Мономерами белков являются аминокислоты

Важная и проверенная информация на тему: "мономерами белков являются аминокислоты" от профессионалов для спортсменов и новичков.

Мономерами белков являются аминокислоты

Что является мономером белков?

Чаще всего в качестве неверного ответа указывают, что мономерами белков являются нуклеотиды.
Белки представляют собой биополимеры, мономерами которых являются аминокислоты. Все природные белки построены из 20 различных аминокислот. К ним относятся: аланин, аргинин, аспарагин, аспарагиновая кислота, валин, гистидин, глицин, глутамин, глутаминовая кислота, изолейцин, лейцин, лизин, метионин, пролин, серин, тирозин, треонин, триптофан, фенилаланин и цистеин. Нуклеотиды являются мономерами нуклеиновых кислот – ДНК или РНК. Последние присутствуют в клетках всех живых организмов и выполняют важнейшие функции по хранению и передаче генетической информации, а также обеспечивают синтез белков.

Мономерами белков являются аминокислоты

Жиры представляют собой тип липидов, полимеров, которые являются гидрофобными (водоотталкивающими). Основным мономером для жиров является спирт глицерин, который содержит три атома углерода с гидроксильными группами в сочетании с жирными кислотами. Жиры дают вдвое больше энергии, чем простой сахар, глюкоза. По этой причине жиры служат своего рода накопителем энергии для животных. Жиры с двумя жирными кислотами и одним глицерином называются диацилглицеролами или фосфолипидами. Липиды с тремя жирными кислотами и одним глицерином называются триацилглицеролами, жирами и маслами. Жиры также обеспечивают изоляцию для тела и нервов в нем, а также плазматических мембран в клетках.

Аминокислота — это субъединица белка, полимер, встречающийся в природе. Следовательно, аминокислота является мономером белка. Основная аминокислота состоит из молекулы глюкозы с аминогруппой (NH3), карбоксильной группой (COOH) и R-группой (боковая цепь). 20 аминокислот существуют и используются в различных комбинациях для производства белков. Белки обеспечивают многочисленные функции для живых организмов. Несколько аминокислотных мономеров соединяются через пептидные (ковалентные) связи с образованием белка. Две связанные аминокислоты составляют дипептид. Три аминокислоты образуют трипептид, а четыре аминокислоты составляют тетрапептид. С этим соглашением белки с более чем четырьмя аминокислотами также носят название полипептиды. Из этих 20 аминокислот основные мономеры включают глюкозу с карбоксильной и аминной группами. Поэтому глюкозу также можно назвать мономером белка.

Аминокислоты образуют цепи в качестве первичной структуры, а дополнительные вторичные формы встречаются с водородными связями, ведущими к альфа-спиралям и бета-складчатым листам. Складывание аминокислот приводит к активным белкам в третичной структуре. Дополнительное складывание и изгиб дают стабильные, сложные четвертичные структуры, такие как коллаген. Коллаген обеспечивает структурные основы для животных. Белок кератин обеспечивает животных кожей, волосами и перьями. Белки также служат катализаторами реакций в живых организмах; они называются ферментами. Белки служат коммуникаторами и движителями материала между клетками. Например, белок актин играет роль переносчика для большинства организмов. Различные трехмерные структуры белков приводят к их соответствующим функциям. Изменение структуры белка ведет непосредственно к изменению функции белка. Белки производятся в соответствии с инструкциями генов клетки. Взаимодействия и разнообразие белка определяются его основным мономером белка, аминокислотами на основе глюкозы.

Мономерами белков являются аминокислоты

Подробное решение параграф § 10 по биологии для учащихся 10 класса, авторов Пасечник В.В., Каменский А.А., Рубцов A.M. Углубленный уровень 2019

  • Гдз по Биологии за 10 класс можно найти тут
  • Гдз рабочая тетрадь по Биологии за 10 класс можно найти тут

Вопрос 1. Из каких мономеров состоят белковые молекулы?

Мономерами молекул белков являются аминокислоты.

Вопрос 2. Какую роль играют белки в организме человека?

Роль белков для организма заключается в том, что они служат материалом для построения клеток, тканей и органов, образования ферментов, большинства гормонов, гемоглобина и других веществ, выполняющих в организме важнейшие функции. Также белки участвуют в защите организма от инфекций, а также способствуют усвоению витаминов и минеральных веществ. Наша жизнедеятельность связана с непрерывным расходом и обновлением белка. Чтобы уравновесить эти процессы, потери белка нужно ежедневно восполнять.

Вопрос 3. Какие продукты питания богаты белками?

