Определите последовательность аминокислот в полипептидной цепи

Важная и проверенная информация на тему: "определите последовательность аминокислот в полипептидной цепи" от профессионалов для спортсменов и новичков.

Уроки биологии в классах естественно-научного профиля

Расширенное планирование, 10 класс

6. Верны следующие суждения:

а) молекула воды не имеет заряженных участков;
б) молекула воды – диполь;
в) атом кислорода в молекуле воды несет частично отрицательный, а атомы водорода – частично положительные заряды;
г) атом кислорода в молекуле воды несет частично положительный, а атомы водорода – частично отрицательные заряды.

7. Утверждение: «Дигидрофосфат-ионы способны понизить рН клетки, превращаясь в гидрофосфат-ионы»:

Вариант 1: 1 – б; 2 – в, г; 3 – а, б, в, г, е, ж, з; 4 – б; 5 – б; 6 – б; 7 – б, в.

Вариант 2: 1 – б; 2 – а, б, д, з; 3 – б; 4 – а, б, г, е; 5 – б; 6 – б, в; 7 – а.

II. Изучение нового материала

1. Белки, их содержание в живом веществе и молекулярная масса

Из органических веществ живого вещества на первом месте по количеству и значению стоят белки, или протеины (от греч. протос – основной, первичный). В составе ныне живущих на Земле организмов содержится около 1 трлн т белков. От массы, например животной, клетки белки составляют 10–18%, т.е. половину сухого веса клетки.

Белковых молекул в каждой клетке содержится, по меньшей мере, несколько тысяч.

Белки – это высокомолекулярные полимеры (макромолекулы) с молекулярной массой от 6 тыс. до 1 млн и выше. По сравнению с молекулами спирта или органических кислот белки выглядят просто великанами. Так, молекулярная масса инсулина – 5700, яичного альбумина – 36 000, миозина – 500 000.

В состав белков входят атомы С, Н, О, N, S, Р, иногда Fe, Сu, Zn. Для выяснения химического строения белков знаний их элементарного состава недостаточно. Например, эмпирическая формула гемоглобина – C3032Н4816О872S8Fe4 – ничего не говорит о характере расположения атомов в молекуле. Необходимо познакомиться с особенностями строения белковых молекул подробней.

2. Белки – непериодические полимеры. Строение и свойства аминокислот

Схема строения аминокислоты

По своей химической природе белки являются непериодическими полимерами. Мономерами белковых молекул являются аминокислоты. Вообще аминокислотой можно назвать любое соединение, содержащее одновременно аминогруппу (–NH2) и группировку органических кислот – карбоксильную группу (–СООН). Число возможных аминокислот очень велико, но белки образуют только 20 так называемых золотых, или стандартных, аминокислот (8 из них являются незаменимыми, т.к. не синтезируются в организмах животных и человека). Именно сочетание этих 20 аминокислот и дает все многообразие белков. После того как молекула белка собрана, некоторые аминокислотные остатки в ее составе могут подвергаться химическим изменениям, так что в «зрелых» белках можно обнаружить до 30 различных аминокислотных остатков (но строятся все белки исходно все равно только из 20!). Аминокислоты, образующиеся в результате модификации стандартных аминокислот уже после их включения в полипептидную цепь, называются нестандартными.

В клетке находятся свободные аминокислоты, составляющие аминокислотный фонд, за счет которого происходит синтез новых белков. Этот фонд пополняется аминокислотами, постоянно поступающими в клетку вследствие расщепления пищеварительными ферментами белков пищи или распада собственных запасных белков. В зависимости от аминокислотного состава белки бывают полноценными, содержащими весь набор аминокислот, и неполноценными, в составе которых отсутствуют какие-то аминокислоты.

Общая формула аминокислот изображена на рисунке. В левой части формулы расположена аминогруппа –NH2 а в верхней – карбоксильная группа –СООН. Группа –NH2 имеет основные свойства, группа –СООН – кислотные свойства. Таким образом, аминокислоты – амфотерные соединения, совмещающие свойства кислоты и основания.

Аминокислоты отличаются своими радикалами (R), в роли которых могут быть самые разные соединения (работа с рисунками учебника). Это обусловливает большое разнообразие аминокислот.

Амфотерными свойствами аминокислот обусловлена их способность взаимодействовать друг с другом. Две аминокислоты соединяются за счет реакции конденсации в одну молекулу путем установления связи между углеродом кислотной и азотом основной групп с выделением молекулы воды.

Образование пептидной связи

Связь, изображенная слева, называется пептидной (от греч. пепсис – пищеварение). Этот термин напоминает нам о том, что эта связь гидролизуется пищеварительным ферментом желудочного сока пепсином. По природе пептидная связь является ковалентной.

Соединение двух аминокислот называется дипептидом, трех – трипептидом и т.д. Примером трипептида может служить белок глютатион, состоящий из остатков глицина, цистеина и глютаминовой кислоты. Он содержится во всех живых клетках (особенно много его в зародыше пшеничного зерна и дрожжах) и активно участвует в обмене веществ.

