Одна аминокислота кодируется нуклеотидами

Важная и проверенная информация на тему: "одна аминокислота кодируется нуклеотидами" от профессионалов для спортсменов и новичков.

Задачи ЕГЭ по кодированию генетического кода

Итак, рассмотрим задачи ЕГЭ, относящиеся к генетическому коду клетки. Вы можете узнать эти задачи по вопросу об аминокислотных остатках, триплетах, нуклеотидах.

В синтезе белка принимает участие молекула иРНК, фрагмент которой содержит 33 нуклеотидных остатка. Определите число нуклеотидных остатков в участке матричной цепи ДНК.

Решение: По принципу комлементарности иРНК синтезируется на матричной цепи ДНК, число нуклеотидов будет таким же.

Участок полипептида состоит из 28 аминокислотных остатков. Определите число нуклеотидов в участке иРНК, содержащего информацию о первичной структуре белка.

Решение: Одна аминокислота кодируется тремя нуклеотидами (триплетом), поэтому верный ответ 28 *3 = 84.

Какое число аминокислот зашифровано в участке гена, содержащего 129 нуклеотидных остатков?

Решение: 1 аминокислота кодируется тремя нуклеотидами, поэтому количество аминокислот равно: 129 / 3 = 43.

Какое число тРНК приняли участие в синтезе белка, который включает 130 аминокислот? В ответе напишите соответствующее число.

Решение: 1 тРНК переносит 1 аминокислоту, поэтому их количество одинаково.

Сколько нуклеотидов составляют один стоп-кодон иРНК?

Решение: Любой кодон иРНК состоит из трёх нуклеотидов, в том числе и стоп-кодон.

Сколько нуклеотидов в участке гена кодируют фрагмент белка из 25 аминокислотных остатков? В ответ запишите только соответствующее число.

Решение: Каждую аминокислоту кодирует три нуклеотида (триплет), значит, 25 аминокислот кодирует 75 нуклеотидов.

Сколько аминокислот кодирует 900 нуклеотидов? В ответ запишите только соответствующее число.

Решение: Одну аминокислоту кодируют 3 нуклеотида, значит, 900 нуклеотидов = 300 триплетов = 300 аминокислот.

В молекуле ДНК количество нуклеотидов с гуанином составляет 20% от общего числа. Сколько нуклеотидов в % с тимином в этой молекуле. В ответ запишите только соответствующее число.

Решение: По правилу комплементарности количество гуанина равно количеству цитозина, значит, 20% (Г + Ц = 40%), на тимин и аденин остается 60%, их так же равное количество, значит, по 30% (А = Т = 30%).

Какой процент нуклеотидов с цитозином содержит ДНК, если доля её адениновых нуклеотидов составляет 10% от общего числа. В ответ запишите только соответствующее число.

Решение: 10% аденина = 10% тимина по правилу комплементарности. Остается 80% на цитозин и гуанин. А так как их равное количество, то 40% цитозина = 40% гуанина.

Какое число нуклеотидов в гене кодирует первичную структуру белка, состоящего из 300 аминокислот. В ответ запишите только соответствующее число.

Решение: Каждую аминокислоту кодирует три нуклеотида (триплет). Значит, 300 аминокислот кодирует 900 нуклеотидов.

Таким образом, понятно как решать задачи ЕГЭ по биологии по кодированию генетического кода. Каждую аминокислоту кодирует три нуклеотида. Если спрашивают сколько аминокислот кодирует N количество нуклеотидов, то вам нужно это число N разделить на 3.

Если спрашивают, сколько нуклеотидов нужно для кодирования N аминокислот. То вам нужно N умножить на 3, так как на одну кислоту приходится 3 нуклеотида.

Задачи на количество нуклеотидов

Участок одной из двух цепей молекулы ДНК содержит 300 нуклеотидов с аденином (А), 100 нуклеотидов с тимином (Т), 150 нуклеотидов с гуанином (Г) и 200 нуклеотидов с цитозином (Ц). Какое количество нуклеотидов с А, Т, Г и Ц содержится в двуцепочечной молекуле ДНК? Сколько аминокислот должен содержать белок, кодируемый этим участком молекулы ДНК? Ответ поясните.

Если в одной цепи ДНК 300 А, 100 Т, 150 Г и 200 Ц, то в комплементарной ей цепи, соответственно, 300 Т, 100 А, 150 Ц и 200 Г. Следовательно, в двуцепочечной ДНК 400 А, 400 Т, 350 Г и 350 Ц.

Если в одной цепи ДНК 300 + 100 +150 + 200 = 750 нуклеотидов, значит там 750 / 3 = 250 триплетов. Следовательно, этот участок ДНК кодирует 250 аминокислот.

В одной молекуле ДНК нуклеодиды с тимином (Т) составляют 24% от общего числа нуклеотидов. Определите количество (в %) нуклеотидов с гуанином (Г), аденином (А), цитозином (Ц) в молекуле ДНК и объясните полученные результаты.

