Какие вещества являются аминокислотами

Важная и проверенная информация на тему: "какие вещества являются аминокислотами" от профессионалов для спортсменов и новичков.

Классификация аминокислот

Все встречающиеся в природе аминокислоты обладают общим свойством – амфотерностью (от греч. amphoteros – двусторонний), т.е. каждая аминокислота содержит как минимум одну кислотную и одну основную группы. Общий тип строения α-аминокислот может быть представлен в следующем виде:

Как видно из общей формулы, аминокислоты будут отличаться друг от друга химической природой радикала R, представляющего группу атомов в молекуле аминокислоты, связанную с α-углеродным атомом и не участвующую в образовании пептидной связи при синтезе белка. Почти все α-амино- и α-карбоксильные группы участвуют в образовании пептидных связей белковой молекулы, теряя при этом свои специфические для свободных аминокислот кислотно-основные свойства. Поэтому все разнообразие особенностей структуры и функции белковых молекул связано с химической природой и физико-химическими свойствами радикалов аминокислот. Именно благодаря им белки наделены рядом уникальных функций, не свойственных другим биополимерам, и обладают химической индивидуальностью.

Классификация аминокислот разработана на основе химического строения радикалов, хотя были предложены и другие принципы. Различают ароматические и алифатические аминокислоты, а также аминокислоты, содержащие серу или гидроксильные группы. Часто классификация основана на природе заряда аминокислоты. Если радикал нейтральный (такие аминокислоты содержат только одну амино- и одну карбоксильную группы), то они называются нейтральными аминокислотами. Если аминокислота содержит избыток амино- или карбоксильных групп, то она называется соответственно основной или кислой аминокислотой.

Современная рациональная классификация аминокислот основана на полярности радикалов (R-групп), т.е. способности их к взаимодействию с водой при физиологических значениях рН (близких к рН 7,0). Различают 5 классов аминокислот, содержащих следующие радикалы: 1) неполярные (гидрофобные); 2) полярные (гидрофильные); 3) ароматические (большей частью неполярные); 4) отрицательно заряженные и 5) положительно заряженные. В представленной классификации аминокислот (табл. 1.3) приведены наименования, сокращенные английские и русские обозначения и однобуквенные символы аминокислот, принятые в отечественной и иностранной литературе, а также значения изоэлектрической точки (рI) и молекулярной массы (М). Отдельно даются структурные формулы всех 20 аминокислот белковой молекулы.

Полярные, незаряженные R-группы

Отрицательно заряженные R-группы

Положительно заряженные R-группы

Перечисленные аминокислоты присутствуют в разных количественных соотношениях и последовательностях в тысячах белков, хотя отдельные индивидуальные белки не содержат полного набора всех этих аминокислот. Помимо наличия в большинстве природных белков 20 аминокислот, в некоторых белках обнаружены производные аминокислот : оксипролин, оксилизин, дийодтирозин, фосфосерин и фосфотреонин (последние две аминокислоты представлены в главе 2):

Первые две аминокислоты содержатся в белке соединительной ткани – коллагене, а дийодтирозин является основой структуры гормонов щитовидной железы. В мышечном белке миозине обнаружен также ε-N-метиллизин; в состав протромбина (белок свертывания крови) входит γ-карбоксиглутаминовая кислота, а в глутатионпероксидазе открыт селеноцистеин, в котором ОН-группа серина заменена на селен (Se):

Помимо указанных, ряд α-аминокислот выполняет важные функции в обмене веществ, хотя и не входит в состав белков, в частности орнитин, цитруллин, гомосерин, гомоцистеин, цистеинсульфиновая кислота, диоксифенилаланин и др.

АМИНОКИСЛО́ТЫ

  • В книжной версии

    Том 1. Москва, 2005, стр. 612

    Скопировать библиографическую ссылку:

    АМИНОКИСЛО́ТЫ, ор­га­нич. со­еди­не­ния, со­дер­жа­щие кар­бок­силь­ные COOH и ами­но­груп­пы NH 2

    . Ис­клю­че­ние со­став­ля­ет про­лин. Об­ла­да­ют свой­ст­ва­ми и ки­слот и ос­но­ва­ний. В за­ви­си­мо­сти от по­ло­же­ния ами­но­груп­пы в уг­ле­род­ной це­пи от­но­си­тель­но кар­бок­силь­ной груп­пы раз­ли­ча­ют α -, β -, γ — и др. А. У ω -А. ами­но­груп­па на­хо­дит­ся на кон­це це­пи. Уча­ст­ву­ют в об­ме­не азо­ти­стых ве­ществ всех ор­га­низ­мов, яв­ля­ясь ис­ход­ны­ми со­еди­не­ния­ми при био­син­те­зе бел­ков, пеп­ти­дов, пу­ри­но­вых и пи­ри­ми­ди­но­вых ос­но­ва­ний, ря­да ви­та­ми­нов, пиг­мен­тов, ал­ка­лои­дов и др.

