Химические свойства аминокислот уравнения

Важная и проверенная информация на тему: "химические свойства аминокислот уравнения" от профессионалов для спортсменов и новичков.

Аминокислоты — номенклатура, получение, химические свойства. Белки

Строение аминокислот

Аминокислоты — гетерофункциональные соеди­нения, которые обязательно содержат две функцио­нальные группы: аминогруппу — NH2 и карбоксиль­ную группу —СООН, связанные с углеводородным радикалом.Общую формулу простей­ших аминокислот можно за­писать так:

Так как аминокислоты со­держат две различные функ­циональные группы, которые оказывают влияние друг на друга, характерные реакции отличают­ся от характерных реакций карбоновых кислот и аминов.

Свойства аминокислот

Аминогруппа — NH2 определяет основные свой­ства аминокислот, т. к. способна присоединять к себе катион водорода по донорно-акцепторному механизму за счет наличия свободной электронной пары у атома азота.

Группа —СООН (карбоксильная группа) опреде­ляет кислотные свойства этих соединений. Следовательно, аминокислоты — это амфотерные орга­нические соединения. Со щелочами они реагируют как кислоты:

С сильными кислотами- как основания-амины:

Кроме того, аминогруппа в аминокислоте всту­пает во взаимодействие с входящей в ее состав кар­боксильной группой, образуя внутреннюю соль:

Ионизация молекул аминокислот зависит от кислотного или щелочного характера среды:

Так как аминокислоты в водных растворах ве­дут себя как типичные амфотерные соединения, то в живых организмах они играют роль буферных веществ, поддерживающих определенную концен­трацию ионов водорода.

Аминокислоты представляют собой бесцветные кристаллические вещества, плавящиеся с разло­жением при температуре выше 200 °С. Они растворимы в воде и нерастворимы в эфире. В зависи­мости от радикала R— они могут быть сладкими, горькими или безвкусными.

Аминокислоты подразделяют на природные (обнаруженные в живых организмах) и синтети­ческие. Среди природных аминокислот (около 150) выделяют протеиногенные аминокислоты (около 20), которые входят в состав белков. Они представляют собой L-формы. Примерно полови­на из этих аминокислот относятся к незамени­мым, т. к. они не синтезируются в организме че­ловека. Незаменимыми являются такие кислоты, как валин, лейцин, изолейцин, фенилаланин, ли­зин, треонин, цистеин, мети­онин, гистидин, триптофан. В организм человека данные вещества поступают с пи­щей. Если их количество в пище будет недостаточ­ным, нормальное развитие и функционирование орга­низма человека нарушаются. При отдельных заболеваниях организм не в состоянии син­тезировать и некоторые другие аминокислоты. Так, при фенилкетонурии не синтезируется тирозин. Важнейшим свойством аминокислот является способность вступать в молекулярную конденса­цию с выделением воды и образованием амидной группировки —NH—СО—, например:

Получаемые в результате такой реакции высокомолекулярные соединения содержат большое число амидных фрагментов и поэтому получили название полимамидов.

К ним, кроме названного выше синтетического волок­на капрона, относят, напри­мер, и энант, образующийся при поликонденсации аминоэнантовой кислоты. Для получения синтетических во­локон пригодны аминокис­лоты с расположением амино- и карбоксильной групп на концах молекул.

Полиамиды альфа-аминокислот называются пепти­дами. В зависимости от числа остатков аминокислот различают дипептиды, трипептиды, полипепти­ды. В таких соединениях группы —NH—СО— на­зывают пептидными.

Изомерия и номенклатура аминокислот

Изомерия аминокислот определяется различ­ным строением углеродной цепи и положением аминогруппы, например:

Широко распространены также названия ами­нокислот, в которых положение аминогруппы обо­значается буквами греческого алфавита: α, β, у и т. д. Так, 2-аминобутановую кислоту можно на­звать также α-аминокислотой:

Способы получения аминокислот

В биосинтезе белка в живых организмах уча­ствуют 20 аминокислот.