Если 24% Т, значит, по принципу комплементарности 24% А. В сумме на А и Т приходится 48%, следовательно, на Г и Ц в сумме приходится 100%-48%=52%. Количество Г равно количеству Ц, 52% / 2 = 26%.

В процессе трансляции участвовало 30 молекул тРНК. Определите число аминокислот, входящих в состав синтезируемого белка, а также число триплетов и нуклеотидов в гене, который кодирует этот белок.

Если было 30 тРНК (каждая несла по одной аминокислоте) значит, белок содержит 30 аминокислот. Каждая аминокислота кодируется одним триплетом, следовательно, в гене 30 триплетов. Каждый триплет состоит из 3 нуклеотидов, следовательно, в гене 30х3=90 нуклеотидов.

Белок состоит из 100 аминокислот. Установите, во сколько раз молекулярная масса участка гена, кодирующего данный белок, превышает молекулярную массу белка, если средняя молекулярная масса аминокислоты – 110, а нуклеотида – 300. Ответ поясните.

Молекулярная масса белка из 100 аминокислот 100 х 110 = 11 000. Сто аминокислот кодируется трехстами нуклеотидами, молекулярная масса гена 300 х 300 = 90 000. Следовательно, молекулярная масса гена больше в 90/11= 8,18 раз.

Читайте так же:  Л карнитин на айхерб какой

Участок молекулы ДНК содержит 50 нуклеотидов с гуанином (Г). Определите, сколько нуклеотидов с цитозином (Ц) содержится на этом участке, а также их число в каждой из дочерних молекул ДНК, образующихся в процессе репликации. Поясните каждый полученный результат.

Напротив гуанина в двойной цепи ДНК стоит цитозин, следовательно, в исходной молекуле 50 нуклеотидов с цитозином. В результате репликации получаются молекулы ДНК, полностью идентичные материнской, следовательно, в каждой из них тоже будет по 50 молекул цитозина и 50 молекул гуанина.

Одна аминокислота кодируется нуклеотидами

Это способ, с помощью которого информация о последовательности двадцати аминокислот закодирована с помощью последовательности четырех нуклеотидов.

Свойства генкода

1) Триплетность
Одна аминокислота кодируется тремя нуклеотидами. В ДНК они называются триплет, в иРНК – кодон, в тРНК – антикодон. Всего существует 64 триплета, 61 из них кодирует аминокислоты, а 3 являются стоп-сигналами – показывают рибосоме место, в котором надо прекратить синтез белка.

2) Вырожденность (избыточность)
Кодонов, кодирующих аминокислоты, существует 61, а аминокислот только 20, поэтому большинство аминокислот кодируются несколькими кодонами. Например, аминокислота аланин кодируется четырьмя кодонами – ГЦУ, ГЦЦ, ГЦА, ГЦГ. Исключение – метионин, он кодируется одним кодоном АУГ – у эукариот это старт-кодон при трансляции.

3) Однозначность
Каждый кодон кодирует только одну аминокислоту. Например, кодон ГЦУ кодирует только одну аминокислоту – аланин.

4) Непрерывность
Между отдельными триплетами нет никаких разделителей («знаков препинания»). Из-за этого при выпадении или вставке одного нуклеотида происходит «сдвиг рамки считывания»: начиная с места мутации считывание триплетного кода нарушается, синтезируется совершенно другой белок.

5) Универсальность
Генетический код одинаков для всех живых организмов на Земле.

Биосинтез белка. Генетический код

Наследственная информация – это информация о строении белка (информация о том, какие аминокислоты в каком порядке соединять при синтезе первичной структуры белка).

Информация о строении белков закодирована в ДНК, которая у эукариот входит в состав хромосом и находится в ядре. Участок ДНК (хромосомы), в котором закодирована информация об одном белке, называется ген.

Транскрипция – это переписывание информации с ДНК на иРНК (информационную РНК). иРНК переносит информацию из ядра в цитоплазму, к месту синтеза белка (к рибосоме).

Трансляция – это процесс биосинтеза белка. Внутри рибосомы к кодонам иРНК по принципу комплементарности присоединяются антикодоны тРНК. Рибосома пептидной связью соединяет между собой аминокислоты, принесенные тРНК, получается белок.

Реакции транскрипции, трансляции, а так же репликации (удвоения ДНК) являются реакциями матричного синтеза. ДНК служит матрицей для синтеза иРНК, иРНК служит матрицей для синтеза белка.

Генетический код – это способ, с помощью которого информация о строении белка записана в ДНК.

Свойства генкода

1) Триплетность: одна аминокислота кодируется тремя нуклеотидами. Эти 3 нуклеотида в ДНК называются триплет, в иРНК – кодон, в тРНК – антикодон (но в ЕГЭ может быть и «кодовый триплет» и т.п.)

2) Избыточность (вырожденность): аминокислот всего 20, а триплетов, кодирующих аминокислоты – 61, поэтому каждая аминокислота кодируется несколькими триплетами.

3) Однозначность: каждый триплет (кодон) кодирует только одну аминокислоту.

