичная структура

-слой (или складчатый слой) имеет водородную связь между звеньями соседних полипептидных цепей.

-слой

Третичная структура белка представляет собой сложную трехмерную пространственную упаковку

-спиралей и -слоев. Эта трехмерная структура устанавливается за счет взаимодействия радикалов аминокислот, между которыми могут возникнуть связи несколько типов:

1) ионные, возникающие за счет электростатического взаимодействия между отрицательно и положительно заряженными боковыми группами;

2) гидрофобные («не любящие воду»), устанавливающиеся за счет стремления неполярных радикалов объединяться друг с другом, а не смешиваться с окружающей их водной средой;

3) дисульфидные, которые образуются между атомами серы SH-групп двух остатков аминокислоты цистеина. Эти S–S связи по своей природе являются ковалентными;

4) водородные, которые также возникают за счет взаимодействия между атомами радикалов.

Третичная структура белка не является конечной. Для некоторых белков, чаще всего регуляторных, характерна четвертичная структура, необходимая им для эффективного выполнения функции.

Четвертичная структура представлена ассоциантом, состоящим из нескольких полипептидных цепей. Например, сложная молекула гемоглобина состоит из двух

-субъединиц (141 аминокислотный остаток) и двух -субъединиц (146 аминокислотных остатков). Каждая субъединица связана с молекулой железосодержащего гема. В результате их объединения образуется функционирующая молекула гемоглобина. Только в такой упаковке гемоглобин работает полноценно, то есть способен переносить кислород. Четвертичная структура стабилизируется теми же связями, что и третичная.

Пространственная конфигурация белка т.е. третичная и четвертичная структуры называется конформацией. Конформация белка определяется его первичной структурой: белковая цепочка с определенной последовательностью аминокислот самопроизвольно укладывается с образованием природной пространственной конфигурации. Это получило название «самосборка белковой молекулы». Если полипептидную цепь взять за концы, растянуть ее и затем отпустить, то она всякий раз будет свертываться в одну и ту же структуру, характерную для этого вида полипептида.

В то же время из сказанного, очевидно, следует, что, изменив всего лишь одну аминокислоту в каком-либо полипептиде, мы получим молекулу с совершенно иной структурой, а значит и с иными свойствами.

Уровни организации белковых молекул

4. Классификация белков

Сложность строения белковых молекул и чрезвычайное разнообразие их функций крайне затрудняет создание единой четкой классификации белков на какой-либо одной основе. Поэтому рассмотрим несколько классификаций белков.

Читайте так же:  Креатин с чаем можно

1. Классификация белков по составу.

Простые белки (протеины) – состоят только из аминокислот (альбумины, глобулины, гистоны, склеропротеины).

Сложные белки (протеиды) – состоят из глобулярных белков и небелкового материала. Небелковую часть называют простетической группой (фосфопротеиды, гликопротеиды, нуклеопротеиды, хромопротеиды, липопротеиды, металлопротеиды, флавопротеиды).

2. Классификация белков по их структуре.

Фибриллярные – образуют длинные волокна или слоистые структуры (коллаген, миозин, фиброин, кератин). Они нерастворимы в воде.

Глобулярные – их полипептидные цепи свернуты в компактные глобулы (ферменты, антитела, гормон инсулин).

Промежуточные – фибриллярной природы, но растворяются в воде (фибриноген).

3. Классификация белков по функциям.

Структурные – входят в различные структуры клетки и организма.

Ферменты – являются биологическими катализаторами.

Гормоны – являются регуляторами биологических функций.

Транспортные – переносят различные вещества.

Защитные – обеспечивают иммунные реакции организма.

Сократительные – участвуют в сокращении мышечных волокон.

Запасные – служат резервными веществами клетки и организма.

Токсины – являются ядами, используемыми живыми существами в целях защиты или нападения.

Таким образом, подходы к классификации белков могут быть различными.

Биология в лицее

Сайт учителей биологии МБОУ Лицей № 2 г. Воронежа, РФ


Site biology teachers lyceum № 2 Voronezh city, Russian Federation

Органические вещества клетки. Белки

Белки — обязательная составная часть всех клеток. Они состоят из многих тысяч атомов.

Белки — это биополимеры, мономерами которых являются аминокислоты .

В клетках и тканях встречается свыше 170 различных аминокислот. В составе белков обнаруживается лишь 26 из них; обычными же компонентами белка можно считать лишь 20 аминокислот.

Молекула любой аминокислоты состоит из двух функциональных групп: аминогруппы (-NH2) и карбоксильной группы (-СООН), присоединённых к атому углерода, таким образом, аминокислоты обладают свойствами и кислот, и оснований. Вторая часть у всех аминокислот разная. Она называется радикалом (R).

Аминокислоты — это бесцветные кристаллические твердые вещества. Чистые аминокислоты, выделенные из белков, имеют сладкий вкус. Они растворяются в воде, а в органических растворителях нет. В нейтральных водных растворах проявляют свойства и кислот, и оснований. Прочие химические свойства зависят от радикала.

