Белки образуются из аминокислот

Важная и проверенная информация на тему: "белки образуются из аминокислот" от профессионалов для спортсменов и новичков.

20 основных аминокислот, пептидная связь и строение белков

Белки (протеины, полипептиды) представляют собой высокомолекулярные органические вещества, состоящие из аминокислот, связанных в цепи пептидной связью.

Иммуноглобины — защищают от чужеродных микробов и раковых клеток.
Гемоглобин – участвует в переносе кислорода.
Кератин — самый распространенный белок у позвоночных, содержится в волосах и ногтях.
Фибрин — белок, который участвует в свертываемости крови.
Коллаген — составляет белковый компонент костей, кожи, связок и сухожилий.
Ферменты — являются катализаторами биохимических реакций.
Гормоны — являются молекулами, передающими химические сигналы.

Аминокислоты

Аминокислоты являются мономерами которые составляют белки.

Каждая аминокислота имеет одинаковую основную структуру, которая состоит из центрального атома углерода, также известного как альфа (α) углерод, связанного с аминогруппой (-NH2), карбоксильной группой (-COOH) и атомом водорода.

Каждая аминокислота также имеет еще один атом или группу атомов, связанных с центральным атомом углерода, которые составляют R группу.

В цитоплазме клетки находится множество копий 21 протеиногенной аминокислоты. Эти аминокислоты строятся клеткой из более простых соединений или поступают с пищей.

Из 21 аминокислоты 9 являются незаменимыми аминокислотами, которые должны быть получены с пищей.

9 незаменимых аминокислот:

  1. Триптофан
  2. Метионин
  3. Валин
  4. Треонин
  5. Фенилаланин
  6. Лейцин
  7. Изолейцин
  8. Лизин
  9. Гистидин

Химическая природа боковой цепи (R группа) определяет характер аминокислоты (то есть, является ли она кислой, основной, полярной или неполярной).

[3]

Пептидные связи

Аминокислоты объединяются c образованием крупных органических полимеров, известных как пептиды.

Каждая аминокислота присоединена к другой аминокислоте ковалентной связью, известной как пептидная связь, которая образуется в результате реакции дегидратации.

Карбоксильная группа одной аминокислоты и аминогруппа другой аминокислоты объединяются, высвобождая молекулу воды.

Полученная связь представляет собой пептидную связь и продукты, образованные такими связями, называются пептидами.

В глобулярных белках существуют четыре уровня структуры:

1) Первичная

Первичная структура — уникальная последовательность аминокислот в полипептидной цепи.

2) Вторичная

Локальное складывание полипептида в некоторых регионах приводит к вторичной структуре белка.

Наиболее распространенными являются α-спираль и β-листовые структуры. Обе структуры представляют собой α-спиральную структуру.

Спираль сохраняет свою форму за счет водородных связей.

3) Третичная

Третичная структура связана с химическими взаимодействиями внутри полипептидной цепи.

Сложную трехмерную третичную структуру белка в первую очередь создают взаимодействия между R группами.

4) Четвертичная

Первичная, вторичная и третичная структуры относятся к отдельным полипептидным цепям белка, а четвертичная — к взаимодействиям, которые происходят между полипептидными цепями в белках, состоящих из двух или более полипептидов.

Слабые взаимодействия между субъединицами помогают стабилизировать общую структуру.

Составные части белковых веществ. Аминокислоты

Белки — полимерные молекулы, в которых мономерами служат аминокислоты. В составе белков в организме человека встречают только 20 аминокислот. Одни и те же аминокислоты присутствуют в различных по структуре и функциям белках.

· Аминокислоты, класс органических соединений, объединяющих в себе свойства кислот и аминов, т. е. содержащих наряду с карбоксильной группой —COOH аминогруппу —NH2. А. могут содержать одну NH2-группу и одну СООН-группу (моноаминокарбоновые кислоты), одну NH2-группу и две СООН-группы (моноаминодикарбоновые кислоты), две NH2-группы и одну СООН-группу (диаминомонокарбоновые кислоты).

Аспарагиновая — HOOC CH2CH (NH2) COOH

Циклические

. Эти аминокислоты имеют в своем составе ароматическое или гетероциклическое ядро и, как правило, не синтезируется в организме человека и должны поступать с пищей. Они активно участвуют в разнообразных обменных процессах. Так фенил-аланин служит основным источником синтеза тирозина — предшественника ряда биологически важных веществ: гормонов (тироксина, адреналина), некоторых пигментов. Триптофан помимо участия в синтезе белка, служит компонентом витамина PP, серотонина, триптамина, ряда пигментов. Гистидин необходим для синтеза белков, является предшественником гистамина, влияющего на кровяное давление и секрецию желудочного сока.

Серосодержащие аминокислоты

, содержащие атом серы: цистеин и метионин

7. Связи аминокислот в белковой молекуле, структура белковой молекулы.

Первичная структура белков— последовательность аминокислот в полипептидной цепи. Важными особенностями первичной структуры являются консервативные мотивы — сочетания аминокислот, играющих ключевую роль в функциях белка. Консервативные мотивы сохраняются в процессе эволюции видов, по ним часто удаётся предсказать функцию неизвестного белка.

Вторичная структура — локальное упорядочивание фрагмента полипептидной цепи, стабилизированное водородными связями. Ниже приведены самые распространённые типы вторичной структуры белков:

§ α-спирали — плотные витки вокруг длинной оси молекулы, один виток составляют 3,6 аминокислотных остатка, и шаг спирали составляет 0,54 нм [15] (так что на один аминокислотный остаток приходится 0,15 нм), спираль стабилизирована водородными связями между H и O пептидных групп, отстоящих друг от друга на 4 звена. Спираль построена исключительно из одного типа стереоизомеров аминокислот (L). Хотя она может быть как левозакрученной, так и правозакрученной, в белках преобладает правозакрученная. Спираль нарушают электростатические взаимодействия глутаминовой кислоты, лизина, аргинина. Расположенные близко друг к другу остатки аспарагина,серина, треонина и лейцина могут стерически мешать образованию спирали, остатки пролина вызывают изгиб цепи и тоже нарушают α-спирали.

