Содержание
- 1 Аминокислоты. Свойства аминокислот.
- 2 Аминокислоты
- 3 Какие вещества называют аминокислотами
- 4 Какие вещества называют аминокислотами
- 5 Аминокислоты: названия и формулы
- 6 Какие вещества называют аминокислотами
- 7 Какие вещества называют аминокислотами
- 8 Общие свойства и строение аминокислот. Классификация аминокислот. Аминокислотный состав белка
- 9 Аминокислоты — номенклатура, получение, химические свойства. Белки
- 10 Какие вещества называют аминокислотами
Аминокислоты. Свойства аминокислот.
Аминокислоты, белки и пептиды являются примерами соединений, описанных далее. Многие биологически активные молекулы включают несколько химически различных функциональных групп, которые могут взаимодействовать между собой и с функциональными группа друг друга.
Аминокислоты.
Аминокислоты – органические бифункциональные соединения, в состав которых входит карбоксильная группа –СООН, а аминогруппа — NH2.
Разделяют α и β — аминокислоты:
В природе встречаются в основном α-кислоты. В состав белков входят 19 аминокислот и ода иминокислота (С5Н9NO2):
Самая простая аминокислота – глицин. Остальные аминокислоты можно разделить на следующие основные группы:
1) гомологи глицина – аланин, валин, лейцин, изолейцин.
2) серосодержащие аминокислоты – цистеин, метионин.
3) ароматические аминокислоты – фенилаланин, тирозин, триптофан.
4) аминокислоты с кислотным радикалом – аспарагиовая и глутаминовая кислота.
5) аминокислоты с алифатической гидрокси-группой – серин, треонин.
6) аминокислоты с амидной группой – аспарагин, глутамин.
7) аминокислоты с основным радикалом – гистидин, лизин, аргинин.
Изомерия аминокислот .
Во всех аминокислотах (кроме глицина) атом углерода связан с 4-мя разными заместителями, поэтому все аминокислоты могут существовать в виде 2-х изомеров (энантиомеров). Если L и D – энантиомеры.
Физические свойства аминокислот.
Аминокислоты представляют собой твердые кристаллические вещества, хорошо растворимые в воде и мало растворимые в неполярных растворителях.
Получение аминокислот.
1. Замещение атома галогена на аминогруппу в галогензамещеных кислотах:
Химические свойства аминокислот.
Аминокислоты – это амфотерные соединения, т.к. содержат в своём составе 2 противоположные функциональные группы – аминогруппу и гидроксильную группу. Поэтому реагируют и с кислотами и с щелочами:
Кислотно-основные превращение можно представить в виде:
Реагирует с азотистой кислотой:
Реагируют со спиртами в присутствие газообразного HCl:
Качественные реакции аминокислот.
Окисление нингидрином с образованием продуктов, окрашенных в сине-фиолетовый цвет. Иминокислота пролин дает с нингидрином желтый цвет.
2. При нагревании с концентрированной азотной кислотой протекает нитрование бензольного кольца и образуются соединения желтого цвета.
Аминокислоты
Аминокислота – мономер, состоящий из азота, водорода, углерода и кислорода. Также к аминокислоте могут присоединяться не углеводородные радикалы, например, сера или фосфор.
Условная общая формула аминокислот – NH2-R-COOH, где R – двухвалентный радикал. При этом аминогрупп в одной молекуле может быть несколько.
Рис. 1. Структурное строение аминокислот.
С химической точки зрения аминокислоты – производные карбоновых кислот, в молекуле которых атомы водорода заменены аминогруппами.
Аминокислоты классифицируются по нескольким признакам. Классификация по трём признакам представлена в таблице.
Признак
Описание
Пример
По расположению аминных и карбоксильных групп относительно друг друга
Содержат один атом углерода между функциональными группами
β-, γ-, δ-, ε- и другие аминокислоты
Содержат несколько атомов углерода между функциональными группами
β-аминопропионовая кислота (два атома между группами), ε-аминокапроновая кислота (пять атомов)
По изменяемой части (радикалу)
Не содержат ароматических связей. Бывают линейными и циклическими
Лизин, серин, треонин, аргинин
Содержат бензольное кольцо
Фенилаланин, триптофан, тирозин
Содержат гетероатом – радикал, не являющийся углеродом или водородом
Триптофан, гистидин, пролин
Содержат иминогруппу NH
По физико-химическим свойствам
Не взаимодействуют с водой
Глицин, валин, лейцин, пролин
Взаимодействуют с водой. Подразделяются на незаряженные, положительно и отрицательно заряженные
Лизин, серин, аспартат, глутамат, глутамин

