Белки содержащие весь необходимый набор аминокислот

Важная и проверенная информация на тему: "белки содержащие весь необходимый набор аминокислот" от профессионалов для спортсменов и новичков.

Белки содержащие весь необходимый набор аминокислот

Обмен белков

Белками (протеинами) называют высокомолекулярные соединения, построенные из аминокислот. Белки выполняют многочисленные функции в организме.

Структурная, или пластическая, функция белков заключается в том, что протеины являются главной составной частью всех клеток и межклеточных структур. Белки также входят в состав основного вещества хрящей, костей и кожи. Биосинтез белков определяет рост и развитие организма.

Каталитическая, или ферментная, функция белков состоит в том, что протеины способны ускорять биохимические реакции в организме. Все известные в настоящее время ферменты являются белками. От активности белков-ферментов зависит осуществление всех видов обмена веществ в организме.

Защитная функция белков проявляется в образовании иммунных тел (антител) при поступлении в организм чужеродного белка (например, бактерий). Кроме того, белки связывают токсины и яды, попадающие в организм, и обеспечивают свертывание крови и остановку кровотечения при ранениях.

Транспортная функция белков заключается в том, что белки принимают участие в переносе многих веществ. Так, снабжение клеток кислородом и удаление углекислого газа из организма осуществляется сложным белком-гемоглобином, липопротеиды обеспечивают транспорт жиров и т. д.

Передача наследственных свойств, в которой ведущую роль играют нуклеопротеиды, является одной из важнейших функций белков. В состав нуклеопротеидов входят нуклеиновые кислоты. Различают два основных типа нуклеиновых кислот: рибонуклеиновые кислоты (РНК), содержащие аденин, цитозин, урацил, рибозу и фосфорную кислоту, и дезоксирибонуклеиновые кислоты (ДНК), в состав которых входят дезоксирибоза вместо рибозы и тимин вместо урацила. Важнейшей биологической функцией нуклеиновых кислот является их участие в биосинтезе белков. Нуклеиновые кислоты не только необходимы для самого процесса биосинтеза белка, они обеспечивают также образование белков, специфичных для данного вида и органа.

Регуляторная функция белков направлена на поддержание биологических констант в организме, что обеспечивается регулирующими влияниями различных гормонов белковой природы.

Энергетическая роль белков состоит в обеспечении энергией всех жизненных процессов в организме животных и человека. Белки-ферменты определяют все стороны обмена веществ и образование энергии не только из самих протеинов, но и из углеводов и жиров. При окислении 1 г белка в среднем освобождается энергия, равная 16,7 кДж (4,0 ккал) * .

* ( Джоуль (Дж) — работа, которую совершает постоянная сила, равная 1 Н (ньютон), на пути в 1 м, пройденном телом под действием этой силы по направлению, совпадающему с направлением силы; 1 кал.=4,1868 Дж.

)

Индивидуальная специфичность белков. Белковые тела различных людей имеют индивидуальную специфичность. Это подтверждается, в частности, образованием иммунных тел в организме человека при пересадке органов, в результате чего может возникнуть реакция отторжения пересаженного органа.

Индивидуальные различия в составе белков передаются но наследству. Нарушение генетического кода в ряде случаев может явиться причиной тяжелых наследственных заболеваний.

Потребность в белках. В организме постоянно происходит распад и синтез белков. Единственным источником синтеза нового белка являются белки пищи. После расщепления белков ферментами до аминокислот в пищеварительном тракте в тонком кишечнике происходит их всасывание. Одновременно с аминокислотами могут частично всасываться и простейшие пептиды. Из аминокислот и простейших пептидов клетки синтезируют собственный белок, который характерен только для данного организма.

Белки не могут быть заменены другими пищевыми веществами, так как их синтез в организме возможен только из аминокислот. Вместе с тем белок может замещать собой жиры и углеводы, т. е. использоваться для синтеза этих соединений.

Человек получает белок с пищей. При введении чужеродных белковых веществ непосредственно в кровь, минуя пищеварительный тракт, они не только не могут быть использованы организмом, но и приводят к ряду серьезных осложнений (повышение температуры, судороги и другие явления). При повторном введении чужеродного белка в кровь через 15-20 дней может наступить смерть.

Биологическая ценность белков. В разных природных источниках белка (растительных и животных) насчитывается более 80 аминокислот. Однако в пищевых продуктах, которые использует человек, содержится только 20 аминокислот. Установлено, что не все аминокислоты, входящие в состав белков, являются равноценными для человека. Некоторые аминокислоты не могут синтезироваться в организме человека и должны обязательно поступать с пищей в готовом виде. Эти аминокислоты принято называть незаменимыми, или жизненно необходимыми. К ним относятся валин, метионин, треонин, лейцин, изолейцин, фенилаланин, триптофан и лизин, а у детей еще аргинин и гистидин. Недостаток незаменимых кислот в пище приводит к нарушениям белкового обмена в организме.

Белки содержат различные аминокислоты и в разных соотношениях. В состав пищи животного происхождения входит больше незаменимых аминокислот, чем в состав растительной пищи. Белки, содержащие весь необходимый набор аминокислот, называют биологически полноценными. Наиболее высока биологическая ценность белков молока, яиц, рыбы, мяса. Биологически неполноценными называют белки, в составе которых отсутствует хотя бы одна аминокислота, которая не может быть синтезирована в организме. Неполноценными белками являются белки кукурузы, пшеницы, ячменя.