§ β-листы (складчатые слои) — несколько зигзагообразных полипептидных цепей, в которых водородные связи образуются между относительно удалёнными друг от друга (0,347 нм на аминокислотный остаток) в первичной структуре аминокислотами или разными цепями белка, а не близко расположенными, как имеет место в α-спирали. Эти цепи обычно направлены N-концами в противоположные стороны (антипараллельная ориентация). Для образования β-листов важны небольшие размеры боковых групп аминокислот, преобладают обычно глицин и аланин.

Третичная структура — пространственное строение полипептидной цепи (набор пространственных координат составляющих белок атомов). Структурно состоит из элементов вторичной структуры, стабилизированных различными типами взаимодействий, в которых гидрофобные взаимодействия играют важнейшую роль. В стабилизации третичной структуры принимают участие:

§ ковалентные связи (между двумя остатками цистеина — дисульфидные мостики);

§ ионные связи между противоположно заряженными боковыми группами аминокислотных остатков;

§ гидрофильно-гидрофобные взаимодействия. При взаимодействии с окружающими молекулами воды белковая молекула «стремится» свернуться так, чтобы неполярные боковые группы аминокислот оказались изолированы от водного раствора; на поверхности молекулы оказываются полярные гидрофильные боковые группы.

Четвертичная структура (или субъединичная, доменная) — взаимное расположение нескольких полипептидных цепей в составе единого белкового комплекса. Белковые молекулы, входящие в состав белка с четвертичной структурой, образуются на рибосомах по отдельности и лишь после окончания синтеза образуют общую надмолекулярную структуру. В состав белка с четвертичной структурой могут входить как идентичные, так и различающиеся полипептидные цепочки. В стабилизации четвертичной структуры принимают участие те же типы взаимодействий, что и в стабилизации третичной. Надмолекулярные белковые комплексы могут состоять из десятков молекул.

Читайте так же:  Чем полезен аргинин для мужчин

8. Свойства белковых веществ.

Все белковые вещества состоят из пяти элементов: углерода, водорода, кислорода, азота и серы. Содержание их в разных Б. веществах мало разнится в процентном отношении.

Белки являются структурной и функциональной основой жизнедеятельности всех живых организмов, они обеспечивают рост, развитие и нормальное протекание обменных процессов в организме. Это мускулы, кровь, сердце, кожа, кости. В природе существует примерно 10 10 -10 12 различных белков, обеспечивающих жизнедеятельность организмов всех степеней сложности от вирусов до человека. Белками являются ферменты, антитела, многие гормоны и другие биологические активные вещества. Необходимость постоянного обновления белков лежит в основе обмена веществ.

9. Классификация белковых веществ, характеристика отдельных представителей простых белков.

Классификация белковых веществ ( см. 5 вопр.)

Просты́е белки́ — белки, которые построены из остатков α-аминокислот и при гидролизе распадаются только на аминокислоты. Простые белки по растворимости в воде и солевых растворах условно подразделяются на несколько групп: протамины, гистоны, альбумины, глобулины, проламины, глютелины.

Простые белки по растворимости и пространственному строению разделяют на глобулярные и фибриллярные.

Глобулярные белки отличаются шарообразной формой молекулы (эллипсоид вращения), растворимы в воде и в разбавленных солевых растворах.

1.альбумины — растворимы в воде в широком интервале рН (от 4 до 8,5), осаждаются 70-100%-ным раствором сульфата аммония;

2.полифункциональные глобулины с большей молекулярной массой, труднее растворимы в воде, растворимы в солевых растворах, часто содержат углеводную часть;

3.гистоны — низкомолекулярные белки с высоким содержанием в молекуле остатков аргинина и лизина, что обусловливает их основные свойства;

4.протамины отличаются еще более высоким содержанием аргинина (до 85 %), как и гистоны, образуют устойчивые ассоциаты с нуклеиновыми кислотами, выступают как регуляторные и репрессорные белки — составная часть нуклеопротеинов;

5.проламины характеризуются высоким содержанием глутаминовой кислоты (30-45 %) и пролина (до 15 %), нерастворимы в воде, растворяются в 50-90 % этаноле;

6.глутелины содержат около 45 % глутаминовой кислоты, как и проламины, чаще содержатся в белках злаков.

Фибриллярные белки характеризуются волокнистой структурой, практически нерастворимы в воде и солевых растворах. Полипептидные цепи в молекулах расположены параллельно одна другой. Участвуют в образовании структурных элементов соединительной ткани (коллагены, кератины, эластины).

· Кератины — семейство фибриллярных белков, обладающих механической прочностью, которая среди материалов биологического происхождения уступает лишь хитину. В основном из кератинов состоят роговые производные эпидермиса кожи — такие структуры, как волосы, ногти, рога носорогов, перья.

α-кератины имеют конформацию в виде плотных витков вокруг длинной оси молекулы (α-спираль); эти кератины являются основой волос (включая шерсть), рогов, когтей и копыт млекопитающих.

β-кератины, более твёрдые и имеющие форму несколько зигзагообразных полипептидных цепей (т. н. β-листы); эти кератины обнаружены в когтях и чешуе рептилий, в их панцирях ( у черепах), в перьях, клювах и когтях птиц, в иглах дикобразов.

[1]

· Эластин — белок, обладающий эластичностью и позволяющий тканям восстанавливаться, например, при защемлении или порезе кожи. Эластин – белок, отвечающий за упругость

Эластин – белок, отвечающий за упругость соединительных тканей. Он широко используется в косметологии, так как содержит важнейшие аминокислоты ( валин, глицин, пролин, аланин и др.). В составе эластина также присутствуют уникальные белки – десмозины.