Рис. 2. Схема классификации аминокислот.
Названия формируются из структурных или тривиальных наименований карбоновых кислот с приставкой «амино-». Цифры показывают, где располагается аминогруппа. Также используются тривиальные названия, заканчивающиеся на «-ин». Например, 2-аминобутановая или α-аминомасляная кислота.
Аминокислоты отличаются физическими свойствами от других органических кислот. Все соединения класса – кристаллические вещества, хорошо растворимые в воде, но плохо растворимые в органических растворителях. Они плавятся при высоких температурах, имеют сладковатый вкус и легко образуют соли.
Аминокислоты являются амфотерными соединениями. Благодаря наличию карбоксильной группы -СООН проявляют свойства кислот. Аминогруппа -NH2 обуславливает основные свойства.
Химические свойства соединений:
Из аминокислотных мономеров образуются длинные полимеры – белки. Один белок может включать несколько разных аминокислот. Например, содержащийся в молоке белок казеин состоит из тирозина, лизина, валина, пролина и ряда других аминокислот. В зависимости от строения белки выполняют различные функции в организме.

Что мы узнали?
Из урока химии 10 класса узнали, что такое аминокислоты, какие вещества содержат, как классифицируются. Аминокислоты включают две функциональные группы – аминогруппу -NH2 и карбоксильную группу -COOH. Наличие двух групп обуславливает амфотерность аминокислот: соединения обладают свойствами оснований и кислот. Аминокислоты делятся по нескольким признакам и отличаются количеством аминогрупп, наличием или отсутствием бензольного кольца, присутствием гетероатома, взаимодействием с водой.
Какие вещества называют аминокислотами
Аминокислоты являются амфотерными соединениями, для них характерны кислотно-основные свойства. Это обусловлено наличием в их молекулах функциональных групп кислотного (-СООН) и основного (-NH2) характера.

Кислотно-основное равновесие в водных растворах
В водных растворах и твердом состоянии аминокислоты существуют в виде внутренних солей.
Ионизация молекул аминокислот в водных растворах зависит от кислотного или щелочного характера среды:

В кислой среде молекулы аминокислот представляю собой катион. В щелочной среде молекулы аминокислот представляют собой анион. В нейтральной среде аминокислоты представляют собой цвиттер-ион или биполярный ион.
Аминокислоты в твердом состоянии всегда существуют в виде биполярного, двухзарядного иона — цвиттер-иона.
Водные растворы аминокислот в кислой и щелочной среде проводят электрический ток.
1. Взаимодействие внутри молекулы – образование внутренних солей (биполярных ионов)
Молекулы аминокислот существуют в виде внутренних солей, которые образуются за счет переноса протона от карбоксила к аминогруппе.
Карбоксильная группа аминокислоты отщепляет ион водорода, который затем присоединяется к аминогруппе той же молекулы по месту неподеленной электронной пары азота. В результате действие функциональных групп нейтрализуется, образуется так называемая внутренняя соль.

Водные растворы аминокислот в зависимости от количества функциональных групп имеют нейтральную, кислую или щелочную среду.
Аминокислоты с одной карбоксильной группой и одной аминогруппой имеют нейтральную реакцию.
Видеоопыт «Свойства аминоуксусной кислоты»
а) моноаминомонокарбоновые кислоты (нейтральные кислоты)
Внутримолекулярная нейтрализация — образуется биполярный цвиттер-ион.