Два или три неполноценных белка, дополняя друг друга, могут обеспечить сбалансированное питание человека. Для нормальной жизнедеятельности организма необходимо, чтобы в пище содержались все необходимые аминокислоты.

При отсутствии полноценного белкового питания тормозится рост, нарушается формирование скелета. При белковом голодании вначале происходит усиленный распад протеинов скелетной мускулатуры, печени, крови, кишечника, кожи. Аминокислоты, которые при этом освобождаются, используются для синтеза белков центральной нервной системы, миокарда, гормонов. Однако такое перераспределение аминокислот не может восполнить недостаток пищевого белка, и наступает закономерное снижение активности ферментов, нарушаются функции печени, почек и т. д.

Азотистый баланс. По уровню выведенного из организма азота можно судить о количестве распадающегося в организме белка. Азот является обязательной составной частью белка и продуктов его расщепления — аминокислот. Азот поступает в организм только с белковой пищей, так как в других питательных веществах он не содержится и иными путями в организм не попадает.

Белки содержат в среднем 16% азота, поэтому по уровню азота в пище можно установить количество потребленного белка. Для этого необходимо количество азота умножить на 6,25 (эту цифру получают при делении 100 на 16). Азот пищи полностью организмом не усваивается. Для точного расчета усвоенного организмом азота нужно определить потери его с калом и полученную цифру вычесть из количества потребленного азота.

Читайте так же:  Белки распадаются на аминокислоты

О распавшемся белке в организме судят по содержанию азота в моче, так как азот выводится из организма преимущественно с мочой. Определив содержание азота в моче и умножив полученное значение на 6,25, мы узнаем количество распавшегося белка в организме.

Азотистым балансом называют разность между количеством азота, содержащегося в пище человека или животного, и его уровнем в выделениях. Различают азотистое равновесие, положительный и отрицательный азотистый баланс.

Азотистое равновесие — это такое состояние, при котором количество выведенного азота равно количеству поступившего в организм. Азотистое равновесие наблюдается у здорового взрослого человека.

Положительный азотистый баланс — это состояние, при котором количество азота в выделениях организма значительно меньше, чем содержание его в пище, т. е. наблюдается задержка азота в организме. Положительный азотистый баланс отмечается у детей в связи с усиленным ростом, у женщин во время беременности, при усиленной спортивной тренировке, приводящей к увеличению мышечной ткани, при заживлении массивных ран или выздоровлении после тяжелых заболеваний.

Отрицательный азотистый баланс отмечается тогда, когда количество выделяющегося азота больше содержания его в пище, поступающей в организм. Отрицательный азотистый баланс наблюдается при белковом голодании, лихорадочных состояниях, нарушениях нейроэндокринной регуляции белкового обмена.

Распад белка и синтез мочевины. Важнейшими азотистыми продуктами распада белков, которые выделяются с мочой и потом, являются мочевина, мочевая кислота и аммиак.

Окисление аминокислот происходит путем отщепления от них азота в виде аммиака. Аммиак является очень токсичным веществом для центральной нервной системы и других тканей организма. Однако аммиак обезвреживается в тканях печени и мозга: в печени путем образования мочевины, в ткани мозга за счет превращения в глутамин.

Значение мочевинообразовательной функции печени в защите организма от отравления аммиаком было показано в 1895 г. И. П. Павловым, М. Ненцким и И. Залесским. Они установили, что в крови печеночной вены содержится втрое меньше аммиака, чем в воротной вене. Следовательно, в печени значительная часть аммиака превращается в мочевину. Удаление печени приводит к гибели собак от аммиачного отравления. Мочевина же представляет собой относительно безвредный продукт и выводится из организма с мочой.

Часть аммиака обезвреживается путем превращения в глутаминовую кислоту и глутамин. В крови здоровых людей циркулирует лишь незначительное количество аммиака.

При нарушении синтеза мочевины в печени увеличивается концентрация аммиака, аминокислот и полипептидов в крови, что вызывает возбуждение центральной нервной системы, появление судорог, спутанность сознания и даже коматозное состояние и смерть.

Белки содержащие весь необходимый набор аминокислот

2. Обмен белков

Роль белков в обмене веществ

Белки в обмене веществ занимают особое место. Ф. Энгельс так оценил эту роль белков: «Жизнь — это способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой, причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка». И на самом деле, везде, где есть жизнь, находят белковые тела.

Белки входят в состав цитоплазмы, гемоглобина, плазмы крови, многих гормонов, иммунных тел, поддерживают постоянство водно-солевой среды организма. Без белков нет роста. Ферменты, обязательно участвующие во всех этапах обмена веществ, имеют белковую природу.

Специфичность белков

Белки обладают большой специфичностью. Белки животных разных видов, разных индивидуумов одного и того же вида, более того, разных органов и тканей одного и того же организма отличаются друг от друга. Такая специфичность белков делает невозможным введение в организм нерасщепленных чужеродных белков. Если такие чужеродные белки попадают в организм, то это вызывает образование защитных веществ против введенных белков, могут наступить тяжелые нарушения и даже гибель организма. Этим объясняются неудачи при пересадке тканей и органов от животных человеку или даже от одного человека другому. При таких операциях пересаженный орган не приживается и отмирает.