Химические свойства аминокислот уравнения

Химические свойства аминокислот

Реакции по карбоксильной группе

Декарбоксилирование карбоновых кислот легко протекает, если в a-положении к карбоксилу находится электроноакцепторная группа как, например, СООН (см. главу Дикарбоновые кислоты), NO2, CCl3 и другие. В аминокислотах таким электроноакцептором служит аммониевая группа NH3 + . Реакцию осуществляют при нагревании a-аминокислот в присутствии солей Cu(II) и поглотителей углекислого газа (Ba(OH)2).

В живых организмах этот процесс протекает под действием ферментов – декарбоксилазы и пиридоксальфосфата и приводит к образованию биогенных аминов.

В присутствии окислителей дезаминирование не останавливается на стадии образования амина, протекает окисление аминогруппы до иминогруппы и последующий гидролиз с образованием альдегида.

Этерификация аминокислот спиртами катализируется газообразным хлороводородом. Образующиеся при этом аммониевые соли сложных эфиров аминокислот превращают в нейтральные соединения, действуя на них органическими основаниями, например, триэтиламином.

Наличие двух функциональных групп в молекуле аминокислоты обусловливает реакцию межмолекулярного ацилирования с образованием амидов. Образующаяся связь называется пептидной, а соединения – пептидами или полипептидами. (см. Белки).

Читайте так же:  Аргинин для увеличения роста

Отношение аминокислот к нагреванию

Аминокислоты с различным взаимным расположением амино- и карбоксильных групп при нагревании ведут себя различно. α-Аминокислоты димеризуются и образуют циклические продукты дикетопиперазины. При этом протекает взаимное ацилирование аминогруппы одной молекулы аминокислоты карбоксильной группой другой молекулы.

γ -Аминокислоты при нагревании превращаются в лактамы – продукты внутримолекулярного ацилирования аминогруппы карбоксилом.

β-Аминокислоты отщепляют молекулу аммиака и дают α,β-непредельные кислоты.

Замыкание β-лактамного цикла происходит при взаимодействии β-аминокислот с дициклогексилкарбодиимдом (ДЦК).

Нингидринная реакция (реакция Руэманна)

При кратковременном нагревании α-аминокислот с нингидрином в воде наблюдается изменение окраски раствора с бесцветного на фиолетовый за счет образования нингидринного пигмента (пурпура Руэманна). Эта качественная реакция используется для визуальной идентификации a-аминокислот на тонкослойных и бумажных хроматограммах.

α-Аминокислоты образуют с катионами металлов внутрикомплексные соли. Например, глицин реагирует со свежеосажденным гидроксидом меди, давая синий раствор глицината меди.

[3]

Подобно ариламинам ароматические аминокислоты алкилируются, ацилируются и диазотируются по аминогруппе. Аналогично другим замещенным карбоновым кислотам, ароматические аминокислоты превращаются в сложные эфиры и амиды по карбоксильной группе. Обратим внимание на некоторые специфические свойства антраниловой кислоты, позволяющие использовать ее в органическом синтезе. Так, она является исходным соединением в одном из самых удобных методов генерации дегидробензола. Диазотирование антраниловой кислоты алкилнитритами дает цвиттер-ионную соль диазония, которая термически или фотохимически разлагается с образованием дегидробензола.

В промышленности из антраниловой кислоты синтезируют индиго – синий кубовый краситель.

Свойства аминокислот

Cвойства аминокислот можно разделить на две группы: химические и физические.

Химические свойства аминокислот

В зависимости от соединений, аминокислоты могут проявлять различные свойства.

Аминокислоты как амфотерные соединения образуют соли и с кислотами, и со щелочами.

Как карбоновые кислоты аминокислоты образуют функциональные производные: соли, сложные эфиры, амиды.