Водные растворы моноаминомонокарбоновых кислот нейтральны (рН≈7).
б) моноаминодикарбоновые кислоты (кислые аминокислоты)

Водные растворы моноаминодикарбоновых кислот имеют рН + .
в) диаминомонокарбоновые кислоты (основные аминокислоты)

Водные растворы диаминомонокарбоновых кислот имеют рН>7 (щелочная среда), так как в результате образования внутренних солей этих кислот в растворе появляется избыток гидроксид-ионов ОН — .
2. Взаимодействие с основаниями и кислотами
Аминокислоты как амфотерные соединения образуют соли как с кислотами (по группе NH2), так и со щелочами (по группе СООН).

Как кислота (участвует карбоксильная группа)
Как карбоновые кислоты α-аминокислоты образуют функциональные производные: соли, сложные эфиры, амиды.
а) взаимодействие с основаниями

б) взаимодействие со спиртами (р. этерификации)
Аминокислоты могут реагировать со спиртами в присутствии газообразного хлороводорода, превращаясь в сложный эфир. Сложные эфиры аминокислот не имеют биполярной структуры и являются летучими соединениями.

в) взаимодействие с аммиаком

Как основание (участвует аминогруппа)
а) взаимодействие с сильными кислотами
Подобно аминам, аминокислоты реагируют с сильными кислотами с образованием солей аммония:

б) взаимодействие с азотистой кислотой (р. дезаминирования)
Подобно первичным аминам, аминокислоты реагируют с азотистой кислотой, при этом аминогруппа превращается в гидроксогруппу, а аминокислота – в гидроксикислоту:

Измерение объёма выделившегося азота позволяет определить количество аминокислоты (метод Ван-Слайка).
3. Внутримолекулярное взаимодействие функциональных групп ε-аминокапроновой кислоты, в результате которого образуется ε-капролактам (полупродукт для получения капрона).

4. Межмолекулярное взаимодействие α-аминокислот – образование пептидов (р. поликонденсации)
При взаимодействии карбоксильной группы одной молекулы аминокислоты и аминогруппы другой молекулы аминокислоты образуются пептиды. При взаимодействии двух α-аминокислот образуется дипептид.

Межмолекулярная реакция с участием трех α-аминокислот приводит к образованию трипептида и т.д.
Важнейшие природные полимеры – белки (протеины) – относятся к полипептидам, т.е представляют собой продукт поликонденсации a-аминокислот.
5. Качественные реакции!
а) нингидриновая реакция
Все аминокислоты окисляются нингидрином с образованием продуктов сине-фиолетового цвета:
![]() |
Видео (кликните для воспроизведения). |
Иминокислота пролин дает с нингидрином желтое окрашивание.
б) с ионами тяжелых металлов α-аминокислоты образуют внутрикомплексные соли. Комплексы меди (II), имеющие глубокую синюю окраску, используются для обнаружения α-аминокислот.

Видеоопыт «Образование медной соли аминоуксусной кислоты»
Какие вещества называют аминокислотами
Для названия аминокислот используют три типа номенклатуры – тривиальную, рациональнцю и IUPAC.
По систематической номенклатуре (IUPAC) названия аминокислот образуются из названий соответствующих кислот прибавлением приставки амино и указанием места расположения аминогруппы по отношению к карбоксильной группе.
Нумерация углеродной цепи начинается с атома углерода карбоксильной группы.

По рациональной номенклатуре к тривиальному названию карбоновой кислоты добавляется приставка амино с указанием положения аминогруппы буквой греческого алфавита.

Формулы и названия некоторых α-аминокислот, остатки которых входят в состав белков


Если в молекуле аминокислоты содержится две аминогруппы, то в ее названии используется приставка диамино, три группы NH2 – триамино и т.д.