10. Строение нуклеопротеидов.

Нуклеопротеиды относятся к числу наиболее важных в биологическом отношении белковых веществ: с ними связаны процессы деления клеток и передача наследственных свойств; из нуклеинов построены фильтрующиеся вирусы, вызывающие заболевание.

Нукленопротеиды состоят из белка и нуклеиновых кислот. Нуклеиновые кислоты представляют собой сложное соединения, при гидролизе распадающиеся на простые нуклеиновые кислоты (мононуклеиды), которые построены из азотистых оснований, углеводов (пентоз) и фосфорной кислоты.

В составе нуклеотидов встречаются производные пуриновых и пиримидиновых оснований — аденин (6-амино-пурин), гуанин (2-амино-6-оксипурин), цитозин (2-окси-6-пиримидин), урацил (2,6-диоксипиримидин), тимин (2,6-диокси-5-метилпиримидин).

В зависимости от типа входящих в состав нуклеопротеидных комплексов нуклеиновых кислот различают рибонуклеопротеиды и дезоксирибонуклеопротеиды.

11. АТФ и ее роль в живых организмах.

Аденозинтрифосфа́т — нуклеотид, играет исключительно важную роль в обмене энергии и веществ в организмах; в первую очередь соединение известно как универсальный источник энергии для всех биохимических процессов, протекающих в живых системах. АТФ был открыт в 1929 году Карлом Ломанном. А в 1941 году Фриц Липман показал, что АТФ является основным переносчиком энергии в клетке.

Главная роль АТФ в организме связана с обеспечением энергией многочисленных биохимических реакций. Являясь носителем двух высокоэнергетических связей, АТФ служит непосредственным источником энергии для множества энергозатратных биохимических и физиологических процессов. Всё это реакции синтеза сложных веществ в организме: осуществление активного переноса молекул через биологические мембраны, в том числе и для создания трансмембранного электрического потенциала; осуществлениямышечного сокращения.

Помимо энергетической АТФ выполняет в организме ещё ряд других не менее важных функций:

§ Вместе с другими нуклеозидтрифосфатами АТФ является исходным продуктом при синтезе нуклеиновых кислот.

§ Кроме того, АТФ отводится важное место в регуляции множества биохимических процессов. Являясь аллостерическим эффектором ряда ферментов, АТФ, присоединяясь к их регуляторным центрам, усиливает или подавляет их активность.

§ АТФ является также непосредственным предшественником синтеза циклического аденозинмонофосфата — вторичного посредника передачи в клетку гормонального сигнала.

§ Также известна роль АТФ в качестве медиатора в синапсах.

12. Характеристика других сложных белковых веществ.

Сложные белки́ (протеиды, холопротеины) — двухкомпонентные белки, в которых помимо пептидных цепей (простого белка) содержится компонент неаминокислотной природы — простетическая группа. При гидролизе сложных белков, кроме свободных аминокислот, освобождается небелковая часть или продукты её распада.

В качестве простетической группы могут выступать различные органические (липиды, углеводы) и неорганические (металлы) вещества.

Среди сложных белков выделяют следующие основные классы: гликопротеины, липопротеины, хромопротеины, нуклеопротеины, фосфопротеины и металлопротеины.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 10048 —

| 7506 — или читать все.

185.189.13.12 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Белки и нуклеиновые кислоты (стр. 1 из 10)

Министерство образования Республики Беларусь

УО МОГИЛЕВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПРОДОВОЛЬСТВИЯ

Читайте так же:  Л карнитин витамины для мужчин

КАФЕДРА ХИМИЧЕСКОЙ ТЕХНОЛОГИИ ВЫСОКОМОЛЕКУЛЯРНЫХ СОЕДИНЕНИЙ

для студентов специальностей 49 01 01, 49 01 02, 91 01 01

БЕЛКИ И НУКЛЕИНОВЫЕ КИСЛОТЫ

Рассмотрен и рекомендован к изданию кафедрой химической технологии высокомолекулярных соединений

Протокол № __ от «__»_____________2004 г.

Рассмотрен и рекомендован к изданию секцией выпускающих кафедр.

Протокол № __ от «__»_____________2004 г.

Составители: доцент Макасеева О.Н.

Рецензент: доцент Шуляк Т.Л.

Ó Могилевский государственный университет продовольствия

1.1Строение и общие свойства аминокислот.

1.3Кислотно-основные свойства аминокислот.

1.4Спектры поглощения аминокислот.

1.5Химические реакции аминокислот.

1.8Строение белковой молекулы.

1.9Физико-химические свойства белков.

1.10Выделение белков и установление их однородности.

2. НУКЛЕИНОВЫЕ КИСЛОТЫ.

2.1Состав нуклеиновых кислот.

2.4Первичная структура нуклеиновых кислот.

2.5Вторичная и третичная структуры ДНК.

1.1 Строение и общие свойства аминокислот

Основной структурной единицей белков являются a-аминокислоты. В природе встречается примерно 300 аминокислот. В составе белков найдено 20 различных a-аминокислот (одна из них – пролин, является не амино-, а иминокислотой). Все другие аминокислоты существуют в свободном состоянии или в составе коротких пептидов, или комплексов с другими органическими веществами.

a-Аминокислоты представляют собой производные карбоновых кислот, у которых один водородный атом, у a-углеродного атома замещен на аминогруппу (–NН2 ), например:

Различаются аминокислоты по строению и свойствам радикала R. Радикал может представлять остатки жирных кислот, ароматические кольца, гетероциклы. Благодаря этому каждая аминокислота наделена специфическими свойствами, определяющими химические, физические свойства и физиологические функции белков в организме.

Именно благодаря радикалам аминокислот, белки обладают рядом уникальных функций, не свойственных другим биополимером, и обладают химической индивидуальностью.