4) Универсальность: генетический код одинаков для всех живых организмов на Земле.

Задачи на количество нуклеотидов/аминокислот
3 нуклеотида = 1 триплет = 1 аминокислота = 1 тРНК

Задачи на АТГЦ
ДНК иРНК тРНК
А У А
Т А У
Г Ц Г
Ц Г Ц

Генетический код

Первые представления о том, каким образом в генах закодирована наследственная информация, изложил Ф. Крик в своей «гипотезе последовательности», согласно которой последовательность аминокислот в полипептидной цепи определяется последовательностью элементов в гене. Экспериментальные подтверждения данная гипотеза получила уже после расшифровки генетического кода в экспериментах Ч. Яновского. Чарльз Яновский в 1964 г. показал совпадение относительного положения индуцированных мутаций в гене trpA E.coli и аминокислотных замен в кодируемом этим геном ферменте — триптофан-синтетазе. Таким образом, была доказана колинеарностьструктуры гена и кодируемого им полипептида.

Тем не менее молекулярные основы этой колинеарности были вовсе не очевидны, поскольку все разнообразие аминокислот в полипептидах описывается значением 20, а разнообразие нуклеотидов в ДНК —значением 4. Таким образом, один нуклеотид никак не может кодировать одну аминокислоту в пептиде.

Эксперименты Ф. Крика и его соавторов по исследованию мутаций у бактериофага Т4 кишечной палочки позволили прийти к заключению, что каждая аминокислота кодируется тремя нуклеотидами, т. е. генетический код триплетный. Этот вывод следовал из наблюдения, что мутации, сопровождающиеся вставками или выпадениями (делециями) одного либо двух нуклеотидов из генома Т4, приводили к образованию аномальных белков с нарушенной функцией. Наоборот, вставки или делеции трех нуклеотидов сопровождались часто незначительными изменениями в составе белков, в результате чего последние сохраняли активность. Крик и Бреннер заключили, что генетический код считывается дискретными единицами по 3 нуклеотида. В таком случае вставка (делеция) триплета нуклеотидов должна приводить к добавлению (изъятию) всего одной аминокислоты из состава соответствующего полипептида. В ситуации, когда вставка (делеция) нуклеотидов совершается в количестве, не кратном трем, должен происходить сдвиг «рамки считывания» и последовательность аминокислот в белке должна полностью меняться.

Читайте так же:  Л аргинин л орнитин

Таким образом, генетический код — триплетный, т. е. положение каждой аминокислоты в полипептиде задается последовательностью из трех нуклеотидов, которая носит название кодон. Поскольку число разных нуклеотидов в ДНК равно четырем, то количество возможных вариантов триплетов нуклеотидов будет описываться количеством: 4 *4 * 4 = 64. 61 из 64 триплетов кодируют аминокислоты, причем каждый триплет — только одну аминокислоту, а три оставшихся кодона служат сигналами окончания (терминации) трансляции (рис. 1.7). Эти кодоны называют стоп (stop)-кодонами или нонсенс-кодонами, поскольку они не определяют никакой аминокислоты. Помимо этого, два кодирующих триплета (чаще ATG — для Met, иногда GTG — для Val) выполняют двойную функцию: кодируют аминокислоты метионин или валин и служат стартовыми кодонами, на которых начинается процесс трансляции (рис. 1.7).

Особенностью генетического кода является то, что в нем отсутствуют запятые, т. е. нет знаков, отделяющих один кодон от другого. При этом генетический код не перекрывается в пределах одной рамки считывания, а рамка считывания задается первым «читаемым» нуклеотидом (рис. 1.8). Максимальное количество рамок считывания в гене — 3, столько же, сколько и «букв» в коде.

Для большинства клеточных организмов характерна реализация лишь одной рамки считывания, в то время как у некоторых вирусов их может быть две или даже три.

Направление чтения закодированной записи осуществляется от 5’-конца к 3’-концу мРНК, являющейся транскриптом «+»-цепи ДНК, считанным с нее в направлении 5’ → 3’. Первый с 5’-конца кодон отвечает N-концевой аминокислоте полипептидной цепи. Следовательно, белки синтезируются от N-конца к С-концу (рис. 1.8).

Еще одним свойством генетического кода является его вырожденность. Это означает, что одна аминокислота может кодироваться более чем одним триплетом нуклеотидов. С другой стороны, код не является двусмысленным: каждый кодон кодирует только одну аминокислоту. Такая закономерность выражается в том, что если известна последовательность нуклеотидов в ДНК, то с ее помощью легко узнать последовательность аминокислот в белке; наоборот, известную последовательность аминокислот нельзя однозначно перевести в нуклеотидную последовательность ДНК. Вырожденность генетического кода, как правило, приводит к тому, что у кодонов, определяющих одну и ту же аминокислоту, реально распознаются только первые два нуклеотида, а третий может не иметь значения.