    Аминокислоты

    Аминокисл о ты, класс органических соединений, объединяющих в себе свойства кислот и аминов, т. е. содержащих наряду с карбоксильной группой —COOH аминогруппу —NH2. В зависимости от положения аминогруппы относительно карбоксильной группы различают a -, b -, g — и др. аминокислоты. Аминокислоты играют очень большую роль в жизни организмов, т. к. все белковые вещества построены из аминокислот. Все белки при полном гидролизе (расщеплении с присоединением воды) распадаются до свободных аминокислот, играющих роль мономеров в полимерной белковой молекуле. При биосинтезе белка порядок, последовательность расположения аминокислот задаются генетическим кодом, записанным в химической структуре дезоксирибонуклеиновой кислоты. 20 важнейших аминокислот, входящих в состав белков, отвечают общей формуле RCH(NH2)COOH и относятся к a -аминокислотам. В природе встречаются и b -аминокислоты, RCH(NH2)CH2COOH, например b -аланин CH2NH2CH2COOH, входящий в состав пантотеновой кислоты. Аминокислоты могут содержать одну NH2-группу и одну СООН-группу (моноаминокарбоновые кислоты), одну NH2-группу и две СООН-группы (моноаминодикарбоновые кислоты), две NH2-группы и одну СООН-группу (диаминомонокарбоновые кислоты).

    Аспарагиновая — HOOC CH2CH (NH2) COOH

    Аминокислоты — бесцветные кристаллические вещества, растворимые в воде; tпл 220—315°С. Высокая температура плавления аминокислот связана с тем, что их молекулы имеют структуру главным образом амфотерных (двузарядных) ионов. Например, строение простейшей аминокислоты — глицина — можно выразить формулой

    (а не NH2CH2COOH).

    Все природные аминокислоты, кроме глицина, содержат асимметричные атомы углерода, существуют в оптически активных модификациях и, как правило, относятся к L-ряду. Аминокислоты D-ряда содержатся только в некоторых антибиотиках и в оболочках бактерий.

    Многие растения и бактерии могут синтезировать все необходимые им аминокислоты из простых неорганических соединений. Большинство аминокислот синтезируются в теле человека и животных из обычных безазотистых продуктов обмена веществ и усвояемого азота. Однако 8 аминокислот (валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан и фенилаланин) являются незаменимыми, т. е. не могут синтезироваться в организме животных и человека, и должны доставляться с пищей. Суточная потребность взрослого человека в каждой из незаменимых аминокислот составляет в среднем около 1 г. При недостатке этих аминокислот (чаще триптофана, лизина, метионина) или в случае отсутствия в пище хотя бы одной из них невозможен синтез белков и многих др. биологически важных веществ, необходимых для жизни. Гистидин и аргинин синтезируются в животном организме, но лишь в ограниченной, иногда недостаточной, мере. Цистеин и тирозин образуются лишь из своих предшественников — соответственно метионина и фенилаланина — и могут стать незаменимыми при недостатке этих аминокислот. Некоторые аминокислоты могут синтезироваться в животном организме из безазотистых предшественников при помощи процесса переаминирования, т. е. переноса аминогруппы с одной аминокислоты на др. В организме аминокислоты постоянно используются для синтеза и ресинтеза белков и др. веществ — гормонов, аминов, алкалоидов, коферментов, пигментов и др. Избыток аминокислот подвергается распаду до конечных продуктов обмена (у человека и млекопитающих до мочевины, двуокиси углерода и воды), при котором выделяется энергия, необходимая организму для процессов жизнедеятельности. Промежуточным этапом такого распада является обычно дезаминирование (чаще всего окислительное).

    Читайте так же:  Л карнитин в каких продуктах содержится таблица

    К числу производных аминокислот, представляющих большой практический интерес, относится лактам w -аминокапроновой кислоты (см. Капролактам) — исходный продукт производства капрона.

    Известно много методов синтеза аминокислот, например действие аммиака на галогензамещённые карбоновые кислоты:

    RC(= NOH)COOH ® RCHNH2COOH

    и др. Некоторые аминокислоты выделяют из продуктов гидролиза богатых ими белков методом адсорбции на ионообменных смолах; так выделяют глутаминовую кислоту из казеина и клейковины злаков; тирозин — из фиброина шёлка; аргинин — из желатины; гистидин из белков крови. Некоторые аминокислоты производят синтетически, например метионин, лизин и глутаминовую кислоту. Аминокислоты получают в больших количествах также микробиологическим синтезом. Поступление в организм незаменимых аминокислот определяется количеством и аминокислотным составом пищевых белков. Это следует учитывать для организации правильного общественного питания и составления рационов для разных возрастных и профессиональных групп населения. Потребность в пищевом белке может быть полностью покрыта за счёт смеси аминокислот. Этим пользуются в лечебном питании.

    Аминокислоты применяют в медицине: для парентерального питания больных (т. е. минуя желудочно-кишечный тракт) с заболеваниями пищеварительных и др. органов, а также для лечения заболеваний печени, малокровия, ожогов (метионин), язв желудка (гистидин), при нервно-психических заболеваниях (глутаминовая кислота и т. п.); в животноводстве и ветеринарии — для питания (см. ниже) и лечения животных, а также в микробиологической, медицинской и пищевой промышленности.

    Изучение аминокислотного состава белков и обмена аминокислот проводят рядом цветных реакций, например нингидриновой реакцией, а также методами хроматографии и с помощью специальных автоматических приборов — анализаторов аминокислот.