Белки всех живых организмов на Земле содержат одни и те же аминокислоты.

Биологическая роль аминокислот

Функция Пояснение
Структурная Аминокислоты являются структурными звеньями пептидов и полипептидов. Белки всех живых организмов на Земле построены из 20 видов аминокислот. Некоторые аминокислоты и их производные входят в состав пуриновых и пиримидиновых оснований, коферментов, желчных кислот, антибиотиков и др.
Сигнальная

Некоторые из аминокислот являются нейромедиаторами или предшественниками медиаторов.

Различают заменимые, незаменимые и условно заменимые аминокислоты.

Незаменимые аминокислоты — кислоты, которые не синтезируются клетками животных и человека и поступают в организм в составе белков пищи. Для разных животных набор незаменимых аминокислот неодинаков. Отсутствие или недостаток незаменимых аминокислот приводит к остановке роста, падению массы, нарушениям обмена веществ и к гибели организма. Для человека это изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан и валин .

Условно заменимые аминокислоты могут синтезироваться в организме из других аминокислот, например тирозин из фенилаланина, цистеин из метионина.

Заменимые аминокислоты способны синтезироваться в организме в достаточном количестве.

Стереохимия аминокислот. Для вcех молекул аминокислот, кpoмe глицина, характерно наличие оптических изомеров, то есть зеркально подобных форм молекул. Их называют L-аминокислотами и D-аминокислотами.

Руки человека — наиболее удобная модель для объяснения явления оптической изомерии: левая рука подобна правой, но не может быть совмещена с ней в пространстве путем перемещений и поворотов. Эта разница становится особенно заметной, если кто-то попытается надеть левую перчатку на правую руку.

Все аминoкиcлoты, составляющие природные белки, oтноcятcя к L-ряду.

Белки, или протеины (греч. protos — первый) — высокомолекулярные органические вещества, полимерные молекулы которых состоят из соединенных в цепочку аминокислот.

Молекулы белка — гетерополимеры линейного строения, мономерами которых являются 20 видов аминокислот. Если молекулы белка содержат весь набор аминокислот, то такой белок называется полноценным; если какие-то аминокислоты отсутствуют в составе белковых молекул, то неполноценным.

Если белки состоят только из аминокислот, то их называют простыми; если они содержат еще и неаминокислотный компонент (простетическую группу), то их называют сложными.

Белковые молекулы могут сворачиваться, образуя клубок (глобулу), или формировать вытянутую нитевидную структуру (фибриллу).

Структуры белковых молекул

Для молекул белков характерно существование нескольких структурных уровней , которые зависят как от химического состава аминокислот, их числа и порядка соединения друг с другом, типа связи, обеспечивающей образование определённого уровня, так и от состава окружающей среды.

Первичную структуру белков определяет последовательность аминокислот. Она образована очень прочными ковалентными связями, названными пептидными. Отсюда и название белков — пептиды. Эти связи образуются в результате выделения молекулы воды при взаимодействии аминогруппы одной аминокислоты с карбоксильной группой другой.

Реакция, идущая с выделением воды, называется реакцией конденсации, а возникающая связь — пептидной связью. Соединения, образующиеся в результате конденсации двух аминокислот, представляют собой дипептид. На одном конце его молекулы находится свободная аминогруппа, на другом — свободная карбоксильная группа. Благодаря этому дипептид может присоединить к себе другие аминокислоты.

Аминокислотная последовательность белка определяет его биологическую функцию. Замена одной кислоты в молекулах данного белка может резко изменить его функцию.

Замена одной-единственной аминокислоты может резко изменить эту функцию. Например, замена в β-субъединице гемоглобина шестой аминокислоты — глутаминовой кислоты — на валин приводит к тому, что молекула гемоглобина не может выполнять свою основную функцию — транспорт кислорода. Такой патологический гемоглобин содержится в крови больных серповидноклеточной анемией.

Читайте так же:  Реакции на белки и аминокислоты

Первой была открыта первичная структура гормона поджелудочной железы инсулина Ф. Сэнгером в 1949 — 1954 годах. К настоящему времени установлены последовательности аминокислот для нескольких тысяч различных белков.

Запись структуры белков в виде развернутых структурных формул громоздка и не наглядна. Поэтому используется особая форма записи аминокислотной последовательности в полипептидных цепях: с помощью сокращенных трехбуквенных символов — названий аминокислот. Например,

Ала-Тре-Цис-Ала-Ала-Вал-Иле-Глу-Вал-Глн-Про-Арг-Про-Вал-Гли.

При этом предполагается, что аминогруппа находится слева, а карбоксильная группа — справа. Соответствующие участки полипептидной цепи называют N-концом (аминным концом) и С-концом (карбоксильным концом), а аминокислотные остатки — соответственно N-концевым и С-концевым остатками.

