Химические свойства аминокислот уравнения реакций

Важная и проверенная информация на тему: "химические свойства аминокислот уравнения реакций" от профессионалов для спортсменов и новичков.

Химические свойства аминокислот уравнения реакций

Химические свойства а-аминокислот определяются, в самом общем случае, наличием у одного и того же атома углерода карбоксильной и аминной групп. Специфика боковых функциональных групп аминокислот определяет различия в их реакционной способности и индивидуальности каждой аминокислоты. Свойства боковых функциональных групп выходят на первый план в молекулах полипептидов и белков, т.е. после того, как аминная и карбоксильная группа свое дело сделали — образовали полиамидную цепочку.

Итак, химические свойства собственно аминокислотного фрагмента подразделяются на реакции аминов, реакции карбоновых кислот и свойства, обязанные взаимному их влиянию.

Карбоксильная группа проявляет себя в реакциях со щелочами — образуя карбоксилаты, со спиртами — образуя сложные эфиры, с аммиаком и аминами — образуя амиды кислот, а-аминокислоты достаточно легко декарбоксилируются при нагревании и при действии ферментов (схема 4.2.1).

Эта реакция имеет важное физиологическое значение, поскольку ее реализация in vivo приводит к образованию соответствующих биогенных аминов, выполняющих ряд специфических функций в живых организмах. При декарбоксилировании гистидина образуется гистамин, обладающий гормональным действием. В организме человека он находится в связанном виде, освобождается при воспалительных и аллергических реакциях, анафилактическом шоке, вызывает расширение капилляров, сокращение гладкой мускулатуры, резко повышает секрецию соляной кислоты в желудке.

Так же, реакцией декарбоксилирования, вместе с реакцией гидроксилирования ароматического цикла, из триптофана образуется другой биогенный амин — серотонин. Он содержится у человека в клетках кишечника в тромбоцитах, в ядах кишечнополостных, моллюсков, членистоногих и земноводных, встречается в растениях (бананах, кофе, облепихе). Серотонин выполняет медиаторные функции в центральной и периферической нервной системах, влияет на тонус кровеносных сосудов, повышает стойкость капилляров, увеличивает количество тромбоцитов в крови (схема 4.2.2).

Аминогруппа аминокислот проявляет себя в реакциях с кислотами, образуя аммонийные соли, ацилируется

и алкилируется при взаимодействии с галогенангидридами и галогеналкилами, с альдегидами образует основания Шиффа, а с азотистой кислотой, как и обычные первичные амины, образует соответствующие гидроксипроизводные, в данном случае оксикислоты (схема 4.2.3).

Одновременное участие аминогруппы и карбоксильной функции в химических реакциях достаточно разнообразно. а-Аминокислоты образуют комплексы с ионами многих двухвалентных металлов — эти комплексы построены с участием двух молекул аминокислот на один ион металла, при этом металл образует с лигандами связи двух типов: карбоксильная группа дает с металлом ионную связь, а аминогруппа участвует своей неподеленной электронной парой, координирующейся на свободные орбитали металла (донорно-акцепторная связь), давая так называемые хелатные комплексы (схема 4.2.4, металлы расположены в ряд по устойчивости комплексов).

Так как в молекуле аминокислоты присутствует одновременно и кислотная и основная функция, то безусловно взаимодействие между ними неминуемо — оно приводит к образованию внутренней соли (цвиттер-иона). Так как это соль слабой кислоты и слабого основания, то в водном растворе она будет легко гидролизоваться, т.е. система равновесная. В кристаллическом состоянии аминокислоты имеют чисто цвиттер-ионную структуру, отсюда высокие

этих веществ (схема 4.2.5).

Нингидринная реакция имеет большое значение для обнаружения аминокислот при их качественном и количественном анализе. Большинство аминокислот реагирует с нингидрином, выделяя соответствующий альдегид,

при этом раствор окрашивается в интенсивный сине-фиолетовый цвет ( нм), растворы оранжевого цвета ( нм) дают только пролин и оксипролин. Схема реакции достаточно сложна и ее промежуточные стадии не совсем ясны, окрашенный продукт реакции носит название “фиолетовый Руэмана» (схема 4.2.6).