Взаимодействие и свойства аминокислот с основаниями:
Образуются соли:

NH2-CH2-COOH + NaOH

NH2-CH2-COONa + H2O

Натриевая соль + 2-аминоуксусной кислоты

Натриевая соль аминоуксусной кислоты (глицина) + вода

Взаимодействие со спиртами:

Аминокислоты могут реагировать со спиртами при наличии газообразного хлороводорода, превращаясь в сложный эфир. Сложные эфиры аминокислот не имеют биполярной структуры и являются летучими соединениями.

NH2-CH2-COOH + CH3OH

NH2-CH2-COOCH3 + H2O.

Метиловый эфир / 2-аминоуксусной кислоты /

Взаимодействие с аммиаком:

Образуются амиды:

Взаимодействие аминокислот с сильными кислотами:

Получаем соли:

Таковы основные химические свойства аминокислот.

Физические свойства аминокислот

Перечислим физические свойства аминокислот:

  • Бесцветные
  • Имеют кристаллическую форму
  • Большинство аминокислот со сладким привкусом, но в зависимости от радикала (R) могут быть горькими или безвкусными
  • Хорошо растворяются в воде, но плохо растворяются во многих органических растворителях
  • Аминокислоты имеют свойство оптической активности
  • Плавятся с разложением при температуре выше 200°C
  • Нелетучие
  • Водные растворы аминокислот в кислой и щелочной среде проводят электрический ток

Редактировать этот урок и/или добавить задание и получать деньги постоянно* Добавить свой урок и/или задания и получать деньги постоянно

Добавить новость и получить деньги

Добавить анкету репетитора и получать бесплатно заявки на обучение от учеников

user->isGuest) »]) . ‘ или ‘ . Html::a(‘зарегистрируйтесь’, [‘/user/registration/register’], [‘class’ => »]) . ‘ , чтобы получать деньги $$$ за каждый набранный балл!’); > else user->identity->profile->first_name) || !empty(Yii::$app->user->identity->profile->surname))user->identity->profile->first_name . ‘ ‘ . Yii::$app->user->identity->profile->surname; > else echo ‘Получайте деньги за каждый набранный балл!’; > ?>—>

При правильном ответе Вы получите 2 балла

Отметьте верные свойства аминокислот

Выберите те ответы, которые считаете верными.

Добавление комментариев доступно только зарегистрированным пользователям

Lorem iorLorem ipsum dolor sit amet, sed do eiusmod tempbore et dolore maLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempborgna aliquoLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempbore et dLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempborlore m mollit anim id est laborum.

28.01.17 / 22:14, Иван Иванович Ответить +5

Lorem ipsum dolor sit amet, consectetu sed do eiusmod qui officia deserunt mollit anim id est laborum.

28.01.17 / 22:14, Иван ИвановичОтветить -2

Lorem ipsum dolor sit amet, consectetur adipisicing sed do eiusmod tempboLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod temLorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempborpborrum.

Читайте так же:  Можно ли принимать л карнитин без тренировок

28.01.17 / 22:14, Иван Иванович Ответить +5

Аминокислоты

Характеристики и физические свойства аминокислот

Аминокислоты представляют собой твердые кристаллические вещества, характеризующиеся высокими температурами плавления и разлагающиеся при нагревании. Они хорошо растворяются в воде. Данные свойства объясняются возможностью существование аминокислот в виде внутренних солей (рис. 1).

Рис. 1. Внутренняя соль аминоуксусной кислоты.

Получение аминокислот

Исходными соединениями для получения аминокислот часто служат карбоновые кислоты, в молекулу которых вводится аминогруппа. Например, получение их из галогензамещенных кислот

Кроме этого исходным сырьем для получения аминокислот могут служить альдегиды (1), непредельные кислоты (2) и нитросоединения (3):

Химические свойства аминокислот

Аминокислота как гетерофункциональные соединения вступают в большинство реакций, характерных для карбоновых кислот и аминов. Наличие в молекулах аминокислот двух различных функциональных групп приводит к появлению ряда специфических свойств.