Вторичная структура поддерживается водородными связями между группами СО и NH и может быть представлена α-спиралью и β-слоем.

Во вторичной структуре NH-группа находится на одном витке, а СО — на соседнем. Аминокислотные радикалы остаются при этом снаружи спирали.

В образовании 5 витков спирали участвуют 18 аминокислотных остатков; таким образом, на один виток спирали приходится 3,6 аминокислотных остатка.

Такая регулярная спиральная структура возникает благодаря периодически чередующимся карбоксильным группам и аминогруппам в аминокислотной последовательности, которые образуют между собой водородные связи.

Практически все СО- и NH-группы полипептидной цепочки принимают участие в образовании водородных связей, и, благодаря тому, что связи повторяются многократно, они придают данной конфигурации стабильность.

Полностью α-спиральную вторичную структуру имеет нитевидный белок кератин . Это структурный белок волос, шерсти, ногтей, когтей, клюва, перьев, копыт и рогов, входящий также в состав кожи позвоночных.

Другой тип вторичной структуры (β-слой) — складчатый у белка фиброина , выделяемого шелкоотделительными железами гусениц шелкопряда при завивке коконов, — представлен целиком именно этой формой. Благодаря этому фиброин обладает высокой прочностью и не поддаётся растяжению, но делает шёлк очень гибким.

Третий тип вторичной структуры имеет белок коллаген . Здесь три полипептидные цепи свиты вместе. Такой белок тоже невозможно растянуть, что очень важно, так как он образует сухожилия, костную ткань и другие виды соединительных тканей.

Все эти белки представляют собой исключение среди прочих белков. Если рядом окажутся две молекулы цистеина , содержащие серу, то между ними образуется дисульфидный мостик (S-S связи).

Третичная структура формируется у большинства белков за счёт свёртывания особым образом полипептидной спирали белка в компактную глобулу, т. е. шарообразную структуру. Третичную структуру поддерживают пептидные, водородные, дисульфидные связи, а также гидрофобные.

Гидрофобные связи возникают между радикалами гидрофобных аминокислот. Эти связи слабее водородных. В водной среде в клетке гидрофобные радикалы отталкиваются от воды и слипаются друг с другом. Водная среда как бы принуждает белковую молекулу принять определённую упорядоченную структуру, и она становится биологически активной. Третичная структура не является высшей формой структурной организации белка.

В соответствии с формой белковой молекулы, обусловленной третичной структурой, выделяют следующие группы белков:

1. Глобулярные белки. Пространственная структура этих белков в грубом приближении может быть представлена в виде шара — глобулы. Глобулярную форму молекулы имеют иммуноглобулины, гормоны (например, инсулин ), компоненты мембран и рибосом. К глобулярным белкам относятся почти все из более чем 2000 известных ферментов. Некоторые глобулярные белки выполняют транспортные функции: вместе с током крови они переносят кислород, питательные вещества и неорганические ионы.

2. Фибриллярные белки. Эти белки имеют вытянутую нитевидную форму. Они, как правило, выполняют в организме структурную или двигательную функции. Например, кератин , который построен из протяженных спиралей, уложенных параллельно друг другу и стабилизированных водородными связями, или коллаген , молекула которого состоит из трех полипептидных цепей.

В живой клетке обнаружено много белков, имеющих ещё более сложную структуру, например четвертичную.

Четвертичная структура белковой молекулы — это объединение нескольких (двух и более) глобул в единый комплекс за счет гидрофильно-гидрофобных взаимодействий, а также при помощи водородных и ионных связей.

Многие белки с особо сложным строением состоят из нескольких полипептидных цепей, различающихся по первичной структуре. Объединяясь, они создают сложный белок. Например, молекула гемоглобина состоит из четырёх отдельных полипептидных цепей разных типов.

Отдельные глобулы называются субъединицами и обозначаются буквами греческого алфавита. У гемоглобина, например, имеется по две α и β субъединицы. Наличие нескольких субъединиц важно в функциональном отношении — это увеличивает степень насыщения кислородом. Четвертичную структуру гемоглобина обозначают как α2 β2.

[1]

Белки, состоящие из нескольких субъединиц, широко распространены в природе. Четвертичная структура молекулы свойственна, например, большинству ферментов.

Видео (кликните для воспроизведения).

У животных, растений, микроорганизмов были извлечены и изучены тысячи разных белков. Поражает разнообразие физических и химических свойств белков, что обусловлено их различным аминокислотным составом.

Источники


  1. Нагорный, В. Э. Гимнастика для мозга / В.Э. Нагорный. — М.: Советская Россия, 1972. — 128 c.

  2. Ситель, Анатолий Гимнастика будущего / Анатолий Ситель. — М.: АСТ, Прайм-Еврознак, ВКТ, 2011. — 128 c.

  3. Гурвич, М. М. Диетология для всех / М.М. Гурвич. — М.: Медицина, 1992. — 160 c.
Аминокислоты являются мономерами в молекулах
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here