Значительно реже в живых организмах встречаются аминокислоты с b- или g-положением аминогруппы, например:

Видео (кликните для воспроизведения).

В молекулах всех природных аминокислот ( за исключением глицина) у a-углеродного атома все четыре валентные связи заняты различными заместителями, такой атом углерода является асимметрическим, и получил название хирального атома. Вследствие этого растворы аминокислот обладают оптической активностью – вращают плоскость плоскополяризованного света. Причем, при прохождении через них поляризованного луча происходит поворот плоскости поляризации либо в право (+), либо влево (–). По расположению атомов и атомных группировок в пространстве относительно асимметрического атома различают L- и D-стереоизомеры аминокислот. Знак и величина оптического вращения зависят от природы боковой цепи аминокислот (R-группы).

Число возможных стереоизомеров ровно 2 n , где n – число асимметрических атомов углерода. У глицина n = 0, у треонина n = 2. Все остальные 17 белковых аминокислот содержат по одному асимметрическому атому углерода, они могут существовать в виде двух оптических изомеров.

В качестве стандарта при определении L и D-конфигураций аминокислот используется конфигурация стереоизомеров глицеринового альдегида.

Расположение в проекционной формуле Фишера NH2 -группы слева соответствуют L-конфигурации, а справа – D-конфигурации.

Следует отметить, что буквы L и D означают принадлежность того или иного вещества по своей стереохимической конфигурации к L или D ряду, независимо от направленности вращения.

В составе белков обнаруживаются только L-изомеры аминокислот. D-формы аминокислот в природе встречаются редко и обнаружены лишь в составе белков клеточной стенки (гликопротеинов) некоторых бактерий и в пептидных антибиотиках (грамицидин, актиномицин и т.д.). L-формы хорошо усваиваются растениями и животными и легко включаются в обменные процессы. D-формы не ассимилируются этими организмами, а иногда даже ингибируют процессы обмена. Это объясняется тем, что ферментативные системы организмов специфически приспособлены к L формам аминокислот.

L и D формы аминокислот оказывают различное физиологическое воздействие на организм человека – различаются по вкусу: D-изомеры сладкие, L-формы горькие или безвкусные.

Взаимопревращение D и L-энатиомеров называется рацемизацией. Превращение DÛL – это один из метаболических процессов в живых организмах, причем равновесие этого метаболического процесса сильно смещено в сторону образования L-формы. Когда метаболические процессы после смерти организма прекращаются, процесс DÛL продолжается самопроизвольно с очень малой скоростью, переводя для каждой аминокислоты к соотношению D/L-энантиомеров, характерному для неметаболического равновесия. Для достижения такого равновесия могут потребоваться десятки тысяч лет. Новый метод определения геологического возраста образца основан на измерении соотношения D/L-энантиомеров аспарагиновой кислоты в образцах окаменелых костей. Результаты, полученные методом D /L-датирования, хорошо дополняют другие данные, полученные, например, радиоуглеродным методом.

Кроме 20 стандартных аминокислот встречающихся почти во всех белках, существуют еще нестандартные аминокислоты, являющиеся компонентами лишь некоторых типов белков – эти аминокислоты называют еще модифицированными. Около 150 из них уже выделены. Эти аминокислоты образуются после завершения синтеза белка в рибосоме клеток путем посттрансляционной химической модификации.

Один из примеров особенно важной модификации – окисление двух-SН–групп цистеиновых остатков с образованием аминокислоты цистина, содержащей дисульфидную связь. Так же легко происходит и обратный переход.

Таким путем образуется одна из важнейших окислительно-востановительных систем живых организмов. В больших количествах цистин содержится в белках злаковых – клейковине, в белках волос, рогов.

Другие примеры аминокислотной модификации-гидроксипролин и гидроксилизин, которые входят в состав коллагена-основного белка соединительной ткани животных.

В состав белка протромбина (белок свертывания крови) входит g-карбоксиглутаминовая кислота, а в ферменте глутатионпероксидазе открыт селеноцистеин, в котором ( S ) сера заменена на ( Se ) селен.

1.2 Классификация аминокислот

Существует несколько видов классификаций аминокислот входящих в состав белка.

В основу одной из классификаций положено химическое строение радикалов аминокислот. Различают аминокислоты:

1. Алифатические – глицин, аланин, валин, лейцин, изолейцин:

2. Гидроксилсодержащие – серин, треонин:

3. Серосодержащие – цистеин, метионин:

4. Ароматические – фенилаланин, тирозин, триптофан:

5. С анионобразующими группами в боковых цепях-аспарагиновая и глутаминовая кислоты:

6. и амиды-аспарагиновой и глутаминовой кислот – аспарагин, глутамин.

7. Основные – аргинин, гистидин, лизин.

Второй вид классификации основан на полярности R-групп аминокислот. Различают полярные и неполярные аминокислоты. У неполярных в радикале есть неполярные связи С–С, С–Н, таких аминокислот восемь: аланин, валин, лейцин, изолейцин, метионин, фенилаланин, триптофан, пролин.

Все остальные аминокислоты относятся к полярным (в R-группе есть полярные связи С–О, С–N, –ОН, S–H). Чем больше в белке аминокислот с полярными группами, тем выше его реакционная способность. От реакционной способности во многом зависят функции белка. Особенно большим числом полярных групп, характеризуются ферменты. И наоборот, их очень мало в таком белке как кератин (волосы, ногти).

Аминокислоты классифицируют и на основе ионных свойств R-групп (таблица 1). Кислые (при рН=7 R-группа может нести отрицательный заряд) это аспарагиновая, глутаминовая кислоты, цистеин и тирозин. Основные( при рН =7 R-группа может нести положительный заряд) – это аргинин, лизин, гистидин. Все остальные аминокислоты относятся к нейтральным (группа R незаряжена).

Таблица 1 – Классификация аминокислот на основе полярности R-групп.