Белковые вещества пищи, проходя через пищеварительный тракт, расщепляются до аминокислот. Аминокислоты легко усваиваются организмом.

Нормы белка в питании

В зависимости от возраста, выполняемой деятельности, пола и т. п. меняется норма белков в питании. Для взрослого человека в суточном рационе должно содержаться в среднем 100-110 г белков. При физической работе норма белков в пище увеличивается до 130-140 г. Растущий организм ребенка нуждается в дополнительном количестве белков, обеспечивающих рост и формирование тела. Если для взрослого человека нужно на 1 кг массы тела около 1,5 г белков в сутки, то для ребенка в первые годы жизни эта норма должна быть примерно в три раза выше.

Биологическая ценность белков пищи

Аминокислоты, идущие на построение белков организма, неравноценны. Некоторые аминокислоты незаменимы для организма (лейцин, метионин, фенилаланин и др., табл. 12). Если в пище отсутствует незаменимая аминокислота, то синтез белков в организме резко нарушается. Но есть аминокислоты, которые могут быть заменены другими или синтезированы в самом организме в процессе обмена веществ, — это заменимые аминокислоты.


Таблица 12. Заменимые и незаменимые аминокислоты

Белки пищи, содержащие весь необходимый набор аминокислот для нормального синтеза белка организма, называют полноценными. К ним относят преимущественно животные и некоторые растительные белки (например, белки бобовых растений). Белки пищи, не содержащие всех необходимых для синтеза белка организма аминокислот, называют неполноценными (например, желатин, белок кукурузы, белок пшеницы). Наиболее высокая биологическая ценность у белков яиц, мяса, молока, рыбы.

Для того чтобы в организме мог произойти синтез необходимых ему белков, с пищей должны вводиться все незаменимые аминокислоты. При смешанном питании, когда в пище есть продукты животного и растительного происхождения, в организм обычно доставляется необходимый для синтеза белков набор аминокислот.

Особенно важно поступление всех незаменимых аминокислот для растущего организма. Отсутствие в пище аминокислоты лизина приводит к задержке роста ребенка, к истощению его мышечной системы. Недостаток валина вызывает расстройство равновесия у детей. В настоящее время достаточно полно изучен аминокислотный состав белков различных органов и тканей тела человека и пищевых продуктов. Поэтому имеется возможность так комбинировать продукты питания, чтобы человек получал в пищевом рационе все жизненно необходимые аминокислоты в нужных количествах и сочетаниях.

Распад белков в организме

Те аминокислоты, которые не пошли на синтез специфических белков, подвергаются превращениям, во время которых освобождаются азотистые вещества. От аминокислоты при этих превращениях отщепляется азот в виде аммиака (NH3). Азот в виде аминогруппы (-NH2), отщепившись от одной аминокислоты, может переноситься на другую, и тогда в организме строятся недостающие ему аминокислоты. Эти процессы идут преимущественно в печени, мышцах, почках. Безазотистый остаток аминокислоты подвергается дальнейшим превращениям с образованием углекислого газа и воды.

Читайте так же:  Л карнитин как принимать спортсменам

Аммиак, образовавшийся при распаде белков в организме, — вещество ядовитое, он обезвреживается в печени, где превращается в мочевину. Мочевина в составе мочи выводится из организма.

Конечные продукты распада белков в организме — не только мочевина, но и мочевая кислота и другие азотистые вещества. Они выводятся из организма с мочой и потом.

Обмен белков. Белки являются основным пластическим материалом, из которого построены клетки и ткани организма;

Белки являются основным пластическим материалом, из которого построены клетки и ткани организма. Они являются составной частью мышц, гормонов, гемоглобина, антител и других жизненно важных образований. Вся совокупность обмена веществ в организме (дыхание, пищеварение и выделение) обеспечивается деятельностью ферментов, которые являются белками. Все двигательные функции организма обеспечиваются взаимодействием сократительных белков – актина и миозина.

Поступающий с пищей из внешней среды белок имеет пластическое и энергетическое значение.

Пластическое значение

белка состоит в восполнении и новообразовании структурных компонентов клетки. Для нормального обмена белков необходимо поступление с пищей в организм различных аминокислот. Из 20 входящих в состав белков аминокислот 12 синтезируются в организме и потому являются заменимымиаминокислотами, 8 – не синтезируются и являются незаменимымиаминокислотами.

Поступившие с пищей белки расщепляются в кишечнике до аминокислот и в таком виде всасываются в кровь и транспортируются в печень. Поступившие в печень аминокислоты подвергаются дезанимированиюи переаминированию. Эти процессы обеспечивают синтез видоспецифичныхаминокислот. Из печени такие аминокислоты поступают в ткани и используются для синтеза тканеспецифичныхбелов, т.е. белков, которые образуют различные ткани. При избыточном поступлении белков с пищей, после отщепления от них аминогрупп, они превращаются в углеводы и жиры. Белковых депо в организме нет.

Существует понятие «биологической ценности» белков пищи. Белки, содержащие весь необходимый набор аминокислот в таких соотношениях, которые обеспечивают нормальные процессы синтеза, являются биологически полноценными белками. Белки, не содержащие тех или иных аминокислот или содержащие их в очень малых количествах, являются неполноценными. Наиболее высока биологическая активность белков мяса, яиц, рыбы, икры, молока.