Творог нежирный, мясо животных и птиц, большая часть сортов рыбы, морепродукты, яичный белок, соя, горох, фасоль, орехи. В этих продуктах содержание белка равно 15 гр на 100 гр продукта.

Вопрос 4. Какие органические вещества называют белками?

Белки — это полимеры, состоящие из ковалентно связанных между собой мономеров–аминокислот, имеющих сходное, но не одинаковое строение.

Вопрос 5. В чём заключаются структурные особенности аминокислот как мономеров белков?

Молекула аминокислоты состоит из двух частей. Одна из них у всех подобных веществ одинакова: она содержит аминогруппу —NH2 и карбоксильную группу —СООН, которые присоединены к одному и тому же атому углерода. Другая часть этой молекулы, присоединённая к этому же атому углерода, называется боковым радикалом. У разных аминокислот он имеет разную структуру.

Вопрос 6. Как образуется пептидная связь?

Пептидная связь образуется в результате взаимодействия α — аминогруппы (—NH2) одной аминокислоты с α — карбоксильной группой (—СООН) другой аминокислоты.

Вопрос 7. Что представляет собой первичная структура белка и от чего она зависит?

Первичная структура белка — это определенная последовательность ковалентно связанных пептидными связями аминокислот, составляющих белок. Эта последовательность, как правило, записывается, начиная с N — конца полипептидной цепочки.

Первичная структура белков, программируется последовательностью нуклеотидов в ДНК. Выпадение, вставка, замена нуклеотида в ДНК приводит к изменению структуры синтезируемого белка.

Вопрос 8. Что такое денатурация белка? Что её может вызвать?

Читайте так же:  Как сделать домашний протеин

Денатурация белка — любые изменения в его биологической активности и/или физико — химических свойствах, связанные с потерей четвертичной, третичной или вторичной структуры с сохранением первичной. Её можно вызвать механически (сильное перемешивание или встряхивание), физически (нагревание, охлаждение, облучение, обработка ультразвуком) и химически (кислоты и щёлочи, поверхностно — активные вещества, мочевина).

Вопрос 9. Изучите статью параграфа «Строение белков» и иллюстрации к ней. Обобщите для себя в виде ментальной карты, как образуются вторичная, третичная и четвертичная структуры белка.

Вопрос 10. Составьте сравнительную таблицу свойств белков и углеводов.

Вопрос 11. Наверняка каждый из нас пробовал незамысловатые, но питательные блюда из куриных яиц. Кто — то любит их в варёном виде, кто — то в виде омлета или глазуньи. Чем можно объяснить изменение внешнего вида белка куриного яйца после его кулинарной обработки? Можно ли вернуть варёному яйцу первоначальную консистенцию, и если нет, то почему?

[2]

Изменение внешнего вида яичных белков при кулинарной обработке яиц объясняется свертыванием белка, или денатурацией белка.

Первоначальную консистенцию варёное яйцо принять уже не может — это самый известный случай необратимой денатурации белка в быту. Под воздействием высокой температуры растворимый в воде прозрачный белок овальбумин становится плотным, непрозрачным и нерастворимым.

Аминокислотный состав белков

Строение и функции белков. Ферменты

Строение белков

Белки — высокомолекулярные органические соединения, состоящие из остатков α-аминокислот.

В состав белков входят углерод, водород, азот, кислород, сера. Часть белков образует комплексы с другими молекулами, содержащими фосфор, железо, цинк и медь.

Белки обладают большой молекулярной массой: яичный альбумин — 36 000, гемоглобин — 152 000, миозин — 500 000. Для сравнения: молекулярная масса спирта — 46, уксусной кислоты — 60, бензола — 78.

Аминокислотный состав белков

Белки — непериодические полимеры, мономерами которых являются α-аминокислоты. Обычно в качестве мономеров белков называют 20 видов α-аминокислот, хотя в клетках и тканях их обнаружено свыше 170.

В зависимости от того, могут ли аминокислоты синтезироваться в организме человека и других животных, различают: заменимые аминокислоты — могут синтезироваться; незаменимые аминокислоты — не могут синтезироваться. Незаменимые аминокислоты должны поступать в организм вместе с пищей. Растения синтезируют все виды аминокислот.

В зависимости от аминокислотного состава, белки бывают: полноценными — содержат весь набор аминокислот;неполноценными — какие-то аминокислоты в их составе отсутствуют. Если белки состоят только из аминокислот, их называютпростыми. Если белки содержат помимо аминокислот еще и неаминокислотный компонент (простетическую группу), их называютсложными. Простетическая группа может быть представлена металлами (металлопротеины), углеводами (гликопротеины), липидами (липопротеины), нуклеиновыми кислотами (нуклеопротеины).