Дикетопиперазины образуются при нагревании свободных аминокислот, а лучше при нагревании их эфиров.

Продукт реакции можно определить по структуре — как производное гетероцикла пиразина, по схеме реакции — как циклический двойной амид, поскольку образуется он взаимодействием аминогрупп с карбоксильными функциями по схеме нуклеофильного замещения (схема 4.2.7).

Читайте так же:  Сколько нужно пить л карнитина

Образование полиамидов а-аминокислот является разновидностью вышеописанной реакции образования дикепиперазинов, причем той

разновидностью, ради которой наверное Природа и создала этот класс соединений. Суть реакции заключается в нуклеофильной атаке аминной группы одной а-аминокислоты по карбоксильной группе второй а-аминокислоты, тогда как аминная группа второй аминокислоты последовательно атакует карбоксильную группу третьей аминокислоты и т.д. (схема 4.2.8).

Результатом реакции является полиамид или (называемый применительно к химии белков и белковоподобных соединений) полипептид. Соответственно фрагмент -CO-NH- называют пептидным звеном или пептидной связью.

Химические свойства аминокислот. Физические свойства аминокислот

Физические свойства аминокислот

Физические и химические свойства аминокислот. Способы их получения

По положению аминогруппы

По числу функциональных групп

Классификация

Понятие об аминокислотах, классификация аминокислот

Лекция №11

Тема «Аминокислоты. Белки»

1) Понятие об аминокислотах, классификация аминокислот

2) Физические и химические свойства аминокислот. Способы их получения

3) Белки – как биополимеры. Строение белковых молекул

4) Физические и химические свойства белков. Цветные реакции белков

5) Превращения и функции белков в организме.

Аминокислоты– гетерофункциональные соединения, содержащие две функциональные группы: аминогруппу ─NH2 и карбоксильную группу ─ COOH, связанные с углеводородным радикалом.

Общая формула аминокислот:

(H2N)m─ R─ (COOH)n, где m и n – чаще всего равны 1 или 2

— моноаминомонокарбоновые m=1, n=1

— диаминомонокарбоновые m=2, n=1

— моноаминодикарбоновые m=1, n =2

СН3─СН2─СН─СООН α-аминомасляная (2-аминобутановая) кислота

СН3─СН─СН2─СООН β-аминомасляная (3-аминобутановая) кислота

NH2─СН2─СН2─СН2─СООН γ-аминомасляная кислота (4-аминобутановая) кислота

3. аминокислоты организмаОстатки около 20 различных α-аминокислот входят в состав белков

[3]

ü заменимые (синтезируемые в организме человека)

глицин (аминоуксусная кислота)

[1]

аланин (α-аминопропионовая кислота, 2-аминопропановая кислота)

серин (α-амино-β-гидроксипропионовая кислота, 2-амино-3-гидроксипропановая кислота)

цистеин (α-амино-β-меркаптопропионовая кислота, 2-амино-3-меркаптопропановая кислота)

аспарагиновая кислота (аминоянтарная кислота, аминобутандиовая кислота)

ü незаменимые (не синтезируются в организме человека, поступают с пищей)

фенилаланин (α-амино-β-фенилпропионовая кислота, 2-амино-3-фенилпропановая кислота)

Лизин (α, ε- диаминокапроновая кислота, 2,6-диаминогексановая кислота)

Аминокислоты – бесцветные кристаллические вещества, хорошо растворимые в воде, температура плавления 230-300 0 , многие аминокислоты имеют сладкий вкус

1. Аминогруппа ─NH2 определяет основные свойства аминокислот, т.к. способна присоединять к себе катион водорода по донорно-акцепторному механизму за счет наличия неподеленной электронной пары у атома азота.

2. Карбоксильная группа ─ COOH определяет кислотные свойства.

Следовательно, аминокислоты — это амфотерные соединения.

3. Кроме того, аминогруппа в аминокислоте вступает во взаимодействие с входящей в её состав карбоксильной группой, образуя внутреннюю соль:

H2N─CH─COOH ↔ H3N + ─СН─СОО — (биполярный ион, цвиттер-ион)

Водные растворы моноаминомонокарбоновых кислот нейтральны, рН=7; водные растворы монодиаминокарбоновых кислот имеют рН 7.