    Аминокислоты в кормлении с.-х. животных. Рационы с.-х. животных должны содержать все необходимые организму аминокислоты, особенно незаменимые, поэтому при организации кормления в настоящее время стали учитывать в кормах не только общее количество протеина, как было принято раньше, но и незаменимых аминокислот. Потребность в аминокислотах у разных видов животных неодинакова. У жвачных животных микрофлора преджелудков способна синтезировать все необходимые организму аминокислоты из аммиака, выделяющегося при распаде белка или небелковых азотистых соединений, например мочевины. Нормирования аминокислот для этих животных не проводят. Однако с целью пополнения рациона животных небелковыми азотистыми веществами применяют мочевину. Молодняк жвачных, у которого ещё недостаточно развиты преджелудки, испытывает некоторую потребность в незаменимых аминокислотах. Рационы свиней и птицы обязательно балансируют по содержанию аминокислот. С этой целью подбирают корма, дополняющие друг друга по аминокислотному составу, а также используют синтетические аминокислоты, выпускаемые промышленностью. Синтетические аминокислоты скармливают в смеси с концентратами; целесообразнее добавлять их в комбикорма промышленного изготовления. Избыток аминокислот отрицательно влияет на организм животных.

    Лит.: Майстер А., Биохимия аминокислот, пер. с англ.,М., 1961; Аминокислотное питание свиней и птицы, М., 1963; Збарский Б. И., Иванов И. И., Мардашев С. P., Биологическая химия, 4 изд., Л., 1965; Попов И. С., Аминокислотный состав кормов, 2 изд., М., 1965; Обмен аминокислот. Материалы Всесоюзной конференции [13—17 окт. 1965], Тбилиси, 1967; Кретович В. Л., Основы биохимии растений, 4 изд., М., 1964.

    Какие вещества являются аминокислотами

    Аминокислотами называют гетерофункциональные соединения, содержащие одновременно аминогруппу и карбоксильную группы в составе одной молекулы. Классифицируют аминокислоты, основываясь на типе углеводородного радикала, на ароматические и алифатические, последние, в свою очередь, подразделяются на α-, β-, γ-, δ- и ω-аминокислоты, химические свойства которых ощутимо различаются.

    Представители алифатических аминокислот

    Наибольшее значение в химии имеют α-аминокислоты, в основном потому, что они являются мономерами белков – их можно назвать основой жизни. В состав важнейших α-аминокислот входят не только алифатические, но и ароматические и гетероароматические радикалы. Номенклатура аминокислот подразумевает использование названия соответствующей карбоновой кислоты в качестве основы, положение заместителей обозначают цифрами, начиная от карбонильного углерода (IUPAC), либо буквами греческого алфавита, начиная от соседнего атома углерода (рациональная). Широко используются и тривиальные названия. Тривиальные названия обычно связаны с источниками выделения аминокислот. Например, серин выделен из шелка (serieus (лат.) – шелковистый), тирозин – из сыра (tyros (греч.) – сыр). Для удобства написания полипептидных молекул используют сокращенные обозначения аминокислотных остатков.

    Общее число встречающихся в природе α-аминокислот достигает 180, из них 20 постоянно присутствуют во всех белковых молекулах. Растения и некоторые микроорганизмы синтезируют все необходимые им аминокислоты. В животном организме некоторые аминокислоты синтезируются, некоторые – нет и должны поступать извне. Такие аминокислоты называют незаменимыми. К незаменимым относятся – валин, лизин, фенилалалнин, лейцин, треонин, триптофан, изолейцин, метионин.

    Важнейшие α-аминокислоты

    Сокращенное обозначение аминокислотного остатка

    Аминокислоты — номенклатура, получение, химические свойства. Белки

    Строение аминокислот

    Аминокислоты — гетерофункциональные соеди­нения, которые обязательно содержат две функцио­нальные группы: аминогруппу — NH2 и карбоксиль­ную группу —СООН, связанные с углеводородным радикалом.Общую формулу простей­ших аминокислот можно за­писать так:

    Читайте так же:  Витамины для беременных элевит

    Так как аминокислоты со­держат две различные функ­циональные группы, которые оказывают влияние друг на друга, характерные реакции отличают­ся от характерных реакций карбоновых кислот и аминов.

    Свойства аминокислот

    Аминогруппа — NH2 определяет основные свой­ства аминокислот, т. к. способна присоединять к себе катион водорода по донорно-акцепторному механизму за счет наличия свободной электронной пары у атома азота.

    Группа —СООН (карбоксильная группа) опреде­ляет кислотные свойства этих соединений. Следовательно, аминокислоты — это амфотерные орга­нические соединения. Со щелочами они реагируют как кислоты:

    С сильными кислотами- как основания-амины:

    Кроме того, аминогруппа в аминокислоте всту­пает во взаимодействие с входящей в ее состав кар­боксильной группой, образуя внутреннюю соль:

    Ионизация молекул аминокислот зависит от кислотного или щелочного характера среды:

    Так как аминокислоты в водных растворах ве­дут себя как типичные амфотерные соединения, то в живых организмах они играют роль буферных веществ, поддерживающих определенную концен­трацию ионов водорода.

    Аминокислоты представляют собой бесцветные кристаллические вещества, плавящиеся с разло­жением при температуре выше 200 °С. Они растворимы в воде и нерастворимы в эфире. В зависи­мости от радикала R— они могут быть сладкими, горькими или безвкусными.