Аминокислоты Принятые однобуквенные обозначения и символы Изоэлектрическая точка, рI Среднее содержание в белках,%
Англ. символ Русск.
1. НеполярныеR-группы Глицин Аланин Валин Лейцин Изолейцин Пролин Фенилаланин Триптофан 2. Полярные, незаряженныеR-группы Серин Треонин Цистеин Метионин Аспарагин Глутамин 3. Отрицательно заряженные R-группы Тирозин Аспарагиновая к-та Глутаминовая к-та 4. Положительно заряженныеR-группы Лизин Аргинин Гистидин GLy ALa VaL Leu Lie Pro Phe Trp Ser Thr Cys Met Asn GLn Tyr Asp GLy Lys Arg His G A V L I P F W S T C M N Q Y D E K R N Гли Ала Вал Лей Иле Про Фен Трп Сер Тре Цис Мет Асн Глн Тир Асп Глу Лиз Арг Гис 5,97 6,02 5,97 5,97 5,97 6,10 5,98 5,88 5,68 6,53 5,02 5,75 5,41 5,65 5,65 2,97 3,22 9,74 10,76 7,59 7,5 9,0 6,9 7,5 4,6 4,6 3,5 1,1 7,1 6,0 2,8 1,7 4,4 3,9 3,5 5,5 6,2 7,0 4,7 2,1
Читайте так же:  Какой жидкий л карнитин лучше

По числу аминных и карбоксильных групп аминокислоты делятся на моноаминамонокарбоновые, содержащие по одной карбоксильной и аминной группе; моноаминодикарбоновые (две карбоксильные и одна аминная группа); диаминомонокарбоновые (две аминные и одна карбоксильная группа).

Аминокислоты и белки

Аминокислоты

В зависимости от взаимного расположения обеих функциональных групп различают α-, β – и γ-аминокислоты:

CH3-CH(NH2)-COOH (α-аминопропионованя кислота)

Для аминокислот характерны следующие виды изомерии: углеродного скелета, положения функциональных групп и оптическая изомерия.

Физические свойства аминокислот

Аминокислоты – твердые кристаллические вещества, хорошо растворимые в воде. Они плавятся при высоких температурах с разложением.

Аминокислоты получают путем замещения галогена на аминогруппу в галогензамещенных карбоновых кислотах. В общем виде уравнение реакции будет выглядеть так:

Химические свойства аминокислот

Аминокислоты – амфотерные соединения. Они реагируют как с кислотами, так и с основаниями:

При растворении аминокислот в воде аминогруппа и карбоксильная группа взаимодействуют друг с другом с образованием соединений, называемых внутренними солями:

Молекулу внутренней соли называют биполярным ионом.

Водные растворы аминокислот имеют нейтральную, щелочную и кислотную среду в зависимости от количества функциональных групп. Например, глутаминовая кислота образует кислый раствор, поскольку в её составе две карбоксильные группы и одна аминогруппа, а лизин – щелочной раствор, т.к. в её составе одна карбоксильная группа и две аминогруппы.

Две молекулы аминокислоты могут взаимодействовать друг с другом. При этом происходит отщепление молекулы воды и образуется продукт, в котором фрагменты молекулы связаны между собой пептидной связью (-CO-NH-). Например:

Полученное соединение называют дипептидом. Вещества, построенные из многих остатков аминокислот, называются полипептидами. Пептиды гидролизуются под действием кислот и оснований.

α-Аминокислоты играют особую роль в природе, поскольку при их совместной поликонденсации в природных условиях образуются важнейшие для жизни вещества – белки.

Также для аминокислот характерны все химические свойства карбоновых кислот (по карбоксильной группе) и аминов (по аминогруппе).

В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 стандартных аминокислот. Множество их комбинаций создают молекулы белков с большим разнообразием свойств. Кроме того, аминокислотные остатки в составе белка часто подвергаются посттрансляционным модификациям, которые могут возникать и до того, как белок начинает выполнять свою функцию, и во время его «работы» в клетке. Часто в живых организмах несколько молекул разных белков образуют сложные комплексы, например, фотосинтетический комплекс.

Белки обладают свойством амфотерности, то есть в зависимости от условий проявляют как кислотные, так и осно́вные свойства. В белках присутствуют несколько типов химических группировок, способных к ионизации в водном растворе: карбоксильные остатки боковых цепей кислых аминокислот (аспарагиновая и глутаминовая кислоты) и азотсодержащие группы боковых цепей основных аминокислот (в первую очередь, ε-аминогруппализина и амидиновый остаток CNH(NH2)аргинина, в несколько меньшей степени —имидазольный остаток гистидина).

Белки различаются по степени растворимости в воде. Водорастворимые белки называются альбуминами, к ним относятся белки крови и молока. К нерастворимым, или склеропротеинам, относятся, например, кератин (белок, из которого состоят волосы, шерсть млекопитающих, перья птиц и т. п.) и фиброин, который входит в состав шёлка и паутины. Растворимость белка определяется не только его структурой, но внешними факторами, такими как природа растворителя, ионная сила и pH раствора.

Белки образуются из аминокислот

Каждый белок характеризуется специфической аминокислотной последовательностью и индивидуальной пространственной структурой (конформацией).

Существует 4 основных категории белков:

  • структурные (образующие клеточные структуры);
  • ферменты (катализирующие химические реакции);
  • регуляторные (контролирующие экспрессию генов или активность других белков);
  • транспортные (переносящие другие молекулы внутри клетки или через клеточную мембрану).

Функционирование белков лежит в основе важнейших процессов жизнедеятельности организма. По составу белки делят на простые, состоящие только из аминокислотных остатков, и сложные. Сложные могут включать ионы металла (металлопротеины) или пигмент (хромопротеины), образовывать прочные комплексы с липидами (липопротеины), нуклеиновыми кислотами (нуклеопротеины), а также ковалентно связывать остаток фосфорной кислоты (фосфопротеины) или углевода (гликопротеины).