В основном же белки, входящие в состав живых организмов, включают в себя сотни и тысячи аминокислот (чаще всего от 100 до 300), поэтому их называют полипептидами. Аминокислоты в составе белковой полипептидной цепи называют аминокислотными остатками.

Пептиды различаются числом (n), природой, порядком или последовательностью своих аминокислотных остатков. Их можно сравнить со словами разной длины, в написании которых использован алфавит, состоящий из 20 букв. Из 20 аминокислот можно теоретически получить 1020 возможных вариантов цепей, длиной каждая не менее чем 10 аминокислотных остатков. Белки же, выделенные из живых организмов, образованы сотнями, а иногда и тысячами аминокислотных остатков. В этом кроется источник бесконечного разнообразия белковых молекул, что является важной предпосылкой эволюционного процесса.

Читайте так же:  Добавка креатин для мужчин

3. Первичная, вторичная, третичная и четвертичная структуры белка

Как показало изучение свойств белков в растворах, макромолекулы белков имеют форму компактных шаров (глобул) или вытянутых структур – фибрилл. Исследования показали, что в укладке пептидной цепи нет ничего случайного или хаотичного. Она свертывается упорядоченно, для каждого белка определенным образом. Полярные боковые группы аминокислот стремятся расположиться на поверхности глобулы, где могут взаимодействовать с водой, а неполярные группы располагаются внутри.

Образование глобулы

Для того, чтобы разобраться в замысловатой укладке (архитектонике) белковой макромолекулы, следует рассмотреть в ней несколько уровней организации.

Первичной структурой белка называется полная последовательность аминокислотных остатков в полипептидной цепи.

Она определяется генотипом, т.е. генами организма. В первичной структуре все связи между аминокислотными остатками являются ковалентными и, следовательно, прочными. Разные белки отличаются друг от друга по первичной структуре: кератин имеет одну последовательность аминокислот, пепсин – другую, соматотропин (гормон роста) – третью и т.д. В первичной структуре белка можно различить N-конец цепочки, содержащий свободную NH2-группу, и С-конец, содержащий свободную СООН-группу.

Первым белком, у которого была выявлена аминокислотная последовательность, стал гормон инсулин. Исследования проводились в Кембриджском университете Ф.Сэнгером в 1944–1954 гг. Было выявлено, что молекула инсулина состоит из двух полипептидных цепей (из 21 и 30 аминокислотных остатков), удерживаемых друг около друга дисульфидными мостиками.

Однако молекула белка в виде цепи аминокислот, последовательно соединенных пептидными связями, еще не способна выполнять специфические функции. Для этого необходим более высокий уровень структурной организации, выражающийся в усложнении пространственного расположения мономеров.

Вторичная структура белка представлена спиралью, в которую закручивается полипептидная цепь. Группы N–H и С=О, входящие в пептидную связь, заметно поляризованы: азот обладает большей электроотрицательностью, чем водород, а кислород – большей, чем углерод.

Кислород группы С=О может образовывать водородные связи с водородом группы N–H (разумеется, расположенной в другой пептидной связи).

Одной из разновидностей вторичной структуры является

спираль, где каждый атом кислорода связан с атомом водорода четвертой по ходу спирали NH-группы.

-спираль

Любопытно, что эта сложная красивая структура сперва была предсказана известным биохимиком Л.Полингом теоретически и лишь потом обнаружена экспериментально.

Альтернативная вторичная структура

-слой (или складчатый слой) имеет водородную связь между звеньями соседних полипептидных цепей.

-слой

Третичная структура белка представляет собой сложную трехмерную пространственную упаковку

-спиралей и -слоев. Эта трехмерная структура устанавливается за счет взаимодействия радикалов аминокислот, между которыми могут возникнуть связи несколько типов:

1) ионные, возникающие за счет электростатического взаимодействия между отрицательно и положительно заряженными боковыми группами;

2) гидрофобные («не любящие воду»), устанавливающиеся за счет стремления неполярных радикалов объединяться друг с другом, а не смешиваться с окружающей их водной средой;

3) дисульфидные, которые образуются между атомами серы SH-групп двух остатков аминокислоты цистеина. Эти S–S связи по своей природе являются ковалентными;

4) водородные, которые также возникают за счет взаимодействия между атомами радикалов.

Третичная структура белка не является конечной. Для некоторых белков, чаще всего регуляторных, характерна четвертичная структура, необходимая им для эффективного выполнения функции.

Четвертичная структура представлена ассоциантом, состоящим из нескольких полипептидных цепей. Например, сложная молекула гемоглобина состоит из двух

-субъединиц (141 аминокислотный остаток) и двух -субъединиц (146 аминокислотных остатков). Каждая субъединица связана с молекулой железосодержащего гема. В результате их объединения образуется функционирующая молекула гемоглобина. Только в такой упаковке гемоглобин работает полноценно, то есть способен переносить кислород. Четвертичная структура стабилизируется теми же связями, что и третичная.