Все аминокислоты содержат: 1) карбоксильную группу (–СООН), 2) аминогруппу (–NH2), 3) радикал или R-группу (остальная часть молекулы). Строение радикала у разных видов аминокислот — различное. В зависимости от количества аминогрупп и карбоксильных групп, входящих в состав аминокислот, различают: нейтральные аминокислоты, имеющие одну карбоксильную группу и одну аминогруппу; основные аминокислоты, имеющие более одной аминогруппы; кислые аминокислоты, имеющие более одной карбоксильной группы.

Аминокислоты являются амфотерными соединениями, так как в растворе они могут выступать как в роли кислот, так и оснований. В водных растворах аминокислоты существуют в разных ионных формах.

Пептидная связь

Пептиды — органические вещества, состоящие из остатков аминокислот, соединенных пептидной связью.

Образование пептидов происходит в результате реакции конденсации аминокислот. При взаимодействии аминогруппы одной аминокислоты с карбоксильной группой другой между ними возникает ковалентная азот-углеродная связь, которую и называютпептидной. В зависимости от количества аминокислотных остатков, входящих в состав пептида, различают дипептиды, трипептиды, тетрапептиды и т.д. Образование пептидной связи может повторяться многократно. Это приводит к образованиюполипептидов. На одном конце пептида находится свободная аминогруппа (его называют N-концом), а на другом — свободная карбоксильная группа (его называют С-концом).

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 8817 —

| 7528 — или читать все.

185.189.13.12 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

[3]

Видео (кликните для воспроизведения).

Отключите adBlock!
и обновите страницу (F5)

очень нужно

лекция 3 биохимия аминокислот и белков. Белки сложные биополимеры, мономерами которых являются -аминокислоты

Название Белки сложные биополимеры, мономерами которых являются -аминокислоты
Дата 31.08.2019
Размер 272.5 Kb.
Формат файла
Имя файла лекция 3 биохимия аминокислот и белков.doc
Тип Лекция
#64504
Каталог

диполярный ион (биполярный ион)

АК взаимодействуют со щелочами по карбоксильной группе и кислотами по аминогруппе (см. лекцию №5).

Кислотный центр СООН и основный центр аминогрупы образуют с Си(ОН) + NH — + ОН —

Изменение суммарного заряда АК в зависимости от рН среды

77 . Дикарбоновыемоноамино рI Большинство АК имеют рI в нейтральной области, близкой рН =7. Диаминомонокарбоновые АК рI

3. Характерные химические реакции АК по карбоксильной и аминогруппам

    Реакции по аминогруппе

Аминогруппа является сильным нуклеофильным реагентом и взаимодействует с электронодефицитным атомом углерода Например с СН + или НАДФ + идет окислительное дезаминирование АК in vivo, в отличие от in vitro с образуются оксогруппы кетокислот

2. Окислительное дезаминирование (in vivo)

II. Белки и пептиды Строение белков и полипептидов.

Пептиды, содержащие до 10 остатков АК наз олигопептиды. От 10-50 – полипептиды, более 50 – белки.

1. Характеристика первичной структуры белковой или полипептидной молекулы.

Первичная структура это последовательность АК, связанных пептидной связью.Эта последовательность закодирована в участке ДНК, называемом геном. В процессе синтеза белка информация, находящаяся в гене переписывается на м-РНК, а затем, используя м-РНК в качестве матрицы на рибосоме происходит сборка первичной структуры белка.

За счет внутримолекулярных взаимодействий белки образуют определенную пространственную структуру называемую «конформация белков».

    Вторичная структура белков

-структуры. Стабилизация вторичной структуры идет за счет водородных связей между пептидными группами.- спирали или складчатой Вторичная структура представляет собой наиболее выгодную конформацию в виде правозакрученной

    Третичная структура белков.

Третичная структура возникает за счет взаимодействия боковых радикалов в водном растворе. Молекула белка укладывается в пространстве в виде «глобулы» или «клубка» за счет 1.гидрофобного взаимодействия неполярных или гидрофобных радикалов,2. ионных связей. 3. Дисульфидных ковалентных мостиков, образованных при окислении цистеина. 4. водородных связей

Мономером белка является нуклеотид аминокислота глюкоза. Белок: мономер, строение и функции

Читайте также

Белки по составу делятся на глобулярные, фибриллярные и промежуточные.

Аминокислота имеет радикал, аминогруппу, карбоксильную группу.

Все белки – ферменты.

Активный центр фермента – это липид.

Гипотеза «ключа и замка» предложена Фишером в 1890 г.

Фибриноген – белок промежуточной структуры.

Hb – белок четвертичной структуры.

Простетическая группа гликопротеида – углевод.