Наличие двух или трех карбоксильных групп отражается в названии суффиксом –диовая или -триовая кислота.
Аминокислоты: названия и формулы
Аминокислоты: названия
Сгруппируем аминокислоты в таблице №2 по строению радикала (R) (формуле) (третий столбец таблицы) и по названию (по алфавиту).
Здесь же отметим знаком * незаменимые (важнейшие для организма) аминокислоты.
Поясним, что существуют незаменимые и заменимые аминокислоты:
Незаменимые аминокислоты: Это важные аминокислоты, которые не могут быть синтезированы в организме. Поэтому нужно, чтобы они поступали в организм с пищей.
Существуют 8 незаменимых аминокислот для взрослого человека: лейцин, изолейцин, валин, метионин, фенилаланин, треонин, триптофан, лизин, также часто к ним относят гистидин.
Заменимые аминокислоты — это аминокислоты, которые могут соединяться в организме. Их можно получить двумя способами: либо в готовом виде из повседневного потребления пищи, либо производить самостоятельно из других видов аминокислот и веществ попадающих в организм.
К заменимым аминокислотам относят: аргинин, аспарагин, глутамин, глутаминовая кислота, глицин, орнитин, таурин и др. (см. таблицу №1)

Сокращение (аминокислотный остаток в пептидах и белках)
Какие вещества называют аминокислотами
Какие вещества называют аминокислотами а какие белками
Лучший ответ:
БелкиВысокомолекулярные органические вещества, состоящие из альфа-аминокислот, соединённых в цепочку пептидной связью.
Аминокисло́ты (аминокарбо́новые кисло́ты; АМК) — органические соединения, в молекуле которых одновременно содержатся карбоксильные и аминные группы. Основные химические элементы аминокислот это углерод (C), водород (H), кислород (O), и азот (N), хотя другие элементы также встречаются в радикале определенных аминокислот. Известны около 500 встречающихся в природе аминокислот (хотя только 20 используются в генетическом коде). Аминокислоты могут рассматриваться как производные карбоновых кислот, в которых один или несколько атомов водорода заменены на аминогруппы.
Другие вопросы:
Зарание спасибо.Надеюсь есть добрые люди которые помогут. Какие вы знайте древние русские государства. Напишите сообщение об одном из них.
Существует ли треугольник ср сторонами : а)0,5см,0,5см,0,5см б)8см,13см, 5см в)6см,13см,9см г)11см,2см,5см
Какой угол (в градусах )описывает ЧАСОВАЯ стрелка за 25 минут? Одна подсказка: ответ должен получиться 12,5 а как решить не знаю. Помогите пожалуйста.
Какие вещества называют аминокислотами
Аминокислоты, белки
Вариант 1
1. Напишите уравнения реакций взаимодействия аминоуксусной кислоты с этанолом, гидроксидом кальция, соляной кислотой.

2. Изобразите структурные формулы изомерных аминокислот C₃H₇O₂N и назовите эти вещества.

3. Что подразумевают под первичной, вторичной и третичной структурами белков? Какие связи соответствуют каждой структуре?

Вариант 2
1. Напишите уравнения реакций, с помощью которых можно из этанола и неорганических веществ получить глицин (аминоэтановую кислоту).

2. Сильнее или слабее проявляются кислотные свойства у аминокислот по сравнению с карбоновыми кислотами (муравьиной, уксусной)? Почему?
Аминокислоты слабее карбоновых кислот проявляют кислотность. Радикал с аминогруппой увеличивает электронную плотность на атоме кислорода сильнее, чем радикал без аминогруппы. При увеличении электронной плотности связь между кислородом и протоном карбоксильной группы становится прочнее, а следовательно снижается кислотность.
3. Что такое денатурация белков? В чем ее сущность и какие факторы ее вызывают?
Денатурация – это разрушение третичной и вторичной структуры белка с сохранением первичной структуры. Она происходит под воздействием физических (температура, радиация) или химических (действие кислот, щелочей) факторов.
Вариант 3
1. Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения: метан → А → уксусный альдегид → Б → В → аминоуксусная кислота. Назовите вещества А, Б, и В.