Энергетическое значение

белка заключается в обеспечении организма энергией, образующейся при расщеплении белков. При окислении в организме 1 г белка выделяется 4,1 ккал энергии. Конечными продуктами расщепления белков в тканях являются мочевина, мочевая кислота, аммиак, креатин и др. Они выводятся из организма почками и потовыми железами.

О количестве поступивших в организм и разрушенных в нем белков судят по величине азотистого баланса. Количество азота, поступившего с пищей, всегда больше количества усвоенного азота, так как часть его теряется с калом.

Между количеством азота, введенного с белками пищи, и количеством азота, выводимым из организма, существует определенная связь. Увеличение поступления белка в организм приводит к увеличению выделения азота из организма. Это состояние азотистого равновесия.

Когда поступление азота превышает его выделение, наступает положительный азотистый баланс. При этом синтез белка преобладает над его распадом. Устойчивый положительный азотистый баланс наблюдается всегда при увеличении массы тела, в период роста организма, во время беременности, в период выздоровления после тяжелых заболеваний, а также при усиленных спортивных тренировках.

Когда количество выведенного из организма азота превышает количество поступившего азота, наступает отрицательный азотистый баланс. Он отмечается при белковом голодании и в том случае, когда в организм не поступают отдельные, необходимые для синтеза белков аминокислоты, при недостаточном количестве белка. Длительное белковое голодание неизбежно приводит к смерти.

Белки содержащие весь необходимый набор аминокислот

Белок является питательным веществом, которое необходимо нашему организму каждый день. Белок выполняет множество функций:

    Он участвует в процесс построения, восстановления и поддержания клеток тела, тканей (кожи, например), мышц, органов, крови и даже костей.

Белок также участвует в производстве ферментов и гормонов, которые способствуют нормальной работе организма.

Белки, как и антитела, защищают организм от болезнетворных бактерий и вирусов.

Белки помогают регулировать количество жидкости в организме и поддерживают жидкостный баланс.

Белки контролирую кислотно-щелочной баланс твоего тела.

Только белки могут выполнять все вышеперечисленные функции. Но как только телу потребуются калории, белки будут тут же превращены в энергию, если в организме будет недостаточно углеводов и жиров. Главный приоритет для твоего тела — это энергия, а 1 грамм белка содержит 4 ккал. Как и со всей едой, если ты потребляешь белков больше, чем нужно, то излишек будет запасён в виде жира.

В процессе усвоения пищи белок разрушается и смешивается со слюной во рту. Далее он попадает в желудок, где на него начинает действовать очень сильная кислота. Эта кислота способствует развёртыванию запутанной молекулярной нити белка. Желудочные ферменты начинаю разрушать связи в белковой молекуле. Когда молекулы белка попадают в тонкую кишку, следующая партия ферментов заканчивает начатый ранее процесс расщепления белка и превращения его в аминокислоты. Клетки тонкой кишки переводят аминокислоты в кровь.

И вот теперь, когда аминокислоты находятся в крови, абсолютно любая клетка тела может взять себе нужную порцию. Аминокислоты соединяются с другими аминокислотами и формируют особые типы белков, необходимых нашему организму.

Множество различных белков в твоём теле сделано из таких вот строительных блоков — аминокислот. Всего существует 22 разновидности аминокислот. Клетки тела присоединяют необходимые аминокислоты для формирования особых типов белков.

9 аминокислот считаются основными.
Твоё тело не может их вырабатывать и такие аминокислоты необходимо получать вместе с пищей. Вот их названия: гистамин, изолейцин, лейцин, лизин, метионин, фенилаланин, треонин, триптофан и валин.

Остальные аминокислоты основными не являются.
Твоё тело в состоянии их производить из 9 основных аминокислот. Невероятно, но в одной только клетке твоего тела может находиться до 10000 белков. И каждому белку необходим свой набор аминокислот.

Мясо, рыба, птица, яйца, молоко, сыр, йогурт и соя содержать 9 основных аминокислот. Именно поэтому их называют качественным или ПОЛНОЦЕННЫМ белком.

Растительные источники белка — это бобовые, орехи и семена. Зерновые продукты (ячмень, пшеница, просо, рожь) и овощи содержать меньшее количество белка. Все эти растительные источники белка называются НЕПОЛНЫМИ, так как не содержат 9 основных аминокислот.

Однако, можно получать полноценный набор белков не употребляя животную пищу. К счастью, основные аминокислоты, содержащиеся водной растительной пище, могут «соединяться» с основными аминокислотами из другой растительной пищи, формируя полноценный белок. Это положено в основу здоровой вегетарианской диеты. Нет смысла пытаться сочетать несколько специфичных продуктов во время каждого приёма пищи. Твоё тело само может производить полноценный белок, если ты кушаешь достаточно много растительной пищи и калорий в течение дня.

Читайте так же:  Протеин для девушек для набора

Во всём мире принято потреблять от 10 до 35% от общего потребления калорий. Именно так белки рассчитывает и программа ДиетаОнлайн. Например, для 2000 ккал. в день необходимо потреблять от 50 до 175 грамм белка.