Аминокислота – амфотерное соединение.

Связь между Н и О называют пептидной.

Первичную структуру белка поддерживают водородные связи.

Ферменты – биологические катализаторы.

Ферменты обладают специфичностью.

Анаболические реакции – реакции распада.

Миоглобин переносит О 2 в мышцах.

10. Дифтерийный токсин

18. Свертываемость крови

19. Кровь беспозвоночных

4. Транспортные белки

20. Дифтерийная палочка

5. Защитные белки.

21. Островки Лангерганса

6. Сократительные белки

22. Белок молока

7. Запасные белки

23. Неподвижные нити миофибрилл

24. Катализирует гидролиз белков

Тест «Роль белков в живом организме»

Часть 1. Выберите номера правильных утверждений.

Мономером белка является радикал.

Вторичная структура белка представлена спиралью или складчатым слоем.

Дисульфидные связи – связи между серосодержащими аминокислотами в молекуле белка.

Гистоны – это сложные белки.

Гипотеза «индуцированного соответствия» была обоснована Кошландом.

Денатурация – это восстановление трехмерной структуры белка.

Альбумины – это простые белки.

Казеин молока – глобулин.

Ферменты и антитела – глобулярные белки.

Реакция поликонденсации идет с выделением СО 2 .

Трипсин катализирует гидролиз белков.

Водородные связи образуются между серосодержащими аминокислотами.

Активность фермента не зависит от рН.

Глюкагон инициирует распад гликогена в печени.

Ферменты делят на 6 классов.

Часть 2. Распределите цифры по колонкам относительно первой.

17. Костная ткань

2. Структурные белки

10. Токсин ботулизма

18. Подвижные нити миофибрилл

19. Катализирует гидролиз белков

4. Транспортные белки

20. Ботулиновая палочка

5. Защитные белки

21. Борьба с инфекцией

6. Сократительные белки

7. Запасные белки

Видео (кликните для воспроизведения).

23. Щитовидная железа

24. Кровь позвоночных

МБОУ Вечерняя (сменная) ОШ с. Тоора-Хем

Оюн Анай-Хаак Хеймер-ооловна – учитель биологии

изучить особенности строения и функции углеводов как необходимых компонентов клеток.

продолжить углубление знаний об особенностях строения органических веществ,

сформировать знания о строении и функциях углеводов, охарактеризовать их многообразие,

продолжить формирование навыков работы с дополнительной литературой, навыков работы в группе.

Тип урока: комбинированный

Что такое углеводы?

Здравствуйте, ребята! Садитесь.

Давайте проверим, как вы готовы к уроку. У вас на столах должно быть: учебник, тетрадь, ручка, карандаши. У всех все есть? Хорошо! Кто отсутствует сегодня в классе? Молодцы!

Проверка домашнего задания.

Давайте вспомним то, что мы проходили на прошлом уроке. Мы познакомились с белками. Дома вы должны были ответить на вопросы в конце параграфа. Ответили?

(Проверить по одному тетради учащихся, и поставить соответствующие оценки).

С целью проверки усвоения вами материала прошлого урока давайте выполним задание. Я буду читать вам предложения, а вы скажете, правильно ли высказывание или нет. Итак, начинаем.

1. Белки по составу делятся на глобулярные, фибриллярные и промежуточные. (-)

2. Мономером белка является радикал. (-)

3. Аминокислота имеет радикал, аминогруппу, карбоксильную группу. (+)

4. Вторичная структура белка представлена спиралью или складчатым слоем. (+)

5. Все белки – ферменты. (-)

6. Дисульфидные связи – связи между серосодержащими аминокислотами в молекуле белка (+)

7. Фибриноген – белок промежуточной структуры (+)

8. Денатурация – это восстановление трехмерной структуры конформации белка (-)

9. Гемоглобин – белок четвертичной структуры (+)

10. Аминокислота – амфотерное соединение (+)

11. Связь между водородом и кислородом называют пептидной. (-)

12. Реакция конденсации идет с выделением углекислого газа (-)

13. Первичную конформацию белка поддерживают водородные связи (-)

14. Ферменты – это биологические катализаторы (+)

15. Ферменты обладают специфичностью (+)

16. Миоглобин переносит кислород в мышцах (+)

А теперь доставайте листочки будете делать на оценку тестирование.

Тест на тему: «Белки»

1. Из названных соединений выберите структурный компонент белка:

2. Назовите белки-катализаторы:

3. Какая химическая связь участвует в образовании первичной структуры белка?

4. Вторичная структура, как правило, имеет форму:

В) вытянутой цепи

5. Третичная структура имеет конфигурацию:

6. Синонимом понятия «белок» является термин:

7. Белки, выполняющие защитные функции, называются:

3 . Изучение нового материала.