4. Взаимодействие аминокислот друг с другом — образование пептидов

Любой дипептид имеет свободные амино- и карбоксильную группу и поэтому может взаимодействовать с ещё одной молекулой аминокислоты, образуя трипептид и т.д.

Общая формула пептидов:

Пептиды, содержащие до 10 аминокислотных остатков, называются олигопептиды; полипептиды содержат боле десяти аминокислотных остатков.

Реакция образования пептидов относится к реакциям поликонденсации.

Поликонденсация – реакция образования высокомолекулярных соединений, сопровождающаяся выделением побочных низкомолекулярных продуктов (H2O NH3 и др.)

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студентов недели бывают четные, нечетные и зачетные. 9450 —

| 7441 — или читать все.

185.189.13.12 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Химические свойства. Аминокислоты, строение, химические свойства.

Аминокислоты, строение, химические свойства.

Биологическая роль аминокислот.

Аминокислотами называются азотсодержащие органические вещества, молекулы которых содержат одновременно аминогруппу (–NH2) и карбоксильную группу (–COOH).

1. H2N – CH2 – COOH аминоуксусная, или аминоэтановая кислота (глицин)

2. H2N – CH2 – CH2 – COOH аминопропионовая, или аминопропановая кислота

3. H2N – (CH2)3 – COOH аминомасляная, или аминобутановая кислота

Изомерия аминокислот зависит от расположения аминогруппы и строения углеводородного радикала. NH2

α – аминопропионовая β — аминопропионовая

α-аминокислоты содержат аминогруппу у первого атома углерода, считая от карбоксильной группы, β – у второго, γ – у третьего, δ – у четвертого и т.д.

[2]

Физические свойства.

Читайте так же:  Аминокислоты состав свойства биологическая роль применение

Аминокислоты – бесцветные кристаллические вещества, хорошо растворимые в воде. Плавятся с разложением при температурах выше 250º С.

Химические свойства.

В молекулах аминокислот содержатся карбоксильные группы, обладающие кислотными свойствами, и аминогруппы, обладающие основными свойствами, т.е. аминокислоты – это амфотерные органические соединения.

1. Аминокислоты реагируют со щелочами с образованием соли и воды.

H2N – CH2 – COOH + KOH H2N – CH2 – COOK + H2O

Аминоуксусная кислота Аминоуксусно-кислый

2. Аминокислоты реагируют с кислотами с образованием соли.

HOOC – CH2 – NH2 + HCl HOOC – CH2 – NH3 + Cl –

3. Молекулы аминокислот реагируют друг с другом. Продуктом реакции является высокомолекулярное вещество, называемое полипептидом.

H2N – CH2 – COOH + H2N – CH2 – COOH H2N – CH2 – CO – NH – CH2 – COOH + H2O

При соединении n молекул аминокислот получается полипептид с формулой

В полипептиде остатки молекул аминокислот соединены между собой пептидными (амидными) связями ( – CO – NH – ) в пептидные цепи.

· Биологическая роль: α-аминокислоты необходимы для синтеза белков в живых организмах (более 20 α-аминокислот).

· Многие аминокислоты применяют в с/х для подкормки животных.

· В медицине аминокислоты применяют как лекарственные средства.

· Из некоторых аминокислот получают синтетические волокна. Например, из аминокапроновой кислоты получают полиамидное волокно капрон:

| следующая лекция ==>
Туалетное мыло получают из кислот, содержащих 10-16 атомов углерода в молекулах, а хозяйственное – из кислот, содержащих 17-21 атомов углерода. | Изомерия в органической химии очень распространена.

Дата добавления: 2016-05-05 ; просмотров: 3210 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Специфические свойства аминокислот

Отношение к нагреванию. В этом они напоминают оксикислоты. α-Аминокнслоты образуют дикетопиперазин (межмолекулягныи циклический диамид):

β-Аминокислоты при нагревании отщепляют аммиак и образуют непредельные кислоты:

γ-Аминокислоты претерпевают внутримолекулярную дегидратацию с образованием циклических амидов – лактамов:

2. Для α-аминокислот характерно образование комплексных соединений с ионами меди (I).