Вот небольшой список содержания белка в некоторых продуктах:

    1 чашка молока — 8 грамм

100 грамм сыра — 24,5 грамм

100 грамм мяса — 24,5 грамм

1 яйцо — 6 грамм

0,5 чашки бобов — 7 грамм

0,25 чашки орехов — 6 грамм

0,5 чашки приготовленных не крахмалистых овощей — 2 грамма

1 порция злаков (1 кусок хлеба, 0,5 булочки, 1 маленький кексик) — 3 грамма

Аминокислотный состав белков

Белки, их структура и биологические функции. Ферменты.

Все химические вещества делят на две группы: органические и неорганические.

Неорганические вещества: вода, минеральные соли и кислоты.

Органические вещества –

[1]

это соединения углерода, которые возникли в живых организмах или являются продуктами их жизнедеятельности.

Органические вещества составляют в среднем 20-30% массы клетки живых организмов.

Органические вещества: белки, липиды, углеводы и нуклеиновые кислоты.

Молекулы этих веществ имеют очень большую молекулярную массу, состав их молекул входят тысячи, десятки тысяч или даже миллионы атомов, поэтому их называют макромолекулами (биополимерами).

Биополимеры состоят из одинаковых или схожих звеньев – мономеров,которые последовательно связаны между собой ковалентной связью.

Если обозначить тип мономера определенной буквой, например А, то полимер можно изобразить в виде очень длинного сочетания мономерных звеньев: А—А—А—А—. —А. Если соединить два типа мономеров А и Б, можно получить очень большой набор разнообразных полимеров, например Б Б А Б Б А Б Б А Б Б. Т.об. мономеры служат строительным материалом для полимеров.

Мономеры белков — аминокислоты,
нуклеиновых кислот — нуклеотиды,
сложных углеводов — моносахариды.

Большинство липидов образуются из глицерина и жирных кислот, но их будет рассмотрен отдельно. Помимо образования макромолекул малые биологические молекулы выполняют и различные специальные функции.

Ряд органических веществ относится к биологически активным веществам: гормоны, пигменты, витамины и т.д.Они влияют на процессы обмена веществ и преобразование энергии, осуществляют гормональную регуляцию процессов жизнедеятельности организма.

Среди органических веществ белки занимают первое место, как по количеству, так и по значению. У животных на них приходится около 50% сухой массы клетки.

Белки – это высокомолекулярные азотосодержащие биополимеры, мономерами которых являются остатки аминокислот.

Название «белки» происходит от способности многих из них при нагревании становится белыми.

Белки обладают большой молекулярной массой: яичный альбумин — 36 000, гемоглобин — 152 000, миозин — 500 000. Для сравнения: молекулярная масса спирта — 46, уксусной кислоты — 60, бензола — 78.

Если белки состоят только из аминокислот, их называют простыми (протеины).

Видео (кликните для воспроизведения).

Если белки содержат помимо аминокислот еще и небелковый компонент, их называют сложными (протеиды). Небелковый компонент может быть углеводом (гликопротеиды), липидами (липопротеиды), нуклеиновыми кислотами (нуклеопротеиды).

Аминокислотный состав белков

Чем выше уровень организации живых существ, тем разнообразнее состав белков. В организме человека встречается около 5 млн типов белков. Но несмотря на такое разнообразие, обычно белки построены всего из 20 различных аминокислот, а огромное разнообразие белков обеспечивается различными комбинациями этих аминокислот.

Мономерами белков являются α-аминокислоты.

Все аминокислоты содержат:

1) карбоксильную группу (–СООН) – обеспечивает кислотные свойства,

2) аминогруппу (–NH2) – обеспечивает основные свойства,

3) радикал или R-группу (остальная часть молекулы). У разных аминокислот радикалы отличаются.

Строение радикала у разных видов аминокислот — различное. В зависимости от количества аминогрупп и карбоксильных групп, входящих в состав аминокислот, различают: нейтральные аминокислоты, имеющие одну карбоксильную группу и одну аминогруппу; основные аминокислоты, имеющие более одной аминогруппы; кислые аминокислоты, имеющие более одной карбоксильной группы.

Аминокислоты являются амфотерными соединениями, так как в растворе они могут выступать как в роли кислот, так и оснований. В водных растворах аминокислоты существуют в разных ионных формах.

В зависимости от того, могут ли аминокислоты синтезироваться в организме человека и других животных, различают:

заменимые аминокислоты — могут синтезироваться;

незаменимые аминокислоты— не могут синтезироваться.

Незаменимые аминокислоты должны поступать в организм вместе с пищей. Незаменимые аминокислоты, которые не синтезируются человеческим организмом.

Для разных видов животных и людей разного возраста набор незаменимых аминокислот неодинаковый, например аргинин и гистидин заменимы для взрослых и незаменимы для детей.

Белки, которые содержат все незаменимые аминокислоты, называют полноценными. Неполноценные белки – белки, в состав которых не входят некоторые незаменимые кислоты.

Недостаток незаменимых аминокислот вызывает такие проблемы, как:

· нарушение обмена веществ (организм начинает потреблять аминокислоты из белков соединительной ткани, мышц, крови и печени, ведь поддерживать нормальную работу сердца и мозга – наиболее важных органов, в итоге — истощение),

· в детском возрасте – задержка роста и развития,

· потерю массы тела,

· снижение иммунитета и депрессии.