Аминокислоты – амфотерные соединения. Они реагируют как с кислотами, так и с основаниями:

Водные растворы аминокислот имеют нейтральную, щелочную и кислотную среду в зависимости от количества функциональных групп. Например, глутаминовая кислота образует кислый раствор, поскольку в её составе две карбоксильные группы и одна аминогруппа, а лизин – щелочной раствор, т.к. в её составе одна карбоксильная группа и две аминогруппы.

Две молекулы аминокислоты могут взаимодействовать друг с другом. При этом происходит отщепление молекулы воды и образуется продукт, в котором фрагменты молекулы связаны между собой пептидной связью (-CO-NH-). Например:

Полученное соединение называют дипептидом. Вещества, построенные из многих остатков аминокислот, называются полипептидами. Пептиды гидролизуются под действием кислот и оснований.

Применение аминокислот

Аминокислоты, необходимые для построения организма, как человек, так и животные получают из белков пищи.

γ-Аминомасляная кислота используется в медицине (аминалон / гаммалон) при психических заболеваниях; на её основе создан целый ряд ноотропных препаратов, т.е. оказывающих влияние на процессы мышления.

ε-Аминокапроновая кислота также используется в медицине (кровоостанавливающее средство), а кроме того представляет собой крупнотоннажный промышленный продукт, использующийся для получения синтетического полиамидного волокна – капрона.

Антраниловая кислота используется для синтеза красителей, например синего индиго, а также участвует в биосинтезе гетероциклических соединений.

Примеры решения задач

Задание Напишите уравнения реакций аланина с: а) гидроксидом натрия; б) гидроксидом аммония; в) соляной кислотой. За счет каких групп внутренняя соль проявляет кислотные и основные свойства?
Ответ Аминокислоты часто изображают как соединения, содержащие аминогруппу и карбоксильную группу, однако с такой структурой не согласуются некоторые их физические и химические свойства. Строение аминокислот соответствует биполярному иону:

Запишем формулу аланина как внутренней соли:

Исходя из этой структурной формулы, напишем уравнения реакций:

Внутренняя соль аминокислоты реагирует с основаниями как кислота, с кислотами – как основание. Кислотная группа – N + H3, основная – COO — .

Задание При действии на раствор 9,63 г неизвестной моноаминокарбоновой кислоты избытком азотистой кислоты было получено 2,01 л азота при 748 мм. рт. ст. и 20 o С. Определите молекулярную формулу этого соединения. Может ли эта кислоты быть одной из природных аминокислот? Если да, то какая это кислота? В состав молекулы этой кислоты не входит бензольное кольцо.
Решение Напишем уравнение реакции:

Найдем количество вещества азота при н.у., применяя уравнение Клапейрона-Менделеева. Для этого температуру и давление выражаем в единицах СИ:

T = 273 + 20 = 293 K;

P = 101,325 × 748 / 760 = 99,7 кПа;

n(N2) = 99,7 × 2,01 / 8,31 × 293 = 0,082 моль.

По уравнению реакции находим количество вещества аминокислоты и её молярную массу.

Определим аминокислоту. Составим уравнение и найдем x:

14x + 16 + 45 = 117;

Из природных кислот такому составу может отвечать валин.

Химические свойства аминокислот.

Свойства α-аминокислот.

Кислотно-основные свойства. Аминокислоты являются амфотерными со­единениями, что обусловлено одновременным присутствием в молекуле основ­ной (NH2) и кислотной (СООН) групп. И в кристаллическом состоянии, и в среде, близкой к нейтральной, аминокис­лоты существуют в виде внутренней соли — диполярного иона, называемого также цвиттер-ионом.