Открывайте тетради и записывайте сегодняшнее число и тему. Сегодня мы познакомимся с еще одним органическим веществом – Углеводы. Начнем с определения углеводов. Углеводы (сахариды) – органические вещества с общей формулой С n(Н2О) m.

У большинства углеводов число молекул воды соответствует количеству атомов углерода, поэтому эти вещества и получили такое название.

В клетках животных углеводы содержатся в количестве не более 5% от сухой массы, в растительных клетках – до 90% (клубни картофеля).

Различают три основных класса углеводов: моносахариды, олигосахариды и полисахариды. Углеводы бывают простыми и сложными. К простым углеводам относятся моносахариды. К сложным – олигосахариды и полисахариды.

с греческого monos – один. Это бесцветные, кристаллические вещества, легко растворимые в воде и имеющие сладкий вкус.

Из моносахаридов наибольшее значение для живых организмов имеют рибоза, дезоксирибоза, глюкоза, фруктоза, галактоза.

Рибоза входит в состав РНК, АТФ, витаминов группы В, ряда ферментов. Дезоксирибоза входит в состав ДНК. Глюкоза (виноградный сахар) является мономером полисахаридов, например крахмала, гликогена, целлюлозы. Она есть в клетках всех организмов. Фруктоза входит в состав олигосахаридов, например сахарозы. В свободном виде содержится в клетках растений. Галактоза также входит в состав некоторых олигосахаридов, например лактозы.

С греческого oligos – немного. Они образованы из нескольких моносахаридов, связанных ковалентно друг с другом с помощью гликозидной связи. Большинство олигосахаридов растворимы в воде и имеют сладкий вкус.

Из олигосахаридов наиболее широко распространены дисахариды: сахароза, мальтоза, лактоза.

С греческого poly – много. Являются полимерами и состоят из неопределенного большого числа остатков молекул моносахаридов, соединенных ковалентными связями. Могут достигать сотен или тысяч молекул моносахаридов. К ним относятся крахмал, гликоген, целлюлоза, хитин и др.

Интересно, что крахмал, гликоген и целлюлоза, играющие важную роль в живых организмах, построены из мономеров глюкозы, но связи в их молекулах различны. Кроме того. У целлюлозы цепи не ветвятся, а у гликогена они ветвятся сильнее, чем у крахмала.

С увеличением количества мономеров растворимость полисахаридов уменьшается и исчезает сладкий вкус.

Основной функцией углеводов является энергетическая функция. При их ферментативном расщеплении и окислении молекул углеводов выделяется энергия, которая обеспечивает жизнедеятельность организма. При полном расщеплении 1 г. углеводов освобождается 17.6 кДж.

Запасающая функция. При избытке они накапливаются в клетке в качестве запасающих веществ, например крахмал, гликоген. И при необходимости используются организмом как источник энергии. Усиленное расщепление углеводов происходит, например, при прорастании семян, интенсивной мышечной работе, длительном голодании.

Очень важной является структурная функция. Они используются в качестве строительного материала. Целлюлоза благодаря особому строению нерастворима в воде и обладает высокой прочностью. В среднем 20-40% материала клеточных стенок растений составляет целлюлоза, а волокна хлопка – почти чистая целлюлоза, а именно поэтому они используются для изготовления тканей.

Защитная функция. Твердые клеточные стенки одноклеточных и хитиновые покровы членистоногих, в состав которых входят углеводы, также выполняют защитные функции.

А теперь давайте на закрепление, все вместе выполним тест.

1. Какое из названных химических соединений не является биополимером?

Б) глюкоза Г) целлюлоза

2. В клетках животных запасным углеводом является:

А) целлюлоза В) глюкоза

Б) крахмал Г) гликоген

3. В каком случае правильно написана формула молекулы глюкозы?

А) С5 Н12 О5 В) С6 Н12 О6

Б) С6 Н10 О6 Г) С6 Н12 О5

4. Клетки какого из названных организмов наиболее богаты углеводами?

А) клетки мышц человека В) клетки кожицы лука

Б) клетки клубня картофеля Г) подкожная клетчатка медведя.

5. Какое из соединений не построено из аминокислот?

А) гемоглобин В) инсулин

Б) гликоген Г) альбумин

5. Домашнее задание.

Что такое углеводы?

Что такое моносахариды?

Что такое олигосахариды?

Что такое полисахариды?

[1]

Какие функции выполняют углеводы?

И вот наш урок подошел к концу. Все вы получите соответствующие оценки за ответы на вопросы. Спасибо вам за урок! До свидания!