· При занятиях спортом недостаток незаменимых аминокислот резко увеличивает риск травм и снижает спортивные результаты.

Незаменимые кислоты содержатся в следующих продуктах:

· Валин – в зерновых, грибах, мясе, молочных продуктах, сое, арахисе.

· Изолейцин – в орехах кешью и миндале, курином мясе и яйцах, рыбе, печени, мясе, ржи, чечевице, сое и в большинстве семян.

· Лейцин – в мясе и рыбе, орехах, чечевице, буром рисе и также в большинстве семян.

· Лизин – в рыбе, мясе, молоке и молочных продуктах, пшенице и орехах.

· Метионин – в молоке, рыбе, яйцах, мясе, бобовых.

· Треонин – в яйцах и молочных продуктах.

· Триптофан – в мясе, бананах, финиках, кунжуте, арахисе, овсе.

· Фенилаланин – в говядине, курице, рыбе, яйцах, сое, молоке и твороге.

Норма потребления белка в сутки составляет 1,5 г на 1 кг веса. При больших физических нагрузках норма возрастает. До недавнего времени считалось, что норма потребления белка — 150 г ежедневно, сегодня официально признанная норма — 30-45 г.

• Что происходит с мясом, если поместить его в теплую влажную среду?

Оно начинает гнить. В организме человека точно также накапливаются продукты гниения, которые необходимо нейтрализовать. С помощью специальных реакций.

Читайте так же:  Жиросжигатели за и против

Потребление избыточного количества белка вызывает интоксикацию организма — отравление продуктами распада белков. Существует легенда, что в древнем Китае применялся вид казни, когда преступника кормили исключительно вареным мясом. Через пару месяцев почки прекращали справляться с выведением продуктов белкового распада, вследствие чего наступало отравление организма.

Вегетарианцы –не едят мяса.

Веганы– строгие вегетарианцы, они не приемлют насилия над животными. Не едят мясо, рыбу, молоко, масло, сыр, яйца, не используют кожу, шерсть и мех.

Растения синтезируют все виды аминокислот. Чтобы получить полный набор незаменимых аминокислот из растительных продуктов, желательно сочетать злаки, бобовые, орехи, овощи и фрукты.

Строение белков

Остатки аминокислот в составе белков соединяются между собой пептидной связью: между карбоксильной группой одной аминокислоты и аминогруппой другой.

При взаимодействии двух аминокислот образуется дипептид.

Полипептиды – структуры, которые состоят из 20-50 остатков аминокислот. На одном конце пептида находится свободная аминогруппа (его называют N-концом), а на другом — свободная карбоксильная группа (его называют С-концом).

Белки это полипептиды с высокой молекулярной массой, содержат свыше 50 аминокислотных остатков.

Уровни структурной организации белков

Известно четыре уровня структурной организации белков: первичная структура, вторичная, третичная и четвертичная.

Первичная

Это последовательность аминокислот в полипептидной цепи. Определяется качественным и количественным составом аминокислот.

[2]

Замена всего лишь одной аминокислоты на другую в полипептидной цепочке приводит к изменению свойств и функций белка. Например, замена в β-субъединице гемоглобина шестой глутаминовой аминокислоты на валин приводит к тому, что молекула гемоглобина в целом не может выполнять свою основную функцию — транспорт кислорода; в таких случаях у человека развивается заболевание — серповидноклеточная анемия.

Вторичная

Это пространственное расположение полипептидной цепи.

Чаще всего полипептидная цепь полностью или частично закручивается в спираль. Радикалы аминокислот находятся с внешней стороны спирали, внутри спирали находятся амино- и карбоксильная группа. Стабилизация витка происходит благодаря водородным связям, возникающим между карбоксильной и аминогруппой. Водородные связи гораздо слабее пептидных.

Третичная

Обусловлена способностью полипептидной спирали закручиваться в клубок (глобулу), благодаря дисульфидным связям. Поддержание третичной структуры обеспечивают дисульфидные связи, гидрофобные взаимодействия и ионные связи.

При этом белок скручивается так, что гидрофобные боковые цепи погружены вглубь молекулы и защищают ее от взаимодействия с водой, а снаружи расположены боковые гидрофилбные цепи.

Третичную структуру имеют большинство белков. Для каждого вида белка характерна своя форма клубка с изгибами и петлями.

Образуется когда объединятся несколько глобул. Субъединицы удерживаются в молекуле благодаря ионным, гидрофобным и электростатическим взаимодействиям. Например молекула гемоглобина состоит из четырех остатков молекул белка миоглобина.

Свойства белков обусловлены их аминокислотным составом и пространственной структурой.

По способности растворяться в воде белки подразделяются на глобулярные (растворимые) и фибриллярные (нерастворимые).

• Что происходит при варке яиц с белком?

Денатурация– это процесс нарушения природной структуры белка, который сопровождается разворачиванием белковой молекулы без нарушения первичной структуры.

Денатурацию могут вызвать нагревание, ультрафиолетовое излучение, тяжелые металлы и их соли, изменения рН, радиация, обезвоживание.