Для объяснения этого феномена Крик предложил гипотезу «качания» (от англ. wobble), которая впоследствии подтвердилась, и в настоящее время называется правилом неоднозначного соответствия. Согласно этому правилу, cоответствие третьего нуклеотида в кодоне мРНК первому нуклеотиду в антикодоне тРНК является нестрогим, поскольку часто первое положение в антикодоне тРНК занимает минорный нуклеотид, содержащий в качестве азотистого основания инозин. Инозин может образовывать водородные связи с урацилом, цитозином или аденином, находящимися в кодоне в третьем положении. Существование такого механизма позволяет клетке иметь меньше 61 разной тРНК, поскольку многие тРНК способны узнавать до трех кодонов.

Генетический код универсален. Это свойство кода состоит в том, что любая молекула мРНК при трансляции в клетке любого организма приведет к синтезу полипептида с одинаковой последовательностью аминокислот. Данное правило, однако, имеет исключения, которые касаются генетического кода ДНК митохондрий. Большей частью и здесь используется основной «генетический словарь», но, например, в митохондриях млекопитающих кодон UGA в мРНК «читается» как триптофан, и в пептид в соответствующее положение включается триптофан, в то время как в ядерной мРНК данный кодон служит стоп-кодоном (рис. 1.7) и на нем заканчивается процесс трансляции. Наоборот, в митохондриях млекопитающих триплеты нуклеотидов AGA и AGG прочитываются как сигналы терминации, а в ядре они кодируют аминокислоту аргинин. В митохондриях других организмов могут встречаться иные отклонения от универсального для ядерной ДНК генетического кода.

Структура триплетов нуклеотидов коррелирует с химическими свойствами кодируемых ими аминокислот. Так, все кодоны с уридилатом во втором положении кодируют аминокислоты с гидрофобной боковой цепью: фенилаланин, лейцин, изолейцин, валин, метионин. Если исключить терминирующие кодоны, то наличие аденилата во втором положении определяет полярную или заряженную боковую цепь (тирозин, гистидин, глютамин, аспарагин, лизин, глютаминовая и аспарагиновая кислоты) . К тому же кодоны для большинства гидрофобных аминокислот различаются только одним нуклеотидом (рис. 1.7). Аналогичная ситуация наблюдается и для кодонов серина и треонина (их боковые группы содержат гидроксил) или аланина и глицина (имеют наименее сложно устроенные боковые группы). Таким образом, генетический код устроен так, что при замене нуклеотидов даже в первой или второй позиции некоторых кодонов в полипептид включается структурно родственная aминокислота, сводя тем самым к минимуму нарушения во вторичной структуре белка.

Расшифровка генетического кода осуществлена Ниренбергом и Кораной в начале 60-х годов прошлого столетия. В ходе первых экспериментов в бесклеточную систему для синтеза белка, содержащую все необходимые компоненты, в качестве мРНК вносили искусственно синтезированные гомополинуклеотиды: полиуридилат, полицитидилат и др. Синтезированные в таких условиях полипептиды подвергали аминокислотному анализу и установили, что на мРНК, представляющей собой poly(U) (т. е. UUUUUU…), синтезируется полифенилаланин, на poly(С) — полипролин и т. д. Таким образом, можно было заключить, что триплет нуклеотидов UUU кодирует аминокислоту фенилаланин, а ССС — пролин. Окончательную расшифровку всех 64 кодонов удалось осуществить с использованием в бесклеточных системах трансляции синтетических полирибонуклеотидов с известными повторяющимися последовательностями. Эти регулярные сополимеры удалось получить благодаря комбинированию методов органического и ферментативного синтеза.

Читайте так же:  Аргинин участвует в образовании

Не нашли то, что искали? Воспользуйтесь поиском:

Раздел 2. Задачи по теме «Свойства генетического кода»

Для решения этих задач необходимо знание свойств кода ДНК, умение пользоваться таблицей генетического кода.

Задача 5. В белке содержится 51 аминокислота. Сколько нуклеотидов будет в цепи гена, кодирующей этот белок, и сколько — в соответствующем фрагменте молекулы ДНК?

1)Поскольку генетический код триплетен, т. е. одна аминокислота кодируется тремя нуклеотидами, то количество нуклеотидов в кодирующей цепи гена будет 51

2) а в двухцепочечной ДНК количество нуклеотидов будет вдвое больше, т. е. 153 × 2 = 306.

Ответ: в кодирующей цепи гена будет содержаться 153 нуклеотида, во фрагменте ДНК-306.

Обратите внимание, что транскрипция проходит только на одной цепи ДНК!

Задача 6. В кодирующей цепи гена содержится 600 нуклеотидов. Сколько аминокислот содержится в молекуле белка, информация о которой закодирована в этом гене,если в конце гена имеются два стоп — кодона?

1. Поскольку в конце гена имеются два стоп -кодона, то 6 нуклеотидов (2×3) не несут информации о структуре белка. Значит, информация о данном белке закодирована в цепочке из 594 (600 – 6) нуклеотидов.

2. Основываясь на триплетности кода, подсчитаем количество аминокислот: 594 : 3 = 198.