Биосинтез белков происходит в результате трансляции в субклеточных частицах — рибосомах, представляющих собой сложный рибонуклеопротеидный комплекс. Информация о первичной структуре белков (последовательности аминокислот) задана последовательностью нуклеотидов в соответствующих генах. В процессе транскрипции эта информация с помощью фермента — ДНК-зависимой РНК-полимеразы, передается на матричную рибонуклеиновую кислоту, которая, соединяясь с рибосомой, служит матрицей для синтеза белков. Выходящие из рибосомы синтезированные полипептидные цепи, самопроизвольно сворачиваясь, принимают присущую данному белку трехмерную конформацию, а также подвергаются модификации благодаря реакциям различных функциональных групп аминокислотных остатков и расщеплению пептидных связей.

При синтезе белков в большинстве случаев используются 20 стандартных аминокислот. Множество их комбинаций дает большое разнообразие свойств молекул белков. Часто в живых организмах несколько молекул белков образуют сложные функциональные комплексы друг с другом и с другими молекулами, например, фотосинтетический пигмент-белковый комплекс. Надмолекулярные белковые комплексы могут состоять из десятков молекул, многие из них сравнимы по размеру с рибосомами и в последние годы часто описываются как органоиды (например, протеасома — белковый комплекс, осуществляющий разрушение белков в конце их жизненного цикла).

[2]

С углублением представлений о белковой структуре были выделены дополнительные уровни ее организации: сверхвторичный (ансамбли взаимодействующих между собой вторичных структур, например, суперспирализация альфа-спиралей — скручивание двух альфа-спиралей вокруг друг друга), структурные домены (по анализу карт электронной плотности, соответствующие глобуле с диаметром 2,5 нм, отвечающей принципу простоты сворачивания белковой цепи), глобулярные белки, агрегаты.

Белки являются одной из основных функциональных структур всего живого. Данные структуры находят широкое применение в нанобиотехнологиях и наномедицине. К ним относятся: молекулярные векторы направленной доставки лекарств (антитела), чувствительные элементы химических сенсоров (ферменты и ионные каналы), биогенные и универсальные наночастицы терапевтического или диагностического назначения и многое другое.

Читайте так же:  Как правильно пить креатин в капсулах

1.4. Первичная структура белков

Белки (протеины)  это высокомолекулярные полимерные соединения пептидной природы (полигетероаминокислоты).

Первичная структура белков — это последовательность чередования аминокислотных остатков в полипептидной цепи (ППЦ).

Первичная структура белков является ковалентной структурой, поскольку в её основе лежит пептидная связь между -амино- и -карбоксильными группами аминокислот. Вследствие этого полипептидные цепи имеют неразветвленный характер.

Скелет (хребет, остов) полипептидной цепи состоит из регулярно повторяющихся структурных элементов

Полипептидная цепь обладает векторностью, направление цепи от N-конца (начало цепи) к C-концу (конец цепи), N-конец  это конец, на котором находится свободная -аминогруппа. C-конец  это конец, на котором находится свободная -карбоксильная группа. Аминокислотная последовательность белков обозначается, начиная с N-конца, с использованием трехбуквенных сокращенных названий аминокислот, например: глиалациспро. Может быть использовано и однобуквенное обозначение аминокислотных остатков в белке.

N- и C-концы в составе белков могут быть модифицированы. Аминогруппа на N-конце может быть ацетилирована, формилирована или метилирована. В ряде белков N-концевым является остаток пирролидонкарбоната (пироглутамата), не содержащий свободной аминогруппы. C-конец может быть амидирован. Модификации C-конца более редки по сравнению с N-концевыми модификациями.

Коэффициент поликонденсации белков варьирует в диапазоне от 50 до 2500. Обычно белок содержит 100-300 аминокислотных остатков. Поскольку средняя молекулярная масса одного аминокислотного остатка составляет около 110 Да, молекулярная масса белков варьирует в диапазоне от 6000 до миллионов Да.

Каждый индивидуальный белок обладает уникальной первичной структурой. Первым белком, чья первичная структура была установлена, явился инсулин. Это удалось сделать Сэнгеру. Его стратегия заключалась в следующем. Сначала он разделил две полипептидные цепи и далее провел их специфическое ферментативное расщепление на небольшие пептиды, содержащие перекрывающиеся последовательности. Затем, используя 1-фтор-2,4-динитробензол идентифицировал N-концевые остатки. Кроме того, он определил аминокислотный состав пептидов и в итоге смог установить их структуру, сравнивая последовательности перекрывающихся пептидов. В общих чертах стратегия Сэнгера сохранила свое значение до наших дней. Однако были предложены и иные подходы. Эдманом разработан метод автоматической процедуры последовательного отщепления и идентификации N-концевых аминокислотных остатков. Для расшифровки первичной структуры можно использовать рентгеноструктурный анализ. Последовательность аминокислотных остатков может быть определена по нуклеотидной последовательности матричной РНК.

В настоящее время установлена первичная структура более 2000 белков. Теоретически число различных вариантов первичной структуры белков безгранично. Даже для полипептида из 20 различных аминокислот, число возможных последовательностей составляет 2010 18 . В живой природе реализуется лишь незначительная доля возможных последовательностей, общее число которых у всех видов живых организмов оценивается величиной 10 10 -10 12. .

Первичная структура белков генетически детерминирована, т.е. последовательность аминокислот в белке определяется последовательностью нуклеотидов в ДНК. Искажения последовательности нуклеотидов ДНК приводят к возникновению аномальных белков с измененными биологическими свойствами, что является причиной молекулярной патологии. В частности, причиной серповидноклеточной анемии служит точечная мутация гена, контролирующего -цепь гемоглобина. Следствием этого является замена в 6-ом положении -цепи остатка глутамата на валин. Такая замена приводит к утрате одного отрицательного заряда в каждой из двух -цепей , что приводит к изменению конформации гемоглобина и утрате его биологической функции.