Причиной денатурации является разрыв связей, стабилизирующих определенную структуру белка. Первоначально рвутся наиболее слабые связи, а при ужесточении условий и более сильные. Поэтому сначала утрачивается четвертичная, затем третичная и вторичная структуры. Изменение пространственной конфигурации приводит к изменению свойств белка и, как следствие, делает невозможным выполнение белком свойственных ему биологических функций.

Чаще всего денатурация необратима, но бывает иногда возможна ренатурация — процесс восстановления структуры белка после денатурации (в таком случае это была обратимая денатурация).

Если восстановление пространственной конфигурации белка невозможно, то денатурация называется необратимой.

Деструкция

– необратимый процесс разрушения первичной структуры.

Функции белков

| следующая лекция ==>
a-спираль b-складчатая структура | Глава 1. Теоретические аспекты шламонакопителя «Белое море» как экологически опасного объекта города Дзержинска Нижегородской области

Дата добавления: 2017-02-24 ; просмотров: 8131 | Нарушение авторских прав

Физиологическое значение аминокислотного состава пищевых белков и их биологическая ценность

ОБМЕН БЕЛКОВ

Белки занимают ведущее место среди органических элементов, на их долю прихо­дится более 50% сухой массы клетки.Они выполняют ряд важнейших биологических функций. Вся совокупность обмена веществ в организме (дыхание, пищеварение, выделение) обеспечивается деятельностью ферментов, которые являются белками. Все двигательные функции организма обеспечиваются взаимодействием сократительных белков— актина и миозина.

Поступающий с пищей из внешней среды белок служит пластической и энергети­ческой целям. Пластическое значение белка состоит в восполнении и новообразовании различных структурных компонентов клетки. Энергетическое значение заключается в обеспечении организма энергией, образующейся при расщеплении белков.

[3]

В тканях постоянно протекают процессы распада белка с последующим выделе­нием из организма неиспользованных продуктов белкового обмена и наряду с этим синтез белков. Таким образом, белки организма не находятся в статическом состоянии, из-за непрерывного процесса их разрушения и образования происходит обновление белков. Скорость обновления белков неодинакова для различных тканей. С наибольшей скоро­стью обновляются белки печени, слизистой оболочки кишечника, а также других внутрен­них органов и плазмы крови. Медленнее обновляются белки, входящие в состав клеток мозга, сердца, половых желез и еще медленнее — белки мышц, кожи и особенно опорных тканей (сухожилий, костей и хрящей).

Физиологическое значение аминокислотного состава пищевых белков и их биологическая ценность

Для нормального обмена белков, являющихся основой их синтеза, необходимо по­ступление с пищей в организм различных аминокислот. Изменяя количественное соот­ношение между поступающими в организм аминокислотами или исключая из пищи ту или иную аминокислоту, можно по состоянию азотистого баланса, росту, массе и об­щему состоянию животных судить о значении для организма отдельных аминокислот. Экспериментально установлено, что из 20 входящих в состав белков аминокислот 12 син­тезируются в организме (заменимые аминокислоты), а 8 не синтезируются (незаменимые аминокислоты).

Без незаменимых аминокислот синтез белка резко нарушается и наступает отрица­тельный баланс азота, останавливается рост, падает масса тела. Длительная жизнь животных и нормальное их состояние невозможны при отсутствии в пище хотя бы одной из незаменимых аминокислот. Для людей незаменимыми аминокислотами являются лей­цин, изолейцин, валин, метионин, лизин, треонин, фенилаланин, трйптофан.

Белки обладают различным аминокислотным составом, поэтому и возможность их использования для синтетических нужд организма неодинакова. В связи с этим было введено понятие биологической ценности белков пищи. Белки, содержащие весь необхо­димый набор аминокислот в таких соотношениях, которые обеспечивают нормальные процессы синтеза, являются белками биологически полноценными. Наоборот, белки, не содержащие тех или иных аминокислот или содержащие их в очень малых количествах, будут неполноценными. Так, неполноценными белками являются желатина, в которой имеются лишь.следы цистина и отсутствует трйптофан и тирозин, зеин (белок, находя­щийся в кукурузе), содержащий мало триптофана и лизина, глиадин (белок пшеницы) и гордеин (белок ячменя), содержащие мало лизина, и некоторые другие./Наиболее высока биологическая ценность белков мяса, яиц, рыбы, икры, молока.

Читайте так же:  Рейтинг витаминов для женщин

В связи с этим пища человека должна не просто содержать достаточное количество белка, но обязательно иметь в своем составе не менее 30% белков с высокой биологиче­ской ценностью, т. е. животного происхождения.

У людей встречается форма белковой недостаточности, развивающаяся при однообразном питании продуктами растительного происхождения с малым содержанием белка. При этом возни­кает заболевание, получившее название «квашиоркор». Оно встречается среди населения стран тропического и субтропического пояса Африки, Латинской Америки и Юго-Восточной Азии. Этим заболеванием страдают преимущественно дети в возрасте от 1 года до 5 лет.

Биологическая ценность одного и тог.о же белка для разных людей различна. Вероят­но, она не является какой-то определенной величиной, а может изменяться в зависимости от состояния организма, предварительного пищевого режима, интенсивности и характера физиологической деятельности, ьда.раста, индивидуальных особенностей обмена веществ и других факторов.