Ответ: в молекуле белка содержится 198 аминокислот.

Раздел 3. Задачи по теме «Биосинтез белка»

Для решения этого типа задач необходимы знания о механизме биосинтеза белка (транскрипции, трансляции), принципе комплементарности, свойствах генетического кода, умение пользоваться таблицей генетического кода.

Задача 7. Участок ДНК содержит последовательно расположенные нуклеотиды ААГТГТГАЦТТА. Укажите аминокислотный состав белковой цепи, кодируемой этим участком ДНК.

1. Распределяем участок ДНК на триплеты: ААГ-ТГТ-ГАЦ-ТТА.

2. Обратите внимание, что для дальнейших действий восстанавливать последовательность нуклеотидов во второй цепи ДНК нецелесообразно! Устанавливаем последовательность нуклеотидов в молекуле и-РНК.

3. Используя таблицу генетического кода, переводим эти триплеты и-РНК на последовательность аминокислот :

кодоны ДНК ААГ — ТГТ — ГАЦ — ТТА

кодоны и-РНК УУЦ- АЦА –ЦУГ- ААУ

аминокислоты фен – тре – лей – асп

Ответ: аминокислотный состав белковой цепи будет следующий: фен-тре-лей-асп.

Напоминаем, что согласно вырожденности генетического кода, аминокислота может быть закодирована несколькими триплетами. Для восстановления аминокислотной последовательности вы можете выбрать любой из триплетов, кодирующих данную аминокислоту.

Какова длина гена, если в нем закодирован белок с молекулярной массой 15000 дальтон? (длина одного нуклеотида равна 0,34 нм, относительная молекулярная масса одной аминокислоты равна 100)

Критерии для оценивания задач по молекулярной биологии

Правильно указано количество аминокислот в белке – 15000_100=150

Правильно установлена зависимость 1 аминокислота- 3 нуклеотида и-РНК и указано количество нуклеотидов и-РНК – 150

3=450

Правильно указано количество нуклеотидов в ДНК и указана длина гена (или масса гена, или масса и-РНК, или количество пентоз, входящих в состав нуклеотидов ДНК) – ДНК (1 цепь) -450

0,34 нм=

При решении задач такого типа строгих регламентирующих правил оформления нет. Однако в записи решения задачи по молекулярной биологии должен прослеживаться ход рассуждений, и должна быть записана четкая последовательность действий. Ученик владеет основными понятиями и демонстрирует осознание процессов (транскрипция, трансляция, принцип комплементарности) .

Одну аминокислоту могут кодировать несколько кодонов

5) смысл кодонов различен у разных организмов

116. КОЛЛИНЕАРНОСТЬ КОДА — ЭТО

1) способ шифрования первичной структуры белков в нуклеотидной последовательности ДНК и РНК

2) участок молекулы ДНК, содержащий информацию о первичной структуре одной полипептидной цепи

3) триплет нуклеотидов, кодирующий включение од­ной аминокислоты

[3]

Соответствие между последовательностью кодонов мРНК и первичной структурой белка

117. В МОЛЕКУЛЕ ДНК

1) количество нуклеотидов А и Г одинаково

2) количество нуклеотидов Т и Ц одинаково

Одна полинуклеотидная цепь комплементарна другой

4) одна полинуклеотидная цепь идентична другой

5) полинуклеотидные цепи параллельны

118. АНТИКОДОН ПРЕДСТАВЛЯЕТ СОБОЙ

1) триплет нуклеотидов ДНК, кодирующий одну ами­нокислоту

2) место присоединения аминокислоты к тРНК

Триплет нуклеотидов тРНК, комплементарный кодону мРНК

4) бессмысленный кодон мРНК

5) триплет нуклеотидов РНК, кодирующий одну ами­нокислоту

119. ДНК-ЛИГАЗА – ЭТО ФЕРМЕНТ, КОТОРЫЙ

1) не входит в состав репликативного комплекса

2) синтезирует фрагменты цепей ДНК

3) «сшивает» фрагменты Оказаки

4) катализирует гидролиз 3′,5′-фосфодиэфирной связи

5) активируется ТАТА-фактором

120. ПРОМОТОР — ЭТО

1) специфическая последовательность нуклеотидов в молекуле РНК

2) присоединяется к репликону

Место присоединения РНК-полимеразы

4) предшествует транскриптону

5) необратимо связывается с ТАТА-фактором

121. МАТРИЦЕЙ ДЛЯ СИНТЕЗА БЕЛКА ЯВЛЯЕТСЯ

МРНК

Видео (кликните для воспроизведения).