Гомологичными белками называются белки, выполняющие у разных видов одинаковые функции. Примером может служить гемоглобин: у всех позвоночных он выполняет одну и ту же функцию, связанную с транспортом кислорода. Гомологичные белки характеризуются наличием во многих положениях одних и тех же аминокислот. Как оказалось, число аминокислотных остатков, по которым различаются гомологичные белки пропорционально филогенетическому различию между данными видами. Например, молекулы цитохромов С лошади и дрожжей различаются по 48 аминокислотным остаткам, тогда как те же молекулы курицы и утки – только по 2 остаткам. Что касается цитохромов С курицы и индейки, то они имеют идентичные аминокислотные последовательности. Сведения о числе различий в аминокислотных последовательностях гомологичных белков из разных видов используют для построения эволюционных карт, отражающих последовательные этапы возникновения и развития различных видов животных и растений в процессе эволюции.

Первичная структура, являясь простейшим уровнем структурной организации, определяет более высокие уровни организации белковой молекулы.

Аминокислоты и белки (стр. 1 из 2)

Аминокислоты и белки

Строительными блоками белков служат аминокислоты. Классификация аминокислот.

1. Моноаминомонокарбоновые: Глицин, аланин, валин, лейцин, изолейцин.

2. Моноаминодикарбоновые: глутаминовая и аспаргиновая кислоты.

3. Диаминомонокарбоновые: аргинин, лизин, оксилизин.

4. Гидроксилсодержащие: треонин, серин.

5. Серусодержащие: цистин, метионин.

6. Ароматические: фенилаланин, тирозин.

7. Гетероциклические: триптофан, пролин, оксипролин, гистидин.

Аминокислота представляет собой производное органиче­ской кислоты, в котором водород в α-положении замещен на аминогруппу (-NH2 ). Например, из уксусной кислоты образуется глицин, а из пропионовой — аланин. В аминокислотах одновременно присутствуют и кислотная и основная группы (карбоксил —СООН и аминогруппа —NH2 ), они относятся к амфотерным соединениям .

Присутствующие в клетке свободные аминокислоты образуются в ре­зультате расщепления белков или поступают из межклеточной жидкости. Свободные аминокислоты составляют так называемый аминокислотный фонд, из которого клетка черпает строительные блоки для синтеза новых белков.

Связь R—NH—СО—R называется пептидной связью. Образующаяся молекула также является амфотерной, поскольку на одном ее конце всегда находится кислая группа, а на другом — основная; боковые цепи (остатки аминокислот) могут быть основными или кислыми. Комбинация из двух аминокислот носит название дипептида, из трех — трипептида. Пептид, состоящий из небольшого числа аминокислот, назы­вается олигопептидо.и. Если же число аминокислот в молекуле достаточно велико, вещество называют полипептидом.

Расстояние между двумя пептидными связями равно примерно 0,35 нм. Молекула белка с мол. массой 30 000, состоящая из 300 аминокислотных остатков, в полностью вытянутом состоянии должна иметь длину 100 нм, ширину 1 нм и толщину 0,46 нм.

Белки называют протеинами (греч. протео — занимаю пер­вое место). Это слово [в русском языке оно сохранилось лишь в названиях сложных белков] указывает, что все основные функции организма связаны со специфическими белками. Они входят в состав ферментов и со­кратительного аппарата клеток, присутствуют в крови и других межклеточ­ных жидкостях. Некоторые длииноцепочечные белки, такие, как коллаген и эластин, играют важную роль в построении тканевых структур.

Кератин и кол­ лаген нерастворимы и обладают фибриллярной структурой; глобулярные белки, например яичный альбумин и белки сыворотки, растворимы в воде и солевых растворах и их молекулы имеют сферическую, а не нитевидную форму.

Сложные белки, в молекулу которых входит небелковая часть, так называемая простетическая группа. К ним принадлежат нуклеопротеиды ,липо протеиды и хромопротеиды (гемоглобин, гемоцианин и цитохромы), в которых простетической группой служит пигмент. Простетической группой гемоглобина и миоглобина (белка мышц) является гем — металлсодержащее органическое соединение, связывающее кислород.

Читайте так же:  Норма креатина в моче мужчины

Первичная структура белков . Полипептидная цепь, построенная из аминокислот, представляет собой первичную структуру белковой молекулы. Это наиболее важная специфическая структура, до некоторой степени опре­деляющая так называемые вторичную и третичную структуры белка. Агре­гаты белковых субъединиц, обладающих вторичной и третичной структурой, составляют четвертичную структуру.

Изучение порядка расположения аминокислот в молекуле белка стало возможным после того, как были разработаны методы расщепления белков. Первый успех принадлежит Сэнджеру, которому в 1954 г. удалось, наконец, полностью расшифровать последовательность аминокислот в инсулине. Молекула инсулина состоит из двух цепей: А-цепь содержит 21 аминокислоту, а В-цепь — 30. Обе цепи соединены двумя дисульфидными (—S—S—) связями.

В молекуле белка аминокислоты уложены как бусины на нити, и последовательность их расположения имеет важное биологическое значение. Например, ферментативные свойства некоторых белков определяются по­следовательностью аминокислот на небольшом участке цепи, называемом активным центром . В молекуле гемоглобина замена одной-единствен­ной аминокислоты уже приводит к глубоким биологическим изменениям.

Вторичная структура белков . Молекула белка состоит из нескольких сотен аминокислот, и поэтому полипептидная цепь лишь в редких случаях бывает вытянута полностью; обычно она определенным образом изогнута, образуя вторичную структуру. Фибриллярные белки (склеропротеины) часто характеризуются упорядоченным расположением цепей, благодаря чему их можно исследовать методом рентгеноструктур­ного анализа. В результате этих исследований было найдено, что фибриллярные белки можно разбить на три структурных типа или группы.