Практически важно, чтобы два неполноценных белка, один из которых не содержит одних аминокислот, а другой — других, в сумме могли обеспечить потребности орга­низма. ,

Азотистый баланс

Азотистый баланс — соотношение количества азота, поступившего в организм с пи­щей и выделенного из него. Так как основным источником азота в организме является белок, то по азотистому балансу можно судить о соотношении количества поступившего и разрушенного в организме белка. Количество принятого с пищей азота отличается от количества усвоенного азота, так как часть азота теряется с калом.

Усвоение азота вычисляют по разности содержания азота в принятой пище и в кале. Зная количество усвоенного азота, легко вычислить общее количество усвоенного орга­низмом белка, так как в белке содержится в среднем 16% азота, т. е. 1 г азота содержится в 6,25 г белка. Следовательно, умножив найденное количество азота на 6,25, можно опре­делить количество белка.

Для того чтобы установить количество разрушенного белка, необходимо знать общее количество азота, выведенного из организма. Азотсодержащие продукты белкового об­мена (мочевина, мочевая кислота, креатинин и др.) выделяются преимущественно с мо­чой и частично с потом. В условиях обычного, неинтенсивного потоотделения на коли­чество азота в поте можно не обращать внимания. Поэтому для определения количества распавшегося в организме белка обычно находят количество азота в моче и умножают на 6,25.

Между количеством азота, введенного с белками пищи, и количеством азота, выво­димым из организма, существует определенная взаимосвязь. Увеличение поступления белка в организм приводит к увеличению выделения азота из организма. У взрослого человека при адекватном питании, как правило, количество введенного в организм азота равно количеству азота, выведенного из организма. Это состояние получило название азотистого равновесия. Если в условиях азотистого равновесия повысить количество белка в пище, то азотистое равновесие вскоре восстанавливается, но уже на новом, более высоком уровне. Таким образом, азотистое равновесие может устанавливаться при значительных колебаниях содержания белка в пище.

В случаях, когда поступление азота превышает его выделение, говорят о положи­тельном азотистом балансе. При этом синтез белка преобладает над его распадом. Устой­чивый положительный азотистый баланс наблюдается всегда при увеличении’ массы тела. Он отмечается в период роста организма, во время беременности, в периоде выздо­ровления после тяжелых заболеваний, а также при усиленных спортивных тренировках, сопровождающихся увеличением массы мышц. В этих условиях происходит задержка азота в организме (ретенция азота>.

Белки в организме не депонируются, т. е. не откладываются в запас. Поэтому при поступлении с пищей значительного количества белка только часть его расходуется на пластические цели, большая же часть — на энергетические цели.

Когда количество выведенного из организма азота превышает количество посту­пившего азота, говорят об отрицательном азотистом балансе.

Отрицательный азотистый баланс отмечается при белковом голодании, а также в случаях, когда в организм не поступают отдельные необходимые для синтеза белков аминокислоты.

Распад белка в организме протекает непрерывно. Степень распада белка связана с характером питания. Минимальные затраты белка в условиях белкового голодания наблюдаются при питании углеводами. В этих условиях выделение азота может быть в 3—3’/2 раза меньше, чем при полном голодании. Углеводы при этом выполняют сбере­гающую белки роль.

Распад белков в организме, происходящий при отсутствии белков в пище и доста­точном введении всех других питательных веществ (углеводы, жиры, минеральные соли, вода, витамины), отражает те минимальные траты, которые связаны с основными про­цессами жизнедеятельности. Эти наименьшие потери белка для организма в состоянии покоя, пересчитанные на 1 кг массы тела, были названы Рубнером коэффициентом из­нашивания.

Коэффициент изнашивания для взрослого человека равен 0,028—0,075 г азота на 1 кг массы тела в сутки.

Отрицательный азотистый баланс развивается при полном отсутствии или недоста­точном количестве белка в пище, а также при потреблении пищи, содержащей непол­ноценные белки. Не исключена возможность дефицита белка при нормальном поступле­нии, но при значительном увеличении потребности в нем организма. Во всех этих случаях имеет место белковое голодание.

При белковом голодании даже в случаях достаточного поступления в организм жи­ров, углеводов, минеральных солей, воды и витаминов происходит постепенно нарастаю­щая потеря массы тела, зависящая от того, что затраты тканевых белков (минимальные в этих условиях и равные коэффициенту изнашивания) не компенсируются поступлением белков с пищей. Поэтому длительное белковое голодание в конечном счете, так же как и полное голодание, неизбежно приводит к смерти. Особенно тяжело переносят белковое голодание растущие организмы, у которых в этом случае происходит не только потеря массы тела, но и остановка роста, обусловленная недостатком пластического материала, необходимого для построения клеточных структур.

Видео (кликните для воспроизведения).

Дата добавления: 2016-03-27 ; просмотров: 1418 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источники


  1. Кириллов, А.И. Квант-силовая физика. Гипотеза / А.И. Кириллов. — М.: Ивановский государственный университет, 2006. — 706 c.

  2. Ланькова, Т.В. Врачевание питанием, здоровье и долголетие / Т.В. Ланькова, В.В. Ланьков. — М.: АСТ, 1999. — 400 c.

  3. Епифанов, В. А. Лечебная физическая культура / В.А. Епифанов. — М.: ГЭОТАР-Медиа, 2018. — 568 c.
Белки содержащие весь необходимый набор аминокислот
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here