    Аминокислоты подразделяют на природные (обнаруженные в живых организмах) и синтети­ческие. Среди природных аминокислот (около 150) выделяют протеиногенные аминокислоты (около 20), которые входят в состав белков. Они представляют собой L-формы. Примерно полови­на из этих аминокислот относятся к незамени­мым, т. к. они не синтезируются в организме че­ловека. Незаменимыми являются такие кислоты, как валин, лейцин, изолейцин, фенилаланин, ли­зин, треонин, цистеин, мети­онин, гистидин, триптофан. В организм человека данные вещества поступают с пи­щей. Если их количество в пище будет недостаточ­ным, нормальное развитие и функционирование орга­низма человека нарушаются. При отдельных заболеваниях организм не в состоянии син­тезировать и некоторые другие аминокислоты. Так, при фенилкетонурии не синтезируется тирозин. Важнейшим свойством аминокислот является способность вступать в молекулярную конденса­цию с выделением воды и образованием амидной группировки —NH—СО—, например:

    Получаемые в результате такой реакции высокомолекулярные соединения содержат большое число амидных фрагментов и поэтому получили название полимамидов.

    К ним, кроме названного выше синтетического волок­на капрона, относят, напри­мер, и энант, образующийся при поликонденсации аминоэнантовой кислоты. Для получения синтетических во­локон пригодны аминокис­лоты с расположением амино- и карбоксильной групп на концах молекул.

    Полиамиды альфа-аминокислот называются пепти­дами. В зависимости от числа остатков аминокислот различают дипептиды, трипептиды, полипепти­ды. В таких соединениях группы —NH—СО— на­зывают пептидными.

    Изомерия и номенклатура аминокислот

    Изомерия аминокислот определяется различ­ным строением углеродной цепи и положением аминогруппы, например:

    Широко распространены также названия ами­нокислот, в которых положение аминогруппы обо­значается буквами греческого алфавита: α, β, у и т. д. Так, 2-аминобутановую кислоту можно на­звать также α-аминокислотой:

    Способы получения аминокислот

    В биосинтезе белка в живых организмах уча­ствуют 20 аминокислот.

    Какие вещества являются аминокислотами

    Благодаря способности аминокислот к поликонденсации образуются полиамиды – белки, пептиды, а также энант, капрон и нейлон. При поликонденсации ɛ-аминокапроновой кислоты получается полимер капрон. Из капроновой смолы получают не только волокна, но и пластмассовые изделия.

    Энант, капрон и нейлон применяются в промышленности при производстве корда, прочных тканей, сетей, канатов, веревок, трикотажных и чулочных изделий.

    Аминокислоты широко применяются в медицинской практике в качестве лекарственных средств.

    Аминокислоты прописываются при сильном истощении, после тяжелых операций, их используют для питания больных.

    [1]

    Из полиаминокислот получают хороший материал для хирургии.

    Аргинин в сочетании с аспартатом или глутаматом помогает при заболевании печени.

    Аспарагиновая кислота способствует повышению потребления кислорода сердечной мышцей. В кардиологии применяют панангин – препарат, содержащий аспартат калия и аспартат магния. Панангин применяют для лечения различного рода аритмий, а также ишемической болезни сердца.

    В медицинских учреждениях аминокислоты применяются в качестве парентерального питания пациентов с заболеваниями желудочно-кишечного тракта (язва желудка), при лечении болезней печени, ожогов, малокровия, при нервно-психических заболеваниях.

    Глутаминовая кислота используется в детской психиатрии для лечения слабоумия и последствий родовых травм, при нарушениях мозгового кровообращения после инсульта, при атеросклерозе мозговых сосудов, потере памяти.

    Гистидин иногда применяют для лечения больных гепатитами, язвенной болезнью желудка и двенадцатиперстной кишки.

    Глицин является медиатором торможения в ЦНС. В медицинской практике применяется для лечения алкоголизма. Производное глицина – бетаин улучшает процессы пищеварения.

    Метионин и его активные производные используются в лечении и профилактике болезней печени. Метионин защищает организм при отравлении бактериальными эндотоксинами и некоторыми другими ядами, в связи с этим используется для защиты организма от токсикантов окружающей среды.

    Некоторые аминокислоты используются в качестве самостоятельных лекарственных средств (аргинин, цистеин, ароматические аминокислоты).

    Аминокислоты в сельском хозяйстве применяются преимущественно в качестве кормовых добавок. Многие растительные белки содержат недостаточное количество белков. Лизин, лейцин, метионин, треонин, триптофан добавляют в корма сельскохозяйственных животных.

    Аминокислоты метионин, глутаминовая кислота и валин применяются для защиты растений от болезней, а аланин и глицин, обладающий гербицидным действием, используется для борьбы с сорняками.

    Видео (кликните для воспроизведения).

    Аминокислоты используются в микробиологической промышленности для приготовления культуральных сред и как реактивы.

    В пищевой промышленности аминокислоты применяются в качестве вкусовых добавок.

    Наиболее важны добавки лизина, триптофана и метионина к пищевым продуктам, неполноценным по содержанию этих аминокислот.

    Добавка глутаминовой кислоты и ее солей к ряду продуктов придает им приятный мясной вкус, что часто используют в пищевой промышленности.