При этом образуется растворимый в воде устойчивый комплекс интенсивно синего цвета. Только α-аминокислоты дают подобную синюю окраску.

Значение аминокислот заключается в том, что они являются исходными веществами при построении белковых тел.

В состав белка входит 31 аминокислота, из них 30 а-аминокислот и одна р-аминокислота.

Отметим некоторые из аминокислот.

гликокол (глицин, аминоуксусная кислота)

Относится к α-аминокислотам.

АЛАНИН (α-аминопропиововая кислота)

Различают α- и β-аланины, которые входят в состав белка.

Молекула α-аланина содержит асимметричный атом углерода и существует в виде пары энантиомеров.

В построении молекулы белка принимает участие только L-аланин.

γ-АМИНОМАСЛЯНАЯ КИСЛОТА (ГАМК)

ГАМК содержится в клетках мозга и участвует в процессах торможения.

Дата добавления: 2015-09-29 ; просмотров: 1936 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Свойства аминокислот

Cвойства аминокислот можно разделить на две группы: химические и физические.

Химические свойства аминокислот

В зависимости от соединений, аминокислоты могут проявлять различные свойства.

Аминокислоты как амфотерные соединения образуют соли и с кислотами, и со щелочами.

Как карбоновые кислоты аминокислоты образуют функциональные производные: соли, сложные эфиры, амиды.

Взаимодействие и свойства аминокислот с основаниями:
Образуются соли:

NH2-CH2-COOH + NaOH

NH2-CH2-COONa + H2O

Натриевая соль + 2-аминоуксусной кислоты

Натриевая соль аминоуксусной кислоты (глицина) + вода

Взаимодействие со спиртами:

Видео (кликните для воспроизведения).

Аминокислоты могут реагировать со спиртами при наличии газообразного хлороводорода, превращаясь в сложный эфир. Сложные эфиры аминокислот не имеют биполярной структуры и являются летучими соединениями.

NH2-CH2-COOH + CH3OH

NH2-CH2-COOCH3 + H2O.

Метиловый эфир / 2-аминоуксусной кислоты /

Взаимодействие с аммиаком:

Образуются амиды:

Взаимодействие аминокислот с сильными кислотами:

Получаем соли:

Таковы основные химические свойства аминокислот.

Физические свойства аминокислот

Перечислим физические свойства аминокислот:

  • Бесцветные
  • Имеют кристаллическую форму
  • Большинство аминокислот со сладким привкусом, но в зависимости от радикала (R) могут быть горькими или безвкусными
  • Хорошо растворяются в воде, но плохо растворяются во многих органических растворителях
  • Аминокислоты имеют свойство оптической активности
  • Плавятся с разложением при температуре выше 200°C
  • Нелетучие
  • Водные растворы аминокислот в кислой и щелочной среде проводят электрический ток
Читайте так же:  Как пить креатин в порошке

Редактировать этот урок и/или добавить задание и получать деньги постоянно* Добавить свой урок и/или задания и получать деньги постоянно

Добавить новость и получить деньги

Добавить анкету репетитора и получать бесплатно заявки на обучение от учеников

user->isGuest) »]) . ‘ или ‘ . Html::a(‘зарегистрируйтесь’, [‘/user/registration/register’], [‘class’ => »]) . ‘ , чтобы получать деньги $$$ за каждый набранный балл!’); > else user->identity->profile->first_name) || !empty(Yii::$app->user->identity->profile->surname))user->identity->profile->first_name . ‘ ‘ . Yii::$app->user->identity->profile->surname; > else echo ‘Получайте деньги за каждый набранный балл!’; > ?>—>

При правильном ответе Вы получите 2 балла

Отметьте верные свойства аминокислот

Выберите те ответы, которые считаете верными.

Добавление комментариев доступно только зарегистрированным пользователям

Lorem iorLorem ipsum dolor sit amet, sed do eiusmod tempbore et dolore maLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempborgna aliquoLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempbore et dLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempborlore m mollit anim id est laborum.

28.01.17 / 22:14, Иван Иванович Ответить +5

Lorem ipsum dolor sit amet, consectetu sed do eiusmod qui officia deserunt mollit anim id est laborum.