2. Почему не все аминокислоты имеют нейтральную реакцию на индикатор в отличие от аминоуксусной кислоты? Ответ подтвердите конкретными примерами.

3. К какому классу веществ принадлежат белки? Из атомов каких элементов состоят молекулы белков?
Белки (протеины, полипептиды) – высокомолекулярные органические вещества, состоящие из соединенных в цепочку пептидной связью аминокислот. В состав любого белка входят углерод, водород, азот и кислород. Кроме того, часто в состав белков входит сера.
Вариант 4
1. Напишите уравнения реакций между: а) α-аминомасляной кислотой и гидроксидом натрия; б) аминоуксусной и соляной кислотой; в) β-аминопропионовой кислотой и метанолом.

2. Сильнее или слабее проявляются основные свойства у аминокислот по сравнению с метиламином? Почему?
Метиламин является более сильным основанием, чем аминокислоты. Карбоксильная группа аминокислот обладает акцепторным эффектом и оттягивает на себя электронную плотность с атома азота аминогруппы, тем самым уменьшая ее способность отрывать протон. А метильная группа метиламина обладает донорным эффектом и увеличивает электронную плотность на атоме азота аминогруппы.
3. Почему необходима белковая пища? Что происходит с белками пищи в организме человека?
Общие свойства и строение аминокислот. Классификация аминокислот. Аминокислотный состав белка
Аминокислоты – производные жирных или ароматических жирных кислот, которые содержат аминную или карбоксильную группировку, которые различаются только радикалами.
Общая формула: ![]() |
Свойства α-аминокислот: кристаллические вещества; t плавления около 200°C; хорошо растворяются в воде (хуже в спирте); не растворяются в хлорофилле и эфире. |
Все аминокислоты содержат: 1) карбоксильную группу (–СООН), 2) аминогруппу (–NH2), 3) радикал или R-группу (остальная часть молекулы). Строение радикала у разных видов аминокислот — различное. В зависимости от количества аминогрупп и карбоксильных групп, входящих в состав аминокислот, различают: нейтральные аминокислоты, имеющие одну карбоксильную группу и одну аминогруппу; основные аминокислоты, имеющие более одной аминогруппы; кислые аминокислоты, имеющие более одной карбоксильной группы.
Аминокислоты являются амфотерными соединениями, так как в растворе они могут выступать как в роли кислот, так и оснований. В водных растворах аминокислоты существуют в разных ионных формах.
Аминокислотный состав белка:
Белки — непериодические полимеры, мономерами которых являются α-аминокислоты. Обычно в качестве мономеров белков называют 20 видов α-аминокислот, хотя в клетках и тканях их обнаружено свыше 170.
В зависимости от того, могут ли аминокислоты синтезироваться в организме человека и других животных, различают: заменимые аминокислоты — могут синтезироваться; незаменимые аминокислоты — не могут синтезироваться. Незаменимые аминокислоты должны поступать в организм вместе с пищей. Растения синтезируют все виды аминокислот.
В зависимости от аминокислотного состава, белки бывают: полноценными — содержат весь набор аминокислот; неполноценными — какие-то аминокислоты в их составе отсутствуют. Если белки состоят только из аминокислот, их называют простыми. Если белки содержат помимо аминокислот еще и неаминокислотный компонент (простетическую группу), их называют сложными. Простетическая группа может быть представлена металлами (металлопротеины), углеводами (гликопротеины), липидами (липопротеины), нуклеиновыми кислотами (нуклеопротеины).
COOH-CH2 аспарагиновая аминокислота
COOH-CH2-CH2 глутаминовая аминокислота
Цистин (два цистеина)
Циклические аминокислоты (фенилаланин, тирозин, триптофан)
Незаменимые аминокислоты – не способны синтезироваться в организме человека и животных (триптофан, фенилаланин, лизин, валин, треонин, лейцин, изолейцин, метионин)
Не нашли то, что искали? Воспользуйтесь поиском:
Лучшие изречения: На стипендию можно купить что-нибудь, но не больше. 8996 —