Реакции аминогруппы.Аминокислоты, содержащие первичную амино­группу, подвергаются дезаминированию в реакции с азотистой кислотой. Используя эту реакцию, известную как метод Ван-Слайка, ко­личественно определяют аминокислоты по объему выделившегося азота:

Несмотря на то что аминокислоты являются амфотерными соединениями, они могут быть оттитрованы щелочью по методу Сёренсена. Для этого аминокислоту предварительно обрабатывают избытком формалина, что при­водит к образованию достаточно устойчивого N-гидроксиметильного произ­водного, в котором основные свойства аминогруппы значительно понижены:

Читайте так же:  Анализ катионный протеин эозинофилов

В результате становится возможным титрование полученного продукта, что и применяется в количественном анализе аминокислот. Этот метод назы­вается также формальным титрованием. Методы Ван Слайка и Сёренсена сохранили лишь историческое значение в связи с появлением более эффективных методов анализа.

Видео (кликните для воспроизведения).

Аминокислоты подвергаются N-ацилированию по реакции Шоттена-Ба­умана при значениях pH, превышающих рI данной аминокислоты, т. е. когда аминогруппа не протонирована:

Если используются чувствительные к гидролизу хлорангидриды, то реак­цию необходимо проводить при низкой температуре (0-10 °С) при строго контролируемом значении pH. N-Ацилирование часто служит способом защиты аминогруппы. Однако удаление этой защиты нередко бывает затруднительным, так как амиды карбо­новых кислот гидролизуются в жестких условиях. В ряде случаев реакции N-ацилирования применяются для получения производных аминокислот с целью их последующего анализа высокочувстви­тельными физическими методами. К таким производным относятся дансилъные производные, образующиеся при действии дансилхлорида.

Реакции карбоксильной группы. Одной из важнейших реакций аминокис­лот является этерификация. Принципиально эта реакция мало отличается от этерификации обычных карбоновых кислот; различие в том, что применяют не каталитическое количество минеральной кислоты, а больше чем эквивалентное. Причина этого заключается в амфотерности аминокислот. В качестве кислоты чаще всего применяют газообразный хлороводород. Сложные эфиры получаются при этом в виде соответствующих солей по аминогруппе. Перевод соли в эфир со свободной аминогруппой осу­ществляется действием различных реагентов: спиртовым раствором аммиака на холоду, третичными аминами, алкоксидами металлов (желательно того же спирта, которым проводилась этерификация, во избежание переэтерификации полученного эфира).

Хлорангидриды N-ациламинокислот

, как и карбоновых кислот, образуются под действием пентахлорида фосфора или тионилхлорида на N-ациламинокислоты и были применены в синтезе первых пептидов.

α-Аминокислоты при нагревании c Ba(OH)2 под­вергаются декарбоксилированию с образованием аминов:

Эта реакция не представляет практического интереса in vitro, но в биоло­гических системах ее роль значительна. Амины, образующиеся в результате ферментативного декарбоксилирования аминокислот in vivo, называются биогенными аминами.

Реакции с одновременным участием амино- и карбоксильной групп.

При нагревании до температуры -200 °С α-аминокислоты подвергаются межмолекулярному ацилированию с образованием циклических шестичленных диамидов, называемых дикетопиперазинами (от аналогичного гетероцикла с двумяатомами азота — пиперазина):

Значительно легче вступают в подобную реак­цию не сами аминокислоты, а их сложные эфиры (со свободной аминогруппой). Так, эфиры глицина в растворе самопроизвольно циклизуются в дикетопиперазины даже при комнатной температуре.

Последнее изменение этой страницы: 2016-04-08; Нарушение авторского права страницы

Химические свойства аминокислот уравнения

Большинство аминокислот можно получить в результате химических реакций или при гидролизе белков.

[2]

1. Из карбоновых кислот через их галогенопроизводные в радикале

Галогенирование карбоновых кислот

Взаимодействие α-галогенкарбоновых кислот с избытком аммиака (аммонолиз)

На второй стадии происходит замещение атома галогена в галогенкарбоновых кислотах на аминогруппу. Выделяющийся при этом хлороводород связывается избытком аммиака в хлорид аммония:

2. Гидролиз пептидов и белков

α-Аминокислоты образуются при гидролизе пептидов и белков.

При гидролизе белков обычно образуются сложные смеси α-аминокислот, однако с помощью специальных методов из этих смесей можно выделять отдельные чистые аминокислоты.