28.01.17 / 22:14, Иван ИвановичОтветить -2

Lorem ipsum dolor sit amet, consectetur adipisicing sed do eiusmod tempboLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod temLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempborpborrum.

28.01.17 / 22:14, Иван Иванович Ответить +5

Аминокислоты

Характеристики и физические свойства аминокислот

Аминокислоты представляют собой твердые кристаллические вещества, характеризующиеся высокими температурами плавления и разлагающиеся при нагревании. Они хорошо растворяются в воде. Данные свойства объясняются возможностью существование аминокислот в виде внутренних солей (рис. 1).

Рис. 1. Внутренняя соль аминоуксусной кислоты.

Получение аминокислот

Исходными соединениями для получения аминокислот часто служат карбоновые кислоты, в молекулу которых вводится аминогруппа. Например, получение их из галогензамещенных кислот

Кроме этого исходным сырьем для получения аминокислот могут служить альдегиды (1), непредельные кислоты (2) и нитросоединения (3):

Химические свойства аминокислот

Аминокислота как гетерофункциональные соединения вступают в большинство реакций, характерных для карбоновых кислот и аминов. Наличие в молекулах аминокислот двух различных функциональных групп приводит к появлению ряда специфических свойств.

Аминокислоты – амфотерные соединения. Они реагируют как с кислотами, так и с основаниями:

Водные растворы аминокислот имеют нейтральную, щелочную и кислотную среду в зависимости от количества функциональных групп. Например, глутаминовая кислота образует кислый раствор, поскольку в её составе две карбоксильные группы и одна аминогруппа, а лизин – щелочной раствор, т.к. в её составе одна карбоксильная группа и две аминогруппы.

Две молекулы аминокислоты могут взаимодействовать друг с другом. При этом происходит отщепление молекулы воды и образуется продукт, в котором фрагменты молекулы связаны между собой пептидной связью (-CO-NH-). Например:

Полученное соединение называют дипептидом. Вещества, построенные из многих остатков аминокислот, называются полипептидами. Пептиды гидролизуются под действием кислот и оснований.

Применение аминокислот

Аминокислоты, необходимые для построения организма, как человек, так и животные получают из белков пищи.

γ-Аминомасляная кислота используется в медицине (аминалон / гаммалон) при психических заболеваниях; на её основе создан целый ряд ноотропных препаратов, т.е. оказывающих влияние на процессы мышления.

ε-Аминокапроновая кислота также используется в медицине (кровоостанавливающее средство), а кроме того представляет собой крупнотоннажный промышленный продукт, использующийся для получения синтетического полиамидного волокна – капрона.

Антраниловая кислота используется для синтеза красителей, например синего индиго, а также участвует в биосинтезе гетероциклических соединений.

Примеры решения задач

Задание Напишите уравнения реакций аланина с: а) гидроксидом натрия; б) гидроксидом аммония; в) соляной кислотой. За счет каких групп внутренняя соль проявляет кислотные и основные свойства?
Ответ Аминокислоты часто изображают как соединения, содержащие аминогруппу и карбоксильную группу, однако с такой структурой не согласуются некоторые их физические и химические свойства. Строение аминокислот соответствует биполярному иону:
Читайте так же:  Сколько можно протеина в день

Запишем формулу аланина как внутренней соли:

Исходя из этой структурной формулы, напишем уравнения реакций:

Внутренняя соль аминокислоты реагирует с основаниями как кислота, с кислотами – как основание. Кислотная группа – N + H3, основная – COO — .

Задание При действии на раствор 9,63 г неизвестной моноаминокарбоновой кислоты избытком азотистой кислоты было получено 2,01 л азота при 748 мм. рт. ст. и 20 o С. Определите молекулярную формулу этого соединения. Может ли эта кислоты быть одной из природных аминокислот? Если да, то какая это кислота? В состав молекулы этой кислоты не входит бензольное кольцо.
Решение Напишем уравнение реакции:

Найдем количество вещества азота при н.у., применяя уравнение Клапейрона-Менделеева. Для этого температуру и давление выражаем в единицах СИ:

T = 273 + 20 = 293 K;

P = 101,325 × 748 / 760 = 99,7 кПа;

n(N2) = 99,7 × 2,01 / 8,31 × 293 = 0,082 моль.