    Натриевая соль глутаминовой кислоты (глутамат натрия) известна как «пищевая добавка E621» или «усилитель вкуса».

    Глутаминовая кислота является важным компонентом при замораживании и консервировании.

    Читайте так же:  Карнитин и л карнитин в чем разница

    Благодаря присутствию глицина, метионина и валина, во время термической обработки продуктов питания удается получить специфические ароматы хлебобулочных и мясных изделий.

    Аминокислоты цистеин, лизин и глицин используются в качестве антиоксидантов, стабилизирующих ряд витаминов, например аскорбиновую кислоту; замедляющих пероксидное окисление липидов.

    Глицин применяется при производстве безалкогольных напитков и приправ.

    Аминокислоты также являются компонентами спортивного питания (в изготовлении которого применяется, как правило, валин, лейцин, изолейцин, аланин, лизин, аргинин и глутамин), использующегося спортсменами, а также людьми, занимающимися бодибилдингом, фитнесом

    В химической промышленности введение в такие аминокислоты, как глутаминовая или аспарагиновая кислоты, гидрофобных группировок дает возможность получать поверхностно-активные вещества (ПАВ), широко используемые в синтезе полимеров, а также при производстве моющих средств, эмульгаторов, добавок к моторному топливу.

    Незаменимые аминокислоты: список и содержание в продуктах

    Незаменимые аминокислоты. Фото: yandex.ru

    Организм человека во многом состоит из белков. Эти сложные молекулы входят в состав клеточных мембран, формируют антитела и волокна мышц, а также отвечают за множество функций. Для того, чтобы белок всегда был в достаточном количестве, необходимы его структурные элементы – аминокислоты незаменимые.

    Аимнокислоты представляют собой функциональные единицы, из которых организм строит собственный белок. Когда пища попадет в пищеварительную систему, она распадается до мельчайших частиц, в частности, белки до пептидов, а затем до аминокислот, которые всасываются в кровь и перемещаются по организму.

    Общая структура аминокислоты. Фото: yandex.ru

    Наш организм усваивает далеко не все вещества, которые всосались, часть может быть потрачена на получение энергии или преобразование в другой тип веществ, но значительная доля идет на создание собственного белка. И здесь у организма есть запасная площадка, некоторые аминокислоты он вполне может создавать сам из того материала, который уже поступил, а вот некоторые, наоборот, синтезировать не может. Такие аминокислоты незаменимы для человека. Если их нет, белки не могут структурироваться, соответственно, перестают выполняться определенные биохимические процессы. Если это продолжается долго, то наступает расстройство, приводящее к различным заболеваниям.

    Список незаменимых аминокислот

    1. Лейцин имеет важное значение для синтеза белков, входящих в состав мышечной ткани. Помогает заживлять раны и регулировать показатель глюкозы в крови;
    2. Изолейцин содержится в большом количестве в мышечной ткани, поддерживая обмен веществ в ней. Участвует в выработке гемоглобина, поддержании иммунитета и энергетического обмена;
    3. Валин имеет разветвленную цепь, участвует в выработки энергии и воспроизводства мышечной ткани;
    4. Треонин входит состав соединительных белков коллагена и эластина, участвует в обмене жиров и иммунной реакции организма;
    5. Триптофан выступает в качестве предшественника серотонина, регулирующего сон и аппетит, регулирует обмен азота;
    6. Метионин участвует в процессах роста и усвоении цинка и селена, он принимает участие в обмене веществ и устранения последствий интоксикации организма;
    7. Фенилаланин – это предшественник нескольких гормонов: адреналина, норадреналина, тирозина, допамина. Участвует не только в производстве белков и ферментов, но и в создании других аминокислот;
    8. Лизин необходим для усвоения кальция и выработки коллагена и эластина. Он участвует в синтезе многих ферментов и гормонов, регулирует энергетический обмен;
    9. Гистидин является основой для производства гистамина, необходимого для регулирования циклов сна и бодрствования, половой функции и выработки миелиновой оболочки нервных клеток.

    Разница между заменимыми и незаменимыми аминокислотами

    Чем отличаются заменимые и незаменимые аминокислоты? По функциональному строения почти ничем. И в тех и в других радикалы весьма разнообразны. Основная разница заключается в том, что незаменимые аминокислоты синтезироваться нашим организмом не могут, поэтому обязательно должны поступать с пищей. Так, нехватка приводит к тому, что:

    • Человек чувствует себя вялым и уставшим;
    • Нарушается режим сна и бодрствования;
    • Снижается иммунитет, любая инфекция «прицепляется» сразу;
    • Появляются симптомы анемии;
    • Начинают выпадать волосы;
    • Снижается работоспособность как в физическом, так и в умственном плане.

    Суточная норма

    Потребность в различных веществах, в том числе и в аминокислотах, у нашего организма зависит от нескольких факторов:

    • возраста;
    • пола;
    • уровня физической и психической нагрузки;
    • состояния здоровья и прочего.

    Суточная норма незаменимых аминокислот. Фото: takzdorovo-ru.livejournal.com

    Рассмотрим суточную потребность в незаменимых аминокислотах для взрослого человека, имеющего вес примерно 60 килограмм:

    • триптофана – 1 г;
    • лейцина – 5 г;
    • треонина – 2,5 г;
    • валина– 3,5 г;
    • лизина – 4 г;
    • изолейцина– 3,5 г;
    • метионина – 3 г;
    • фенилаланина– 3 г.