122. НА КАЖДОЙ СТАДИИ ЭЛОНГАЦИИ ПРОИСХОДИТ

1) удлинение растущей пептидной цепи на одну аминокислоту
2) включение Мет-тРНКМет в Р-центр
3) взаимодействие аминокислот с тРНК
4) использование энергии АТФ
5) освобождение готового белка

123. УЧАСТОК ДНК, КОТОРЫЙ СОДЕРЖИТ ИНФОРМАЦИЮ О СТРУКТУРЕ БЕЛКА-РЕПРЕССОРА

Ген-регулятор

124. УЧАСТОК ДНК, КОТОРЫЙ СВЯЗЫВАЕТСЯ С БЕЛКОМ-РЕПРЕССОРОМ

Оператор

4) структурный ген

125. МАТРИЦЕЙ ДЛЯ СИНТЕЗА Т-РНК ЯВЛЯЕТСЯ

ДНК

Читайте так же:  Глютамин во время тренировки

126. ХАРАКТЕРНОЙ ОСОБЕННОСТЬЮ Т-РНК ЯВЛЯЕТСЯ

На 3′-конце имеется «кэп»

2) образует с белками рибонуклеопротеиновые комплексы с разным значением S

3) на 3′-конце имеется последовательность — ЦЦА

4) входит в состав хроматина

5) синтезируется при участии рибосом

127. СПЛАЙСИНГ – ЭТО ПРОЦЕСС

Сшивания экзонов

2) сшивания интронов

3) вырезания экзонов

4) вырезания интронов

5) удаления полиА-последовательности на 3′-конце РНК

128. ЛИПИДЫ ПЛОХО ПЕРЕХОДЯТ В УГЛЕВОДЫ, ТАК КАК ГЛЮКОЗА ОБРАЗУЕТСЯ ТОЛЬКО ИЗ

Глицерина

2) жирных кислот

129. МЕТАБОЛИТОМ, СВЯЗУЮЩИМ ОБМЕН ГЛЮКОЗЫ И ТРИАЦИЛГЛИЦЕРИНОВ, ЯВЛЯЕТСЯ

Ацетил-КоА

130. МЕТАБОЛИТОМ, СВЯЗУЮЩИМ ОБМЕН ГЛЮКОЗЫ И ГЛИКОГЕННЫХ АМИНОКИСЛОТ, ЯВЛЯЕТСЯ

Оксалоацетат

131. ПИРУВАТ ЯВЛЯЕТСЯ ОБЩИМ МЕТАБОЛИТОМ В ОБМЕНЕ

1) глюкозы и жирных кислот

Глюкозы и глицерина

3) жирных кислот и нуклеиновых кислот

4) белков и нуклеотидов

132. АЦЕТИЛ-КОА ЯВЛЯЕТСЯ ОБЩИМ МЕТАБОЛИТОМ В ОБМЕНЕ

1) глюкозы и ДНК

2) глюкозы и метионина

3) жирных кислот и кетоновых тел

4) фенилаланина и глицерина

133. ГЛИЦЕРОЛ-3-ФОСФАТ ЯВЛЯЕТСЯ ОБЩИМ МЕТАБОЛИТОМ В ОБМЕНЕ

Глицерина и глюкозы

2) глицерина и пуриновых азотистых оснований

3) глицерина и пиримидиновых азотистых оснований

4) жирных кислот и глицерина

Витамины

Выберите из предложенных один правильный ответ или правильную комбинацию ответов

001. АВИТАМИНОЗ – ЭТО СОСТОЯНИЕ, КОТОРОЕ ВОЗНИКАЕТ

При отсутствии витамина в питании

2) при избытке витамина

3) при частичном отсутствии витамина в питании

4) состояние, возникающее при нарушении биосинтеза белков

002. В РЕАКЦИЯХ ГИДРОКСИЛИРОВАНИЯ УЧАСТВУЕТ

Аскорбиновая кислота

003. ДЛЯ СИНТЕЗА ПОЛНОЦЕННОЙ СОЕДИНИТЕЛЬНОЙ ТКАНИ НЕОБХОДИМ ВИТАМИН

С

004. ЖЕЛЕЗОДЕФИЦИТНАЯ АНЕМИЯ ПРИ ЦИНГЕ СВЯЗАНА

1) с нарушением всасывания Fe 2+ в ЖКТ

2) с усиленной потерей Fe 2+ с мочой

[1]

3) с усиленной потерей Fe 2+ через ЖКТ

4) с повышением использования Fe 2+ в биосинтезах

005. АКТИВНАЯ ФОРМА ВИТАМИНА В1 ОБРАЗУЕТСЯ ПУТЕМ

Фосфорилирования

006. ВИТАМИН В2 В СОСТАВЕ ФМН НЕОБХОДИМ ДЛЯ РАБОТЫ

2) пентозофосфатного пути

Дыхательной цепи

4) β-окисления жирных кислот

007. ПРИ ЛЕЧЕНИИ ТУБЕРКУЛЕЗА ФТИВАЗИДОМ ВОЗМОЖНО ВОЗНИКНОВЕНИЕ ГИПОВИТАМИНОЗА В6

Одна аминокислота кодируется нуклеотидами

Генетический код триплетен. Три­плет — это по­сле­до­ва­тель­ность трех нуклеотидов, ко­ди­ру­ю­щая одну аминокислоту.

Генетический код однозначен. Каж­до­му триплету со­от­вет­ству­ет только одна аминокислота.