По уравнению реакции находим количество вещества аминокислоты и её молярную массу.

Определим аминокислоту. Составим уравнение и найдем x:

14x + 16 + 45 = 117;

Из природных кислот такому составу может отвечать валин.

Химические свойства аминокислот

I. Общие (неспецифические) свойства. Свойства аминов и карбоновых кислот. Свойства карбоновых кислот обсуждались выше (см. темы №4 и №5).

Аминами называются органические производные аммиака, в которых один, два или три атома водорода замещены на углеводородные радикалы (первичные, вторичные и третичные амины).

Все протеиногенные a-аминокислоты – за исключением пролина – содержат первичную аминогруппу.

1) Основные свойства (способность образовывать соли с кислотами) обусловлены наличием неподеленной электронной пары на внешнем электронном уровне атома азота:

триметиламин триметиламмоний хлорид

2) Нуклеофильные свойства проявляются в реакциях:

— алкилирования аминов (получение аминов из аммиака и алкилгалогенидов):

NH3 + CH3-CH2®Cl [ C2H5NH3]Cl

C2H5-NH2

Дальнейшее алкилирование приведет ко вторичному амину, затем к третичному амину, который можно превратить в соль четвертичного аммониевого основания (реакция Гофмана).

– ацилирования аминов: Например:

СH3-CH2-NH2 + CH3-C=O CH3-C=O + HCl

Эти реакции встречаются в организме.

Переносчиком ацетильной группы на нуклеофильные субстраты in vivo служит ацетилкофермент А.

+ СН3-С=О + KoA-SH

3)Реакция с азотистой кислотой – качественная реакция на класс аминов.

СH3-CH2-NH2 + H-O-N=O N2­ + H2O + C2H5OH

2H5)2NH + HONO [(C2H5)2NH2]ONO (C2H5)2N-N=O

вторичный амин -H2O

Третичные амины с азотистой кислотой не образуют устойчивых продуктов.

Первичные ароматические амины дают очень реакционноспособные соли диазония (реакция диазотирования), которые дальше вступают в различные превращения (в том числе реакцию азосочетания, например, с b-нафтолом).

4) Реакции аминов с альдегидами и кетонами обсуждались в теме № 3.

II. Специфические свойства обусловлены взаимным влиянием двух функциональных групп. a-, b- и g- Аминокислоты при нагревании вступают в реакции, аналогичные реакциям соответствующих оксикислот.

1. a-Аминокислоты при нагревании образуют дикетопиперазины.

Реакция идет межмолекулярно через промежуточное образование дипептидов:

OH

H

O=C-CH-NH

НO R

2. b-Аминокислоты образуют непредельные кислоты:

R-CH-CH2-C=O R-CH=CH-C=O

NH2 OH OH

3. g и d- Аминокислоты образуют циклические амиды, называемые g- и d — лактамами. Для них характерно таутомерное превращение (лактам ® лактим):

R-CH-CH2-CH2-C=O ®

NH2 OH

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Студент — человек, постоянно откладывающий неизбежность. 10547 —

| 7321 — или читать все.

185.189.13.12 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Как получают аминокислоты? Составьте уравнения реакций.

Решебник по химии за 11 класс (Г.Е. Рудзитис, Ф.Г. Фельдман, 2000 год),
задача №10
к главе «Глава XI. Амины. Аминокислоты. Азотсодержащие гетероциклические соединения».
Читайте так же:  Креатин высокий что значит

Аминокислоты можно получить из карбоновых кислот. Атомы водорода у атомов углерода, ближайших к карбоксильной группе, легко замещаются на галоген и образуются галогензамещенные карбоновые кислоты:

При восстановлении нитрогруппы водородом:

При действии аммиака на галогензамещенные карбоновые кислоты атом галогена замещается на аминогруппу:

Аминокислоты — номенклатура, получение, химические свойства. Белки

Строение аминокислот

Аминокислоты — гетерофункциональные соеди­нения, которые обязательно содержат две функцио­нальные группы: аминогруппу — NH2 и карбоксиль­ную группу —СООН, связанные с углеводородным радикалом.Общую формулу простей­ших аминокислот можно за­писать так:

Так как аминокислоты со­держат две различные функ­циональные группы, которые оказывают влияние друг на друга, характерные реакции отличают­ся от характерных реакций карбоновых кислот и аминов.