    Для детей необходимы также гистидин и аргинин, они не способны синтезироваться у малышей, поэтому должны поступать с пищей. В дальнейшем их печень сможет создавать эти незаменимые аминокислоты из заменимых.

    В каких продуктах содержатся незаменимые аминокислоты

    Основным источником незаменимых аминокислоты является белок, преимущественно животного происхождения. Это мясо, рыба, яйца и молоко. Кроме того, белки включающие незаменимые аминокислоты содержатся и в растительной пище. Наиболее богаты ими:

    • Соя и все бобовые;
    • Все виды орехов;
    • Многие злаки, в том числе овес;
    • Финики;
    • Грибы и прочее.

    Незаменимые аминокислоты в продуктах. Фото: yandex.ru

    Если говорить о том, какие продукты содержат больше незаменимых аминокислот, то предпочтение все-таки лучше отдавать мясным и молочным изделиям, так как в них белок содержится в большом количестве и является полноценным, то есть в его состав входит большое количество разных аминокислот, в том числе много незаменимых. Если человеку нельзя употреблять много жирной пищи, то стоит выбирать нежирные сорта мяса и рыба, а в молочной продукции предпочитать кисломолочное и нежирные сорта сыра. По каждому отдельному виду можно найти таблицу содержания незаменимых аминокислот в продуктах питания.

    Как можно получить кроме еды

    Основную массу заменимых и незаменимых аминокислот мы получаем из биохимии продуктов. При правильном питании, поступление веществ будет достаточным и даже с избытком, который легко утилизируется организмом. При повышенных нагрузках потребность в данной группе веществ увеличивается, что должно компенсироваться питанием. Однако, это не всегда удается и например спортсменам, желающим получить быстрый рост мышечной массы нужно дополнительное количество белка. Это означает, что они должны в день съедать несколько яиц, большое количество мяса и молока. В реальности это плохо отражается на работе печени. Но компенсировать недостаток аминокислот можно с помощью специальных препаратов. В основном это спортивное питание, представляющее собой концентрат белков и аминокислот, которые можно принимать в виде белкового коктейля. Содержание в них белковых молекул таково, что получить это количество из пищи просто невозможно, а один стакан позволяет восполнить большие потери.

    Читайте так же:  Креатин помогает набрать мышечную массу

    Однако, стоит помнить, что подобные вещества хоть и относятся к БАДам и спортивному питанию, не должны приниматься необдуманно, это может привести к неприятным последствиям. Поэтому перед началам принятия стоит проконсультироваться с терапевтом и тренером.

    Компенсация незаменимых аминокислот

    Разобравшись, какие аминокислоты являются незаменимыми и где их можно взять, нужно изучить вопрос их компенсации. Организм человека устроен таким образом, что он подстраивается под условия среды, так и недостаток незаменимых аминокислот может частично компенсироваться. Например, при нехватке фенилаланина в белки встраивается тирозин, а при недостатке метионина – гомоцистеин, аргинин же компенсируется за счет глутаминовой кислоты.

    Условно незаменимые аминокислоты

    Помимо незаменимых существуют и условно незаменимые аминокислоты. Это группа веществ, которые могут вырабатываться нашим организмом самостоятельно, но только при условии, что некоторое их количество поступает с пищей. К условно незаменимым относят:

    • Аргинин, участвующий в очищении печени и регулировании роста мышечной массы;
    • Гистидин, оказывающий влияние на выработку белых и красных кровяных телец, а также на рост мышц;
    • Цистин, входящий в состав соединительной ткани;
    • Тирозин, частично заменяющий фенилаланин при синтезе белков, и предотвращающий стрессы.

    Незаменимые аминокислоты и вегетарианство

    Присутствие незаменимых аминокислот в растительной пище доказано, они входят в состав растительных белков и оказывают влияние на деятельность организма. Однако, процентное содержание их в белках низкое, поэтому для полноценного питания необходимо получать большее количество белка. Для людей, придерживающихся вегетарианства это может стать проблемой, особенно для тех, кто полностью исключает животную пищу. При употреблении яиц и молока вопрос с поступлением аминокислот решается легко, нужно только составить меню таким образом, чтобы с едой поступало остаточное количество животного белка.

    Содержание аминокислот в белке. Фото: noinventamosnadanuevo.com

    При строгом соблюдении строгого вегетарианства, полностью исключающего продукты животного происхождения, решить вопрос сложнее. Но при грамотном подходе и его можно решить, если составить свой рацион таким образом, чтобы все необходимые вещества поступали с пищей. Употреблять орехи, злаки, бобовые. В магазинах сегодня присутствует большое количество продуктов из сои по вкусу и внешнему виду напоминающих мясо.

    Однако, детям до 16-18 лет придерживаться строго вегетарианства не следует, им компенсировать недостаток данных веществ гораздо сложнее, что может сказаться на общем развитии организма. Питание – важный способ получения необходимых организму веществ. По большому счету все 20 аминокислот незаменимые. Они должны поступать вместе с едой, просто нехватка одних отразится в меньшей степени на здоровье, чем недостаток других.