3. Восстановление нитрозамещенных карбоновых кислот (применяется обычно для получения ароматических аминокислот)

4. Микробиологический синтез

Этот способ основан на способности специальных микроорганизмов вырабатывать в питательной среде в процессе жизнедеятельности определенную α-аминокислоту.

Химические свойства аминокислот

Химическое поведение аминокислот определяется двумя функциональными группами -NН2 и –СООН. Аминокислотам характерны реакции по аминогруппе, карбоксильной группе и по радикальной части, при этом в зависимости от реагента взаимодействие веществ может идти по одному или нескольким реакционным центрам.

Амфотерный характер аминокислот. Имея в молекуле одновременно кислотную и основную группу, аминокислоты в водных растворах ведут себя как типичные амфотерные соединения. В кислых растворах они проявляют основные свойства, реагируя как основания, в щелочных – как кислоты, образуя соответственно две группы солей:

Благодаря своей амфотерности в живом организме, аминокислоты играют роль буферных веществ, поддерживающих определенную концентрацию водородных ионов. Буферные растворы, полученные при взаимодействии аминокислот с сильными основаниями, широко применяются в биоорганической и химической практике. Соли аминокислот с минеральными кислотами лучше растворимы в воде, чем свободные аминокислоты. Соли с органическими кислотами труднорастворимые в воде и используются для идентификации и разделения аминокислот.

Читайте так же:  Витамин е в каких продуктах

Реакции, обусловленные аминогруппой.С участием аминогруппы аминокислоты образуют аммониевые соли с кислотами, ацилируются, алкилируются, реагируют с азотистой кислотой и альдегидами в соответствии со следующей схемой:

Алкилирование проводится при участии R-На1 или Аr-Наl:

В процессе реакции ацилирования используются хлорангидриды или ангидриды кислот (ацетилхлорид, уксусный ангидрид, бензилоксикарбонилхлорид):

Реакции ацилирования и алкилировнаия применяется для защиты NН2–группы аминокислот в процессе синтеза пептидов.

Реакции, обусловленные карбоксильной группой. При участиикарбоксильной группы аминокислоты образуют cоли, сложные эфиры, амиды, хлорангидриды в соответствии со схемой, представленной ниже:

Если при a-углеродном атоме в углеводородном радикале имеется электроноакцепторный заместитель (-NO2, -СС13, -СООН, -COR и т.д.), поляризующий связь С®СООН, то у карбоновых кислот легко протекают реакции декарбоксилирования. Декарбоксилирование a-аминокислот, содержащих в качестве заместителя + NH3-группу, приводит к образованию биогенных аминов. В живом орга­низме данный процесс протекает под действием фермента декарбоксилазы и витамина пиридоксальфосфата.

В лабораторных условиях реакцию осуществляется при на­гревании a-аминокислоты в присутствии поглотителей СО2, например, Ва(ОН)2.

При декарбоксилировании b-фенил-a-аланина, лизина, серина и гистидина образуются, соответственно, фенамин, 1,5-диаминопентан (кадаверин), 2-аминоэтанол-1 (коламин) и триптамин.

Реакции аминокислот с участием боковой группы. При нитровании аминокислоты тирозин азотной кислотой происходитобразованиединитропроизводного соединения, окрашенного в оранжевый цвет (ксантопротеиновая проба):

Окислительно-восстановительные переходы имеют место в системе цистеин – цистин:

В некоторых реакциях аминокислоты реагируют по обеим функциональным группам одновременно.

Образование комплексов с металлами. Почти все a-аминокислоты образуют комплексы с ионами двухвалентных металлов. Наиболее устойчивыми являются комплексные внутренние соли меди (хелатные соединения), образующиеся в результате взаимодействия с гидроксидом меди (II) и окрашенные в синий цвет:

[1]

Действие азотистой кислоты на алифатические аминокислоты приводит к образованию гидроксикислот, на ароматические — диазосоединений.