Белки являются высокомолекулярными органическими соединениями. Состоят из остатков аминокислот. В их состав также входят другие вещества: сера, кислород, азот, водород и углерод. Некоторые белки способны образовывать комплексы с молекулами, если в их составе присутствует цинк, медь, железо и фосфор. У белков достаточно большая молекулярная масса, поэтому они носят название макромолекул. Например, у яичного альбумина — 36 тысяч, а у гемоглобина (белок крови) — 152 тысячи, а миозин имеет молекулярную массу 500 тысяч. Сравним: молекулярная масса бензола — 78, а уксусная кислота имеет показатель в 60.

Классификация

Элементарная часть

Пептидная связь

Еще одна классификация

Разные радикалы

Организация молекул белка в пространстве

Вторичная структура характерна упорядоченным свертыванием цепи в спираль, по внешнему виду напоминающую растянутую пружину. Связи, возникающие между мономерами белков, являются водородными и укрепляют структуру. Эти связи появляются между амино- и карбоксильными группами. Водородные связи слабее пептидных, но делают всю конфигурацию более жесткой и устойчивой за счет многократного повторения. Для некоторых белков, например фиброина (паутина, шелк), кератина (ногти и волосы) и коллагена, дальнейшей компактизации не происходит.

Белок: мономер, строение и функции

Белки являются высокомолекулярными органическими соединениями. Состоят из остатков аминокислот. В их состав также входят другие вещества: сера, кислород, азот, водород и углерод. Некоторые белки способны образовывать комплексы с молекулами, если в их составе присутствует цинк, медь, железо и фосфор. У белков достаточно большая молекулярная масса, поэтому они носят название макромолекул. Например, у яичного альбумина — 36 тысяч, а у гемоглобина (белок крови) — 152 тысячи, а миозин имеет молекулярную массу 500 тысяч. Сравним: молекулярная масса бензола — 78, а уксусная кислота имеет показатель в 60.

Довольно часто, особенно среди школьников, можно встретить утверждение, что мономеры белков — нуклеотиды. Это заблуждение. Белки, или протеины, самые распространенные и многочисленные из органических соединений, — это разнообразные и необходимые для функционирования организма полимеры. От 50 до 80 % в сухой массе клетки приходится именно на белок. Мономеры, а точнее их количество и последовательность, отличают белки друг от друга.

Белки являются непериодическими полимерами, для их функционирования важно присутствие нескольких веществ. В общей формуле обязательно должны присутствовать карбоксильная группа (-COOH), аминогруппа (-NH2) и радикал, или R-группа (это оставшаяся часть молекулы), карбоксильная и аминогруппы. Из чего состоит белок? Мономеры его — аминокислоты, и, хотя клетки и ткани содержат более ста семидесяти видов аминокислот, к мономерам биологи относят только два десятка видов.

Существует классификация аминокислот, согласно которой они подразделяются на две группы, в зависимости от того, могут ли синтезироваться организмами животных и человека. Заменимые аминокислоты организм может производить самостоятельно, незаменимые же можно получить только извне — с пищей, а вот растения способны синтезировать их все.

Классификация

Сами же белки классифицируются по аминокислотному составу. Они могут быть полноценными, если содержат полной набор аминокислот, и неполноценным, если одна или несколько аминокислот отсутствуют. Если белок состоит исключительно из аминокислот, его называют простым. В случае, когда присутствует простетическая группа, которая также называется неаминокислотным компонентом, их называют сложными. Неаминокислотная группа может быть представлена в виде металлопротеинов, углеводов (гликопротеинов), липидов (липопротеинов) и нуклеиновых кислот (нуклеопротеинов).

Элементарная часть

Сами аминокислоты состоят из трех обязательных частей. Таким образом, можно сказать, что мономером белка является радикал, различающий между собой виды аминокислот, а также неизменяемые карбоксильная и амино- группы. По количеству входящих в состав карбоксильных и аминогрупп аминокислоты подразделяют на нейтральные, основные и кислые. Нейтральные имеют по одной карбоксильной и аминогруппе. В формуле основных содержится более одной аминогруппы, а в кислых аминокислотах, наоборот, имеется более чем одна карбоксильная группа.

Аминокислоты — мономеры белков — амфотерные соединения, потому что из-за наличия карбоксо- и аминогрупп в растворе могут выступать и в качестве оснований, и в качестве кислот. В водном растворе представлены в качестве ионных форм.