    1. Понятие об аминокислотах, классификация аминокислот

    Аминокислоты – гетерофункциональные соединения, содержащие две функциональные группы: аминогруппу ─NH2 и карбоксильную группу ─ COOH, связанные с углеводородным радикалом.

    Общая формула аминокислот:

    (H2N)m─ R─ (COOH)n, где m и n – чаще всего равны 1 или 2

    1. По числу функциональных групп

    — моноаминомонокарбоновые m=1, n=1

    — диаминомонокарбоновые m=2, n=1

    — моноаминодикарбоновые m=1, n =2

    2. По положению аминогруппы

    СН3─СН2─СН─СООН α-аминомасляная (2-аминобутановая) кислота

    СН3─СН ─СН2─СООН β-аминомасляная (3-аминобутановая) кислота

    NH2─СН2─СН2 ─СН2─СООН γ-аминомасляная кислота (4-аминобутановая) кислота

    3. аминокислоты организма Остатки около 20 различных α-аминокислот входят в состав белков

    заменимые (синтезируемые в организме человека)

    глицин (аминоуксусная кислота)

    аланин (α-аминопропионовая кислота, 2-аминопропановая кислота)

    серин (α-амино-β-гидроксипропионовая кислота, 2-амино-3-гидроксипропановая кислота)

    цистеин (α-амино-β-меркаптопропионовая кислота, 2-амино-3-меркаптопропановая кислота)

    аспарагиновая кислота (аминоянтарная кислота, аминобутандиовая кислота)

    незаменимые (не синтезируются в организме человека, поступают с пищей)

    фенилаланин (α-амино-β-фенилпропионовая кислота, 2-амино-3-фенилпропановая кислота)

    Лизин (α, ε- диаминокапроновая кислота, 2,6-диаминогексановая кислота)

    2. Физические и химические свойства аминокислот. Способы их получения

    Физические свойства аминокислот

    Аминокислоты – бесцветные кристаллические вещества, хорошо растворимые в воде, температура плавления 230-300 0 , многие аминокислоты имеют сладкий вкус

    Химические свойства аминокислот

    1. Аминогруппа ─NH2 определяет основные свойства аминокислот, т.к. способна присоединять к себе катион водорода по донорно-акцепторному механизму за счет наличия неподеленной электронной пары у атома азота.

    2. Карбоксильная группа ─ COOH определяет кислотные свойства.

    Следовательно, аминокислоты — это амфотерные соединения.

    3. Кроме того, аминогруппа в аминокислоте вступает во взаимодействие с входящей в её состав карбоксильной группой, образуя внутреннюю соль:

    H2N─CH─COOH ↔ H3N + ─СН─СОО — (биполярный ион, цвиттер-ион)

    Водные растворы моноаминомонокарбоновых кислот нейтральны, рН=7; водные растворы монодиаминокарбоновых кислот имеют рН 7.

    4. Взаимодействие аминокислот друг с другом — образование пептидов

    Любой дипептид имеет свободные амино- и карбоксильную группу и поэтому может взаимодействовать с ещё одной молекулой аминокислоты, образуя трипептид и т.д.

    Общая формула пептидов:

    Пептиды, содержащие до 10 аминокислотных остатков, называются олигопептиды; полипептиды содержат боле десяти аминокислотных остатков.

    Реакция образования пептидов относится к реакциям поликонденсации.

    Поликонденсация – реакция образования высокомолекулярных соединений, сопровождающаяся выделением побочных низкомолекулярных продуктов (H2O NH3 и др.)

    1. через галогенпроизводные карбоновых кислот

    Общая характеристика аминокислот

    Аминокислоты — органические кислоты, молекулы которых содержат одну или несколько аминогрупп (NH2-группы). Представляют основные структурные элементы белков. Белки пищи в организме человека расщепляются до аминокислот. Определенная часть аминокислот, в свою очередь, расщепляется до органических кетокислот, из которых в организме вновь синтезируются новые аминокислоты, а затем белки. В природе обнаружено свыше 20 аминокислот.

    Читайте так же:  Спортивное питание в меге

    Аминокислоты всасываются из желудочно-кишечного тракта и с кровью поступают во все органы и ткани, где используются для синтеза белков и подвергаются различным превращениям. В крови поддерживается постоянная концентрация аминокислот. Из организма выделяется около 1 г азота аминокислот в сутки. В мышцах, ткани головного мозга и печени содержание свободных аминокислот во много раз выше, чем в крови, и менее постоянно. Концентрация аминокислот в крови позволяет судить о функциональном состоянии печени и почек. Содержание аминокислот в крови может заметно нарастать при нарушениях функции почек, лихорадочных состояниях, заболеваниях, связанных с повышенным содержанием белка.

    Аминокислоты подразделяются на незаменимые (валин, лейцин, изолейцин, треонин, метионин, фенилаланин, триптофан, лизин), частично заменимые (аргинин и гистидин) и заменимые (аланин, аспарагин, аспарагиновая кислота, глицин, глутамин, глутаминовая кислота, пролин, серин, тирозин, цистеин).