Генетический код избыточен: ами­но­кис­ло­та может ко­ди­ро­вать­ся разными (от од­но­го до шести) триплетами. Одним три­пле­том кодируются толь­ко метионин и триптофан.

Свойство генетического кода: Вырожденность (избыточность) — одной и той же аминокислоте может соответствовать несколько кодонов(триплетов)

не согласна! ответ 3)

метионин — кодируется одним триплетом АУГ

[2]

триптофан — кодируется одним триплетом — УГГ

Каждая АМК кодируется тремя нуклеотидами, следовательно одним триплетом. 1 АМК не может кодироваться двумя, например, триплетами.

Может. Например, аминокислота валин — кодируется четырьмя триплетами: ГУУ, ГУЦ, ГУА, ГУГ; пролин — четырьмя: ЦЦУ, ЦЦЦ, ЦЦА, ЦЦГ и так далее.

Аминокислот 20, а кодирующих триплетов — 61 — избыточность кода

Ни в одном школьном учебники это не написано, к сожалению.

Извините, но я не знаю — какой школьный учебник ВЫ читаете.

В линии Каменский_Криксунов_Пасечник написано даже в 9 классе.

Это «базовый» вопрос. Посмотрите таблицу генетического кода.

Можно было бы написать «кодируется одним или несколькими вариантами триплетов» или «одним или несколькими разными триплетами».

В противном случае возникает ошибка при прочтении — ответ №3 можно прочитать как «одним или несколькими стоящими рядом триплетами (то есть группой 3, 6, 9 и т.д. нуклеотидов)» — и он сразу становится неверным.

И тогда очевидным становится выбор ответа №1.

Не нужно «додумывать» варианты ответов, или вопросы.

Вопрос корректный, базовый.

Вопрос действительно не корректен! еСЛИ В ЦЕПОЧКЕ ДНК, то аминокислота кодируется только одним триплетом, а если здесь имеют в виду ‘ вырожденность’, то совсем дргуое дело. Вопрос звучит неоднозначно.

Не нужно «до­ду­мы­вать» ва­ри­ан­ты от­ве­тов, или во­про­сы.

Во­прос кор­рект­ный, ба­зо­вый.

вопрос не базовый! это вводит учеников в заблуждение! прочитайте учебник Каменского «Общая Биология» . там ясно написано:» каждой аминокислоте белка соответствует последовательность из 3-х расположенных друг за другом нуклеотидов ДНК — триплет( один! если вы не заметили) ,или кодон»

Так что не надо тут придумывать

Это разные СВОЙСТВА генетического кода.

Вы говорите об однозначности.

А вопрос про избыточность.

Ге­не­ти­че­ский код из­бы­то­чен: ами­но­кис­ло­та может ко­ди­ро­вать­ся раз­ны­ми (от од­но­го до шести) три­пле­та­ми.

каждая аминокислота кодируется исключительно несколькими триплетами, а не одним. правильный ответ 2. в этом и состоит вырожденность. разве нет?

не со­глас­на! ответ 3)

ме­ти­о­нин — ко­ди­ру­ет­ся одним три­пле­том АУГ

трип­то­фан — ко­ди­ру­ет­ся одним три­пле­том — УГГ

Во­прос про из­бы­точ­ность.

Ге­не­ти­че­ский код из­бы­то­чен: ами­но­кис­ло­та может ко­ди­ро­вать­ся раз­ны­ми (от од­но­го до шести) три­пле­та­ми.

Биология в лицее

Сайт учителей биологии МБОУ Лицей № 2 г. Воронежа, РФ

Site biology teachers lyceum № 2 Voronezh city, Russian Federation

Генетический код

Генетический код — это свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов в молекуле ДНК.

Реализация генетической информации в живых клетках (то есть синтез белка, закодированного в ДНК) осуществляется при помощи двух матричных процессов: транскрипции (то есть синтеза иРНК на матрице ДНК) и трансляции (синтез полипептидной цепи на матрице иРНК).

Читайте так же:  Жиросжигатели для мужчин в домашних

В ДНК используется четыре нуклеотида — аденин (А), гуанин (Г), цитозин (Ц), тимин (T). Эти «буквы» составляют алфавит генетического кода. В РНК используются те же нуклеотиды, за исключением тимина, который заменен урацилом (У). В молекулах ДНК и РНК нуклеотиды выстраиваются в цепочки и, таким образом, получаются последовательности «букв».

В нуклеотидной последовательности ДНК имеются кодовые «слова» для каждой аминокислоты будущей молекулы белка — генетический код. Он заключается в определенной последовательности расположения нуклеотидов в молекуле ДНК.

Три стоящих подряд нуклеотида кодируют «имя» одной аминокислоты, то есть каждая из 20 аминокислот зашифрована значащей единицей кода — сочетанием из трех нуклеотидов, называемых триплет или кодон.

В настоящее время код ДНК полностью расшифрован, и мы можем говорить об определенных свойствах, характерных для этой уникальной биологической системы, обеспечивающей перевод информации с «языка» ДНК на «язык» белка.