185.189.13.12 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.
Отключите adBlock!
и обновите страницу (F5)
очень нужно
Аминокислоты — номенклатура, получение, химические свойства. Белки
Строение аминокислот
Аминокислоты — гетерофункциональные соединения, которые обязательно содержат две функциональные группы: аминогруппу — NH2 и карбоксильную группу —СООН, связанные с углеводородным радикалом.Общую формулу простейших аминокислот можно записать так:

Так как аминокислоты содержат две различные функциональные группы, которые оказывают влияние друг на друга, характерные реакции отличаются от характерных реакций карбоновых кислот и аминов.
Свойства аминокислот
Аминогруппа — NH2 определяет основные свойства аминокислот, т. к. способна присоединять к себе катион водорода по донорно-акцепторному механизму за счет наличия свободной электронной пары у атома азота.
Группа —СООН (карбоксильная группа) определяет кислотные свойства этих соединений. Следовательно, аминокислоты — это амфотерные органические соединения. Со щелочами они реагируют как кислоты:

С сильными кислотами- как основания-амины:

Кроме того, аминогруппа в аминокислоте вступает во взаимодействие с входящей в ее состав карбоксильной группой, образуя внутреннюю соль:

Ионизация молекул аминокислот зависит от кислотного или щелочного характера среды:

Так как аминокислоты в водных растворах ведут себя как типичные амфотерные соединения, то в живых организмах они играют роль буферных веществ, поддерживающих определенную концентрацию ионов водорода.
Аминокислоты представляют собой бесцветные кристаллические вещества, плавящиеся с разложением при температуре выше 200 °С. Они растворимы в воде и нерастворимы в эфире. В зависимости от радикала R— они могут быть сладкими, горькими или безвкусными.
Аминокислоты подразделяют на природные (обнаруженные в живых организмах) и синтетические. Среди природных аминокислот (около 150) выделяют протеиногенные аминокислоты (около 20), которые входят в состав белков. Они представляют собой L-формы. Примерно половина из этих аминокислот относятся к незаменимым, т. к. они не синтезируются в организме человека. Незаменимыми являются такие кислоты, как валин, лейцин, изолейцин, фенилаланин, лизин, треонин, цистеин, метионин, гистидин, триптофан. В организм человека данные вещества поступают с пищей. Если их количество в пище будет недостаточным, нормальное развитие и функционирование организма человека нарушаются. При отдельных заболеваниях организм не в состоянии синтезировать и некоторые другие аминокислоты. Так, при фенилкетонурии не синтезируется тирозин. Важнейшим свойством аминокислот является способность вступать в молекулярную конденсацию с выделением воды и образованием амидной группировки —NH—СО—, например:


Получаемые в результате такой реакции высокомолекулярные соединения содержат большое число амидных фрагментов и поэтому получили название полимамидов.
К ним, кроме названного выше синтетического волокна капрона, относят, например, и энант, образующийся при поликонденсации аминоэнантовой кислоты. Для получения синтетических волокон пригодны аминокислоты с расположением амино- и карбоксильной групп на концах молекул.
Полиамиды альфа-аминокислот называются пептидами. В зависимости от числа остатков аминокислот различают дипептиды, трипептиды, полипептиды. В таких соединениях группы —NH—СО— называют пептидными.
Изомерия и номенклатура аминокислот
Изомерия аминокислот определяется различным строением углеродной цепи и положением аминогруппы, например:

Широко распространены также названия аминокислот, в которых положение аминогруппы обозначается буквами греческого алфавита: α, β, у и т. д. Так, 2-аминобутановую кислоту можно назвать также α-аминокислотой:

Способы получения аминокислот

В биосинтезе белка в живых организмах участвуют 20 аминокислот.
Какие вещества называют аминокислотами
Среди азотсодержащих органических веществ имеются соединения с двойственной функцией. Особенно важными из них являются аминокислоты.
В клетках и тканях живых организмов встречается около 300 различных аминокислот, но только 20 ( α-аминокислоты ) из них служат звеньями (мономерами), из которых построены пептиды и белки всех организмов (поэтому их называют белковыми аминокислотами). Последовательность расположения этих аминокислот в белках закодирована в последовательности нуклеотидов соответствующих генов. Остальные аминокислоты встречаются как в виде свободных молекул, так и в связанном виде. Многие из аминокислот встречаются лишь в определенных организмах, а есть и такие, которые обнаруживаются только в одном из великого множества описанных организмов. Большинство микроорганизмов и растения синтезируют необходимые им аминокислоты; животные и человек не способны к образованию так называемых незаменимых аминокислот, получаемых с пищей. Аминокислоты участвуют в обмене белков и углеводов, в образовании важных для организмов соединений (например, пуриновых и пиримидиновых оснований, являющихся неотъемлемой частью нуклеиновых кислот), входят в состав гормонов, витаминов, алкалоидов, пигментов, токсинов, антибиотиков и т. д.; некоторые аминокислоты служат посредниками при передаче нервных импульсов.
Аминокислоты
— органические амфотерные соединения, в состав которых входят карбоксильные группы – СООН и аминогруппы -NH 2 .
Аминокислоты
можно рассматривать как карбоновые кислоты, в молекулах которых атом водорода в радикале замещен аминогруппой.
1. В зависимости от взаимного расположения амино- и карбоксильной групп аминокислоты подразделяют на α-, β-, γ-, δ-, ε- и т. д.

2. В зависимости от количества функциональных групп различают кислые, нейтральные и основные.
3. По характеру углеводородного радикала различают алифатические (жирные), ароматические, серосодержащие и гетероциклические аминокислоты. Приведенные выше аминокислоты относятся к жирному ряду.
Примером ароматической аминокислоты может служить пара -аминобензойная кислота:
Примером гетероциклической аминокислоты может служить триптофан – незаменимая α- аминокислота
По систематической номенклатуре названия аминокислот образуются из названий соответствующих кислот прибавлением приставки амино- и указанием места расположения аминогруппы по отношению к карбоксильной группе. Нумерация углеродной цепи с атома углерода карбоксильной группы.
Часто используется также другой способ построения названий аминокислот, согласно которому к тривиальному названию карбоновой кислоты добавляется приставка амино- с указанием положения аминогруппы буквой греческого алфавита.
Для α-аминокислот R-CH(NH2)COOH

![]() |
Видео (кликните для воспроизведения). |
, которые играют исключительно важную роль в процессах жизнедеятельности животных и растений, применяются тривиальные названия.
Источники
Красикова, И. С. Гимнастика для ленивых / И.С. Красикова. — М.: Корона Принт, 2003. — 144 c.
Кучин, Владимир Волновая диетология / Владимир Кучин. — М.: Издательские решения, 2015. — 381 c.
Гимнастика для пальчиков. Развивающая пропись-раскраска. — М.: Современная школа, ЮниверсПресс, 2011. — 156 c.- Фохтин, В.Г. Биомеханическая гимнастика для мышц позвоночника и суставов / В.Г. Фохтин. — М.: Эксмо, 2012. — 224 c.
- Дубровская, С. В. Здоровье и питание. Лечебное питание при сахарном диабете / С.В. Дубровская. — М.: Рипол Классик, 2011. — 192 c.

Спортивный диетолог с 12 летним стажем.
Образование: Российский государственный университет физической культуры, спорта, молодёжи и туризма (ГЦОЛИФК) (РГУФКСМиТ).
Место работы: Частный фитнес клуб г. Москва.