Свойства аминокислот

Аминогруппа — NH2 определяет основные свой­ства аминокислот, т. к. способна присоединять к себе катион водорода по донорно-акцепторному механизму за счет наличия свободной электронной пары у атома азота.

Группа —СООН (карбоксильная группа) опреде­ляет кислотные свойства этих соединений. Следовательно, аминокислоты — это амфотерные орга­нические соединения. Со щелочами они реагируют как кислоты:

С сильными кислотами- как основания-амины:

Кроме того, аминогруппа в аминокислоте всту­пает во взаимодействие с входящей в ее состав кар­боксильной группой, образуя внутреннюю соль:

Ионизация молекул аминокислот зависит от кислотного или щелочного характера среды:

Так как аминокислоты в водных растворах ве­дут себя как типичные амфотерные соединения, то в живых организмах они играют роль буферных веществ, поддерживающих определенную концен­трацию ионов водорода.

Аминокислоты представляют собой бесцветные кристаллические вещества, плавящиеся с разло­жением при температуре выше 200 °С. Они растворимы в воде и нерастворимы в эфире. В зависи­мости от радикала R— они могут быть сладкими, горькими или безвкусными.

Аминокислоты подразделяют на природные (обнаруженные в живых организмах) и синтети­ческие. Среди природных аминокислот (около 150) выделяют протеиногенные аминокислоты (около 20), которые входят в состав белков. Они представляют собой L-формы. Примерно полови­на из этих аминокислот относятся к незамени­мым, т. к. они не синтезируются в организме че­ловека. Незаменимыми являются такие кислоты, как валин, лейцин, изолейцин, фенилаланин, ли­зин, треонин, цистеин, мети­онин, гистидин, триптофан. В организм человека данные вещества поступают с пи­щей. Если их количество в пище будет недостаточ­ным, нормальное развитие и функционирование орга­низма человека нарушаются. При отдельных заболеваниях организм не в состоянии син­тезировать и некоторые другие аминокислоты. Так, при фенилкетонурии не синтезируется тирозин. Важнейшим свойством аминокислот является способность вступать в молекулярную конденса­цию с выделением воды и образованием амидной группировки —NH—СО—, например:

Получаемые в результате такой реакции высокомолекулярные соединения содержат большое число амидных фрагментов и поэтому получили название полимамидов.

К ним, кроме названного выше синтетического волок­на капрона, относят, напри­мер, и энант, образующийся при поликонденсации аминоэнантовой кислоты. Для получения синтетических во­локон пригодны аминокис­лоты с расположением амино- и карбоксильной групп на концах молекул.

Полиамиды альфа-аминокислот называются пепти­дами. В зависимости от числа остатков аминокислот различают дипептиды, трипептиды, полипепти­ды. В таких соединениях группы —NH—СО— на­зывают пептидными.

Изомерия и номенклатура аминокислот

Изомерия аминокислот определяется различ­ным строением углеродной цепи и положением аминогруппы, например:

Широко распространены также названия ами­нокислот, в которых положение аминогруппы обо­значается буквами греческого алфавита: α, β, у и т. д. Так, 2-аминобутановую кислоту можно на­звать также α-аминокислотой:

Способы получения аминокислот

Видео (кликните для воспроизведения).

В биосинтезе белка в живых организмах уча­ствуют 20 аминокислот.

Источники


  1. Литош, Н. Л. Адаптивная физическая культура. Психолого-педагогическая характеристика детей с нарушениями в развитии / Н.Л. Литош. — М.: СпортАкадемПресс, 2015. — 140 c.

  2. Гиппиус, С. В. Актерский тренинг. Гимнастика чувств / С.В. Гиппиус. — М.: Прайм-Еврознак, 2006. — 384 c.

  3. Лечебная физическая культура. — М.: Физкультура и спорт, 2014. — 368 c.
Химические свойства аминокислот уравнения реакций
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here