Пептидная связь

Полипептид — так ученые называют белок: мономер его скрепляется с себе подобными с помощью пептидных связей. Пептиды являются продуктом реакции конденсации аминокислот. Взаимодействие карбоксильной и аминогрупп двух аминокислот характерно образованием ковалентной азот-углеродной связи, она и называется пептидной. Пептиды классифицируют по количеству остатков аминокислот, входящих в их состав: дипептиды, трипептиды, тетрапептиды и так далее. При многократном повторении образования ковалентной азот-углеродной связи образуются полипептиды. Один конец пептида содержит свободную аминогруппу и называется N-концом, второй — свободную карбоксильную группу и называется, соответственно, C-концом.

Еще одна классификация

Как уже упоминалось выше, мономеры белков состоят из амино- и карбоксильной групп и радикала, которые образуют между собой прочные связи. Также могут присутствовать и другие вещества, однако именно от R-группы в основном зависят свойства всей молекулы, и существует еще один тип классификации. Какой? Мономеру белка свойственно иметь различные радикалы, по их типу и можно разделить все аминокислоты на гетероциклические, ароматические и алифатические. Алифатический радикал может содержать функциональные группы, которые придают особые свойства. Это амино-, карбоксильная, тиольная (-SH), гидроксильная (-OH), амидная (-C0-NH2) и гуанидиновая группы.

Разные радикалы

Мономер молекулы белка, содержащий аминогруппу, — это аминокислота пролин. Гетероциклические радикалы содержатся в составе триптофана и гистидина. Ароматический радикал присутствует в фенилаланине и тирозине. Дополнительная гидроксильная группа есть в серине и треонине; карбоксильная — в аспарагиновой и глутаминовой кислотах. Еще одна амидная группа в составе радикала имеется в аспарагине и глутамине (не путать с кислотами). Дополнительная аминогруппа есть у лизина, а гуанидиновая — в аргинине. Сера присутствует в радикалах цистеина и метионина.

Организация молекул белка в пространстве

Каждый белок имеет специфические функции, которые зависят от пространственной организации молекул. К тому же поддержка белков в виде цепочки, то есть в развернутом виде, в энергетическом плане невыгодна для клетки, поэтому, так же как молекулы ДНК, цепи полипептидов подвергаются компактизации, за счет чего приобретают конформацию — трехмерную структуру.

Пространственная организация белковых молекул имеет четыре уровня.

Так как мономерами молекул белков являются аминокислоты, то первичная структура представлена в виде полипептидной цепи, состоящей из аминокислотных остатков, которые объединены пептидной связью. Несмотря на кажущуюся простоту, именно первичная структура определяет, какую функцию сможет выполнять белок. Мономер в составе цепи должен быть на своем месте, замена даже одного из них изменит назначение всей молекулы. Например, если шестую глутаминовую кислоту в гемоглобине заменить на валин, вся молекула в целом перестанет функционировать, и транспорт кислорода будет нарушен. Такая замена приводит к развитию у человека серповидноклеточной анемии.

Если в составе полипротеина содержится десять аминокислотных остатков, то вариантов чередования мономеров будет очень много — 1020, если же будут присутствовать все 20, комбинаций, которые можно составить, станет еще больше. Организм человека синтезирует более десяти тысяч белков, которые отличаются не только по сравнению друг с другом, но и с белками других живых организмов.

Вторичная структура характерна упорядоченным свертыванием цепи в спираль, по внешнему виду напоминающую растянутую пружину. Связи, возникающие между мономерами белков, являются водородными и укрепляют структуру. Эти связи появляются между амино- и карбоксильными группами. Водородные связи слабее пептидных, но делают всю конфигурацию более жесткой и устойчивой за счет многократного повторения. Для некоторых белков, например фиброина (паутина, шелк), кератина (ногти и волосы) и коллагена, дальнейшей компактизации не происходит.

Третий уровень

На следующем уровне полипептидные цепи укладываются в глобулы, которые возникают из-за установки новых химических связей — дисульфидных, ионных, водородных. Также важным фактором является установка гидрофобного взаимодействия между R-группами аминокислотных остатков, именно гидрофильно-гидрофобным взаимодействиям отводится основная роль в факторе образования третичной структуры белковой молекулы.

При попадании в водный раствор радикалы-гидрофобы стараются скрыться от воды путем группировки внутри глобул, а гидрофильные R-группы взаимодействуют с диполями воды (гидратация), напротив, оказываются на поверхности. Некоторые белки имеют дополнительную стабилизацию третичной структуры за счет дисульфидных ковалентных связей, которые возникают между двумя остатками цистеина за счет наличия атомов серы. На третичной структуре заканчивается компактизация белков-ферментов, антител и некоторых гормонов.