Образование гидроксикислот:

Реакция диазотирования:

Диазосоединение далее может реагировать по двум направлениям:

1. с выделением молекулярного азота N2:

2. без выделения молекулярного азота N2:

Хромофорная группа азобензола -N=N в азосоединениях обуславливает желтую, желтую, оранжевую или другого цвета окраску веществ при поглощении в видимой области света ( 400-800 нм). Ауксохромная группа

-СООН изменяет и усиливает окраску за счет π, π — сопряжения с π — электронной системой основной группы хромофора.

Отношение аминокислот к нагреванию. При нагревании аминокислоты разлагаются с образованием различных продуктов в зависимости от их типа. При нагревании a-аминокислот в результате межмолекулярной дегидратации образуются циклические амиды — дикетопиперазины:

валин (Val) диизопропильное производное

При нагревании b-аминокислот от них отщепляется аммиак с образованием α, β-непредельных кислот с сопряженной системой двойных связей:

β-аминовалериановая кислота пентен-2-овая кислота

Нагревание g- и d-аминокислот сопровождается внутримолекулярной дегидратацией и образованием внутренних циклических амидов лактамов:

γ-аминоизовалериановая кислота лактам γ-аминоизовалериановой

(4-амино-3-метилбутановая кислота) кислоты

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студентов недели бывают четные, нечетные и зачетные. 9451 —

| 7441 — или читать все.

185.189.13.12 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Химические свойства аминокислот уравнения

Анализ белковых молекул

Для определения аминокислот, входящих в состав белка используют методы, основанные, как правило, на частичном или полном гидролизе полипептидной цепи. Обычно проводят кислотный или ферментативный гидролиз белка и аминокислоты анализируют различными хроматографическими методами. Таким способом можно установить количественный и качественный состав аминокислот, входящих в состав белка, но не их последовательность. Остановимся на некоторых химических способах анализа белковых молекул.

Свободные аминокислоты обнаруживают нингидринной реакцией (см. Нингидринная реакция). Эту же реакцию дают и белки, но в более жестких условиях – при кипячении с водным раствором нингидрина.

Для обнаружения пептидных связей в белках служит биуретовая реакция (реакция Пиотровского) – образование ярко-окрашенных комплексов при взаимодействии белков с гидроксидом меди (II) в присутствии щелочи. В эту реакцию вступают все пептиды, имеющие минимум две пептидные связи. Цвет комплекса, получаемый при биуретовой реакции с различными пептидами, несколько отличается и зависит от длины пептидной цепи. Пептиды с длиной цепи от четырех аминокислотных остатков и выше образуют красный комплекс, трипептиды – фиолетовый, а дипептиды – синий. Реакцию используют не только для качественного, но и для количественного определения белков.

Читайте так же:  Глютамин во время тренировки

Пептиды, содержащие ароматические и гетероароматические аминокислоты дают положительную ксантопротеиновую реакцию (реакция Мульдера) – появление желтого окрашивания при действии конц. азотной кислоты. При добавлении щелочи цвет смеси меняется на оранжевый.

Серосодержащие аминокислоты в составе белка определяют по образованию черного осадка сульфида свинца при нагревании с ацетатом свинца – сульфгидрильная реакция (реакция Фоля).

Триптофан обнаруживают при помощи реакции с п-диметиламинобензальдегидом в среде серной кислоты – реакция Эрлиха . Образующийся продукт конденсации имеет красно-фиолетовое окрашивание.

Определение С- и N-концевых аминокислот

N-Концевые аминокислоты определяют по реакции с 2,4-динитрофторбензолом или дансилхлоридом. Свободная аминогруппа N-концевой аминокислоты арилируется или ацилируется, белок гидролизуют, образовавшиеся N-(2,4-динитрофенил)- (А) или N-(5-диметиламинонафтил-1-сульфо)производные (Б) существенно отличаются по физико-химическим свойствам от остальных аминокислот, поэтому их легко отделяют и идентифицируют.