Носителем генетической информации является ДНК, но так как непосредственное участие в синтезе белка принимает иРНК — копия одной из нитей ДНК, то чаще всего генетический код записывают на «языке РНК».

Аминокислота Кодирующие триплеты РНК
Аланин ГЦУ ГЦЦ ГЦА ГЦГ
Аргинин ЦГУ ЦГЦ ЦГА ЦГГ АГА АГГ
Аспарагин ААУ ААЦ
Аспарагиновая кислота ГАУ ГАЦ
Валин ГУУ ГУЦ ГУА ГУГ
Гистидин ЦАУ ЦАЦ
Глицин ГГУ ГГЦ ГГА ГГГ
Глутамин ЦАА ЦАГ
Глутаминовая кислота ГАА ГАГ
Изолейцин АУУ АУЦ АУА
Лейцин ЦУУ ЦУЦ ЦУА ЦУГ УУА УУГ
Лизин ААА ААГ
Метионин АУГ
Пролин ЦЦУ ЦЦЦ ЦЦА ЦЦГ
Серин УЦУ УЦЦ УЦА УЦГ АГУ АГЦ
Тирозин УАУ УАЦ
Треонин АЦУ АЦЦ АЦА АЦГ
Триптофан УГГ
Фенилаланин УУУ УУЦ
Цистеин УГУ УГЦ
СТОП УГА УАГ УАА

Свойства генетического кода

  • Триплетность

Три стоящих подряд нуклеотида (азотистых оснований) кодируют «имя» одной аминокислоты, то есть каждая из 20 аминокислот зашифрована значащей единицей кода — сочетанием из трех нуклеотидов, называемых триплет или кодон.

Триплет (кодон) — последовательность из трех нуклеотидов (азотистых оснований) в молекуле ДНК или РНК, определяющая включение в молекулу белка в процессе ее синтеза определенной аминокислоты.

  • Однозначность (дискретность)

Один триплет не может кодировать две разные аминокислоты, шифрует только одну аминокислоту. Определенный кодон соответствует только одной аминокислоте.

  • Избыточность (вырожденность)

Каждая аминокислота может определяться более, чем одним триплетом. Исключение — метионин и триптофан . Другими словами — одной и той же аминокислоте может соответствовать несколько кодонов.

  • Неперекрываемость

Одно и то же основание не может одновременно входить в два соседних кодона.

  • Полярность

Некоторые триплеты не кодируют аминокислоты, а являются своеобразными «дорожными знаками», которые определяют начало и конец отдельных генов, (УАА, УАГ, УГА), каждый из которых означает прекращение синтеза и расположен в конце каждого гена, поэтому мы можем говорить о полярности генетического кода.

  • Универсальность

У животных и растений, у грибов, бактерий и вирусов один и тот же триплет кодирует один и тот же тип аминокислоты, то есть генетический код одинаков для всех живых существ. Други ми словами, у ниверсальность — способность генетического кода работать одинаково в организмах разного уровня сложности от вирусов до человека. Универсальность кода ДНК подтверждает единство п роисхождения всего живого на нашей планете. На использовании свойства универсальности генетического кода основаны методы генной инженерии.

Из истории открытия генетического кода

Впервые идея о существовании генетического кода сформулирована А. Дауном и Г. Гамовым в 1952 — 1954 годах. Учёные показали, что последовательность нуклеотидов, однозначно определяющая синтез той или иной аминокислоты, должна содержать не менее трёх звеньев. Позднее было доказано, что такая последовательность состоит из трех нуклеотидов, названных кодоном или триплетом .

Вопросы о том, какие нуклеотиды ответственны за включение определенной аминокислоты в белковую молекулу и какое количество нуклеотидов определяет это включение, оставались нерешенными до 1961 года. Теоретический разбор показал, что код не может состоять из одного нуклеотида, поскольку в этом случае только 4 аминокислоты могут кодироваться. Однако код не может быть и дуплетным, то есть комбинация двух нуклеотидов из четырехбуквенного «алфавита» не может охватить всех аминокислот, так как подобных комбинаций теоретически возможно только 16 (4 2 = 16).

Видео (кликните для воспроизведения).

Для кодирования 20 аминокислот, а также сигнала «стоп», означающего конец белковой последовательности, достаточно трех последовательных нуклеотидов, когда число возможных комбинаций составит 64 (4 3 = 64).

Источники


  1. Кучин, Владимир Волновая диетология / Владимир Кучин. — М.: Издательские решения, 2015. — 381 c.

  2. Лин, Джет Боевая гимнастика ушу для здоровья и самозащиты / Джет Лин. — М.: Феникс, Неоглори, 2008. — 256 c.

  3. О’Коннор, Анахад Всегда следуйте за слонами. 115 «общеизвестных фактов» о здоровье, питании и окружающем мире — глазами ученых / Анахад О’Коннор. — М.: Юнайтед Пресс, 2010. — 288 c.
Одна аминокислота кодируется нуклеотидами
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here