Четвертичная структура

Последняя степень компактизации присутствует в сложных белках, в составе которых имеется две и более глобул. Удерживание субъединиц происходит за счет ионных, гидрофобных и электростатических взаимодействий. Также возможно образование дисульфидных связей. Четвертичную структуру имеет белок гемоглобин, образованный двумя альфа-субъединицами, содержащими 141 аминокислотный остаток, и бета-субъединицами, в составе которых насчитывается 146 остатков. Каждая субъединица связана также с молекулой гема, в которой содержится железо.

Свойства белков

Так как мономером молекулы белка является аминокислота, то именно от них, наряду со структурной организацией, зависят и свойства. Белки проявляют как кислотные, так и основные свойства, которые определяется R-группами аминокислот: если в составе больше основных аминокислот, то и основные свойства выражены ярче. Буферные свойства белков определяется способностью присоединять и отдавать протон (H+). Гемоглобин, содержащийся в эритроцитах, является одним из мощнейших буферов, помимо связывания кислорода он исполняет функции регуляции уровня pH крови.

Существуют растворимые белки, например фибриноген, и нерастворимые, которые выполняют механические функции (например, коллаген, кератин, фиброин). Ферменты — это химически активные белки, и, в противовес им, есть и инертные полипептиды. Также выделяют белки, которые устойчивы или неустойчивы к воздействию внешних условий.

Денатурация

Такие внешние факторы, как ультрафиолетовое излучение, соли тяжелых металлов и сами металлы, обезвоживание, радиация, нагревание и изменение pH, могут привести к частичному или полному разрушению структурной организации белковой молекулы. Утрата трехмерной конструкции называется денатурацией. Ее причиной становится разрыв связей, которые придавали стабильность структуре молекулы. Первыми разрушаются слабые связи, а затем, в случае еще более жестких условий, рвутся даже сильные, именно поэтому сначала рушится четвертичная структура, и только после этого — третичная и вторичная.

Когда пространственная конфигурация меняется, белок меняет и свои свойства, в результате чего больше не может выполнять свойственную ему биологическую задачу. Если при денатурации не произошло разрушение базовой, первичной структуры, то она обратима, и белок сможет провести процедуру самовосстановления — ренатурацию. В остальных же случаях денатурация необратима.

Защита и обмен веществ

Без участия белков в организме не происходит ни одного процесса. Их строительная функция заключается в участии в формировании внеклеточных и клеточных структур, они присутствуют в составе мембран клеток, волос, ногтей и сухожилий. Также выполняют и транспортную функцию: гемоглобин осуществляет перенос кислорода и углекислого газа, а белки мембран клеток активно и избирательно проводят перенос нужных веществ в клетку и из нее во внешнюю среду.

Некоторые гормоны имеют белковую природу и участвуют в регуляции обмена веществ. К примеру, инсулин производит регулировку в крови уровня глюкозы, а наряду с этим способствует образованию гликогена и оптимизирует синтез жиров из углеводов.

Защитная функция белков состоит в образовании антител в случае, если организм атакован чужеродными белками и микроорганизмами. Антитела способны находить и обезвреживать их. При ранах и порезах из фибриногена образуется фибрин, который помогает остановить кровотечение.

Другие функции

Без белков невозможно движение: миозин и актин — сократительные белки, за счет которых обеспечивается работа мышц у животных.

На белках лежит также и сигнальная функция. В клеточных мембранах содержатся белки, которые могут менять свою третичную структуру в зависимости от воздействия внешней среды. Это является основой приема и передачи в клетку сигналов из внешней среды.

Ни человек, ни животные не могут запасать белки (исключением является казеин молока и альбумин яиц), но белки способствуют накоплению в организме некоторых веществ. К примеру, во время распада гемоглобина железо не покидает организм, а образует комплекс с ферритином. Распад одного грамма белка дает организму и 17,6 кДж энергии, в этом заключается их энергетическая функция. Однако, как правило, организм «старается» не расходовать для этого такой важный материал, и сначала распадаются жиры и углеводы.

Одна из самых важных функций — каталитическая. Она обеспечивается ферментами, которые способны ускорять биохимические реакции в клетках.

Читайте так же:  Бца спортивное питание для чего пьют

Источники


  1. Гиппиус, С. В. Актерский тренинг. Гимнастика чувств / С.В. Гиппиус. — М.: Прайм-Еврознак, 2006. — 384 c.

  2. Новоселов, Владимир Восстановление после гепатита. Рекомендации диетолога / Владимир Новоселов. — М.: Невский проспект, 2004. — 160 c.

  3. Вечерская, Ирина 100 рецептов блюд, богатых микроэлеметами. Вкусно, полезно, душевно, целебно / Ирина Вечерская. — М.: Центрполиграф, 2013. — 173 c.
Мономерами белков являются аминокислоты
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here