С-Концевые аминокислоты определяют методом Акароби – при нагревании пептида с гидразингидратом пептидные связи гидролизуются и образуется смесь гидразидов аминокислот. С-Концевая аминокислота не реагирует с гидразином, остается в свободном виде, ее выделяют и идентифицируют.

Удобным методом определения последовательности аминокислот (первичной структуры белка) является способ деградации полипептидной цепи с помощью фенилизотиоцианата (метод Эдмана). N-Концевые аминокислоты последовательно отщепляются от цепи в виде фенилтиогидантоинов и идентифицируются.

Химические свойства. Аминокислоты, строение, химические свойства.

Аминокислоты, строение, химические свойства.

Биологическая роль аминокислот.

Аминокислотами называются азотсодержащие органические вещества, молекулы которых содержат одновременно аминогруппу (–NH2) и карбоксильную группу (–COOH).

1. H2N – CH2 – COOH аминоуксусная, или аминоэтановая кислота (глицин)

2. H2N – CH2 – CH2 – COOH аминопропионовая, или аминопропановая кислота

3. H2N – (CH2)3 – COOH аминомасляная, или аминобутановая кислота

Изомерия аминокислот зависит от расположения аминогруппы и строения углеводородного радикала. NH2

α – аминопропионовая β — аминопропионовая

α-аминокислоты содержат аминогруппу у первого атома углерода, считая от карбоксильной группы, β – у второго, γ – у третьего, δ – у четвертого и т.д.

Физические свойства.

Аминокислоты – бесцветные кристаллические вещества, хорошо растворимые в воде. Плавятся с разложением при температурах выше 250º С.

Химические свойства.

В молекулах аминокислот содержатся карбоксильные группы, обладающие кислотными свойствами, и аминогруппы, обладающие основными свойствами, т.е. аминокислоты – это амфотерные органические соединения.

1. Аминокислоты реагируют со щелочами с образованием соли и воды.

H2N – CH2 – COOH + KOH H2N – CH2 – COOK + H2O

Аминоуксусная кислота Аминоуксусно-кислый

2. Аминокислоты реагируют с кислотами с образованием соли.

HOOC – CH2 – NH2 + HCl HOOC – CH2 – NH3 + Cl –

3. Молекулы аминокислот реагируют друг с другом. Продуктом реакции является высокомолекулярное вещество, называемое полипептидом.

H2N – CH2 – COOH + H2N – CH2 – COOH H2N – CH2 – CO – NH – CH2 – COOH + H2O

При соединении n молекул аминокислот получается полипептид с формулой

В полипептиде остатки молекул аминокислот соединены между собой пептидными (амидными) связями ( – CO – NH – ) в пептидные цепи.

· Биологическая роль: α-аминокислоты необходимы для синтеза белков в живых организмах (более 20 α-аминокислот).

· Многие аминокислоты применяют в с/х для подкормки животных.

· В медицине аминокислоты применяют как лекарственные средства.

· Из некоторых аминокислот получают синтетические волокна. Например, из аминокапроновой кислоты получают полиамидное волокно капрон:

| следующая лекция ==>
Туалетное мыло получают из кислот, содержащих 10-16 атомов углерода в молекулах, а хозяйственное – из кислот, содержащих 17-21 атомов углерода. | Изомерия в органической химии очень распространена.
Видео (кликните для воспроизведения).

Дата добавления: 2016-05-05 ; просмотров: 3211 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источники


  1. Гогулан, Майя Здоровое питание. Как просто организовать и начать следовать советам. Можно не болеть / Майя Гогулан. — М.: АСТ, 2013. — 352 c.

  2. Р.Д. Цой Здоровье на кончиках пальцев / Р.Д. Цой. — М.: Ташкент: Медицина, 2015. — 621 c.

  3. Чередова, В. Лыжный спорт в школе / В. Чередова. — М.: Физкультура и спорт, 2000. — 164 c.
Химические свойства аминокислот уравнения
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here