    Незаменимые аминокислоты не синтезируются в организме человека, но необходимы для нормальной жизнедеятельности. Они должны поступать в организм с пищей. При недостатке незаменимых аминокислот задерживается рост и развитие организма. Оптимальное содержание незаменимых аминокислот в пищевом белке зависит от возраста, пола и профессии человека, а также от других причин. Заменимые аминокислоты синтезируются в организме человека.

    Аминокислоты представляют собой структурные химические единицы, образующие белки.

    Любой живой организм состоит из белков. Разнообразные формы белков принимают участие во всех процессах, происходящих в живых организмах. В теле человека из белков формируются мышцы, связки, сухожилия, все органы и железы, волосы, ногти; белки входят в состав жидкостей и костей. Ферменты и гормоны, катализирующие и регулирующие все процессы в организме, также являются белками.

    Дефицит белков в организме может привести к нарушению водного баланса, что вызывает отеки. Каждый белок в организме уникален и существует для специальных целей. Белки не являются взаимозаменяемыми. Они синтезируются в организме из аминокислот, которые образуются в результате расщепления белков, находящихся в пищевых продуктах. Таким образом, именно аминокислоты, а не сами белки являются наиболее ценными элементами питания.

    [2]

    Какие еще функции выполняют аминокислоты?

    Помимо того, что аминокислоты образуют белки, входящие в состав тканей и органов человеческого организма так некоторые из них:

    • Выполняют роль нейромедиаторов или являются их предшественниками. Нейромедиаторы — это химические вещества, передающие нервный импульс с одной нервной клетки на другую. Таким образом, некоторые аминокислоты необходимы для нормальной работы головного мозга.
    • Аминокислоты способствуют тому, что витамины и минералы адекватно выполняют свои функции.
    • Некоторые аминокислоты непосредственно снабжают энергией мышечную ткань.

    Что будет, если аминокислот не хватает?

    В организме человека многие из аминокислот синтезируются в печени. Однако некоторые из них не могут быть синтезированы в организме, поэтому человек обязательно должен получать их с пищей. К таким незаменимым аминокислотам относятся:

    Аминокислоты, которые синтезируются в печени, включают:

    • аланин,
    • аргинин,
    • аспарагин,
    • аспарагиновую кислоту,
    • цитруллин,
    • цистеин,
    • гамма-аминомасляную кислоту,
    • глютамовую кислоту,
    • глютамин,
    • глицин,
    • орнитин,
    • пролин,
    • серин,
    • таурин,
    • тирозин.

    Процесс синтеза белков постоянно идет в организме. В случае, когда хоть одна незаменимая аминокислота отсутствует, образование белков приостанавливается. Это может привести к самым различным серьезным нарушениям — от расстройств пищеварения до депрессии и замедления роста.

    Многие факторы приводят к этому, даже, если ваше питание сбалансировано, и вы потребляете достаточное количество белка. Нарушение всасывания в желудочно-кишечном тракте, инфекция, травма, стресс, прием некоторых лекарственных препаратов, процесс старения и дисбаланс других питательных веществ в организме — все это может привести к дефициту незаменимых аминокислот.

    Какие аминокислоты следует принимать?

    В настоящее время можно получать незаменимые и заменимые аминокислоты в виде биологически активных пищевых добавок. Это особенно важно при различных заболеваниях и при применении редукционных диет. Вегетарианцам необходимы такие добавки, содержащие незаменимые аминокислоты, чтобы организм получал все необходимое для нормального синтеза белков.

    При выборе добавки, содержащей аминокислоты, предпочтение следует отдавать продуктам, содержащим L-кристаллические аминокислоты. Большинство аминокислот существует в виде двух форм, химическая структура одной является зеркальным отображением другой. Они называются D- и L-формами, например D-цистин и L-цистин. D означает dextra (правая на латыни), a L — levo (соответственно, левая). Эти термины обозначают пространственное строение данной молекулы. Белки животных и растительных организмов созданы L-формами аминокислот (за исключением фенилаланина, который представлен D,L- формами). Таким образом, только L-аминокислоты являются биологически активными участниками метаболизма.

    [3]

    Видео (кликните для воспроизведения).

    Свободные, или несвязанные, аминокислоты представляют собой наиболее чистую форму. Они не нуждаются в переваривании и абсорбируются непосредственно в кровоток. После приема внутрь всасываются очень быстро и, как правило, не вызывают аллергических реакций.

    Источники


    1. Колычев, В. Г. Волчара, или Силовой вариант / В.Г. Колычев. — М.: Эксмо, 2011. — 845 c.

    2. Данилова, Н. А. Диабет II типа. Как не перейти на инсулин / Н.А. Данилова. — М.: Вектор, 2010. — 128 c.

    3. Розанов, В. В. В. В. Розанов. Сочинения. В 12 томах. Том 2. Юдаизм. Сахарна / В.В. Розанов. — М.: Республика, 2011. — 624 c.
    4. Деймонд Дж. Райнегл Как рисовать спортсменов; Попурри — Москва, 2015. — 741 c.
    5. Хаушка, Рудольф Учение о питании. К пониманию физиологии пищеварения и пондерабильных и импондерабильных аспектов питания / Рудольф Хаушка. — Москва: Наука, 2004. — 272 c.
    Какие вещества являются аминокислотами
    Оценка 5 проголосовавших: 1

    ОСТАВЬТЕ ОТВЕТ

    Please enter your comment!
    Please enter your name here