В белках типа β-кератина смежные цепи расположены таким образом, что образуют струк­туру складчатого слоя . В этой структуре боковые группы (амино­кислотные остатки) перпендикулярны плоскости, в которой лежат сами цепи; отдельные цепи соединены друг с другом водородными связями, образуя «пептидную решетку».

В белках типа α-кератина полипептидная цепь закручена в виде спи­рали, образуя так называемую а-спиральную структуру . Водо­родные связи в этом случае являются внутримолекулярными, а не межмо­лекулярными. Для группы коллагена предложена модель, состоящая из трех спиралей.

Третичная структура белков . В глобулярных белках полипептидные цепи определенным образом свернуты, образуя компактную структуру. Расположение таких цепей в пространстве очень сложно, но может быть выяснено мето­дом рентгеноструктурпого анализа.

Пространственное расположение це­пей до некоторой степени предопределено последовательностью чередования амино­кислот в первичной структуре и связями, образующимися между некоторыми амино­кислотными остатками. Многие биологи­ческие свойства белков, например фермен­тативная активность и антигенноетъ, свя­заны именно с третичной структурой.

Четвертичная структура белка; прин­ цип самосборки. В отличие от первич­ной, вторичной и третичной структур, которые содержат одну полипептидную цепь, четвертичная структура состоит из двух или более цепей. Эти цепи могут быть одинаковыми или раз­ными, но в обоих случаях они связаны слабыми связями (нековалентнымн). Нап­ример, молекула гемоглобина состоит из четырех полипептидных субъединиц — двух α и двух β-цепей. Разделение и ас­социация этих субъединиц может проис­ходить спонтанно.Под действием мочевины молекула ге­моглобина распадается на две половники, одна из которых состоит из двух α-субъединиц, в другая из двух β -субъединиц. При удалении мочевины они объединяются вновь, образуя четырехкомпонентную молекулу. Этот процесс высокоспецифичен: объединяться могут только две разные половинки молекул (так называемый принцип самосборки). Многие ферменты и другие белки с мол. массой свыше 50 000, вероятно, обладают четвертичной структурой. Например, альдолаза (мол. масса 150 000) распадается при низком рН на субъединицы с мол. массой 50 000 каждая, но вновь ассоциирует при ней­тральном рН.

Связи в белковой молекуле . В структуре белков встречаются самые различные типы связей. Первичная структура (пептидная связь) полностью определяется химическими, или ковалентными , связями. Между остаткам цистина (например, в инсулине и рибонуклеазе) образуются S—S-связи той же природы. Вторичная и третичная структуры стабилизируются рядом более слабых связей. Эти связи можно класси­фицировать следующим образом:

1. Ионные, или электростатические, связи между положительными и отрицательными ионами, находящимися на расстоянии 0,2. 0,3 нм.

2. Водородные связи (длина связи 0,25. 0,32 нм); эти по существу также электростатические связи, но более слабые, чем ионные, образуются между двумя сильно отрицательными атомами — С, N или О.

3. Слабые связи между неполярными боковыми цепями, возникающие в результате взаимного отталкивания молекул растворителя.

4. Связи, образующиеся за счет вандерваальсовых сил при взаимодействии полярных боковых цепей.

Электрические заряды белков . Все аминокислоты являются амфолитами (цвиттерионами), обладающими положительно и отрицательно заряженными группами (—NH2 и —СООН). Так как эти группы участвуют в образовании пептидной связи, в полипептидной цепи свободными остаются только кон­цевые СООН- и — NH2- группы, а также СООН-группы из дикарбоновых амино­кислот и NH2 -группы из диаминокислот. Все эти группы ионизируются сле­дующим образом:

1. Кислые группы теряют протоны и становятся отрицательно заряженными. Этот тип диссоциации встречается в дикарбоновых аминокислотах (аспарагиновая и глутаминовая), у которых свободная карбоксильная группа диссоциирует на СОО — и Н + .

2. Основные группы, приобретая протон, становятся положительно заряженными. Этот тип встречается в аминокислотах с двумя основными группами (лизин и аргинин), у которых свободные аминогруппы ионизи­руются с образованием положительного заряда.

Все эти так называемые ионогенные группы вместе с концевыми свобод­ными карбоксильными и аминогруппами участвуют в кислотно-щелочных реакциях белков и определяют электрические свойства белковых молекул.

Движение белков в электирическом поле — электрофорез.
Аминокислоты — соединения, содержащие амино- и карбок­сильную группы. В зависимости от расположения амино- и кар­боксильной групп различают α-, β-, γ-, δ- и т. д. аминокислоты:

Видео (кликните для воспроизведения).

α-Аминокислоты являются составными частями белков и уча­ствуют в важнейших биологических процессах. Первая аминокис­лота была выделена в 1820 г. французским исследователем X. Браконно кислотным гидролизом желатины, однако лишь через 13 лет в ней было обнаружено присутствие азота. Позднее была показана роль α-аминокислот как структурных элементов белка (Н. Н. Любавин, 1871 г.). К началу XX в. методом гидролиза бел­ка было выделено более 20 аминокислот.

Источники


  1. Бетти, Пэйдж Брэкенридж Диабет 101: Простое и доступное руководство для тех, кто принимает инсулин: моногр. / Бетти Пэйдж Брэкенридж, Ричард О. Долинар. — М.: Полина, 1996. — 192 c.

  2. Литош, Н. Л. Адаптивная физическая культура. Психолого-педагогическая характеристика детей с нарушениями в развитии / Н.Л. Литош. — М.: СпортАкадемПресс, 2015. — 140 c.

  3. Максимова, О. Г. Заболевания органов пищеварения у детей / О.Г. Максимова, И.И. Петрухина. — М.: Феникс, 2006. — 144 c.
Белки образуются из аминокислот
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here