Пространственная конфигурация белка т.е. третичная и четвертичная структуры называется конформацией. Конформация белка определяется его первичной структурой: белковая цепочка с определенной последовательностью аминокислот самопроизвольно укладывается с образованием природной пространственной конфигурации. Это получило название «самосборка белковой молекулы». Если полипептидную цепь взять за концы, растянуть ее и затем отпустить, то она всякий раз будет свертываться в одну и ту же структуру, характерную для этого вида полипептида.

В то же время из сказанного, очевидно, следует, что, изменив всего лишь одну аминокислоту в каком-либо полипептиде, мы получим молекулу с совершенно иной структурой, а значит и с иными свойствами.

Уровни организации белковых молекул

4. Классификация белков

Сложность строения белковых молекул и чрезвычайное разнообразие их функций крайне затрудняет создание единой четкой классификации белков на какой-либо одной основе. Поэтому рассмотрим несколько классификаций белков.

1. Классификация белков по составу.

Простые белки (протеины) – состоят только из аминокислот (альбумины, глобулины, гистоны, склеропротеины).

Сложные белки (протеиды) – состоят из глобулярных белков и небелкового материала. Небелковую часть называют простетической группой (фосфопротеиды, гликопротеиды, нуклеопротеиды, хромопротеиды, липопротеиды, металлопротеиды, флавопротеиды).

2. Классификация белков по их структуре.

Фибриллярные – образуют длинные волокна или слоистые структуры (коллаген, миозин, фиброин, кератин). Они нерастворимы в воде.

Читайте так же:  Спортпит для набора мышечной

Глобулярные – их полипептидные цепи свернуты в компактные глобулы (ферменты, антитела, гормон инсулин).

Промежуточные – фибриллярной природы, но растворяются в воде (фибриноген).

3. Классификация белков по функциям.

Структурные – входят в различные структуры клетки и организма.

Ферменты – являются биологическими катализаторами.

Гормоны – являются регуляторами биологических функций.

Транспортные – переносят различные вещества.

Защитные – обеспечивают иммунные реакции организма.

Сократительные – участвуют в сокращении мышечных волокон.

Запасные – служат резервными веществами клетки и организма.

Токсины – являются ядами, используемыми живыми существами в целях защиты или нападения.

Таким образом, подходы к классификации белков могут быть различными.

Алгоритм решения типовых задач

Алгоритм решения задачи № 1

Какая последовательность аминокислот зашифрована в следующем участке ДНК: ГЦАТТТАГАТГАААТЦАА?

ДАНО:

· Структура участка ДНК

ОПРЕДЕЛИТЬ:

· Последовательность аминокислот в полипептиде.

РЕШЕНИЕ:

ДНК: ГЦА Т Т Т АГА ТГА ААТ ЦАА

И-РНК: ЦГУ ААА УЦУ АЦУ УУА ГУУ

ПОЛИП.: АЛА-ГЛИ- ЦИС-ФЕН-ТРИ- АСП

ОТВЕТ:

Если участок ДНК представлен следующей последовательностью нуклеотидов ГЦАТТТАГАТГАААТЦАА, то полипептид будет состоять из аминокислот: аланина, глицина, цистеина, фенилаланина, триптофана и аспарагина.

ТЕОРЕТИЧЕСКОЕ ОБОСНОВАНИЕ:

Задача на этапы реализации генетической информации: транскрипцию-матричный синтез и-РНК, трансляцию- передачу этой информации в рибосому путем генетического кода.

Алгоритм решения задачи № 4

Полипептид состоит из следующих аминокислот: валин – аланин – глицин – лизин – триптофан – валин – серин – глутаминовая -указанный полипептид.

ДАНО:

ОПРЕДЕЛИТЬ:

· Структуру участка ДНК

РЕШЕНИЕ:

полипептид: вал – ала – гли – лиз – три – вал – сер — глу

и-РНК: ААА –ГУУ -УГГ-УУУ-ГУУ-АЦГ-ЦГУ-АГЦ

ДНК: ТТТ- ЦАА- АЦЦ-ААА-ЦАА-ТГЦ-ГЦА-ТЦГ

[1]

ААА- ГТТ- ТГГ- ТТТ- ГТТ-АЦГ-ЦГТ-АГЦ

ОТВЕТ:

Если полипептид представлен следующей последовательностью аминокислот валин – аланин – глицин – лизин – триптофан – валин – серин – глутаминовая кислота, то структура участка ДНК, кодирующего данный полипептид, следующая:

ТТТ- ЦАА- АЦЦ-ААА-ЦАА-ТГЦ-ГЦА-ТЦГ

ААА- ГТТ- ТГГ- ТТТ- ГТТ-АЦГ-ЦГТ-АГЦ

ТЕОРЕТИЧЕСКОЕ ОБОСНОВАНИЕ:

Для решения данной задачи следует использовать явление обратной трансляции, что позволяет получить структуру и-РНК. Первую цепь ДНК получаем, используя обратную транскрипцию, вторую цепь строим по принципу комплементарности.

Алгоритм решения задачи №13

Известно, что определенный ген эукариотической клетки содержит 4 интрона (два по 24 нуклеотида и два по 36 нуклеотидов) и 3 экзона (два по 120 нуклеотидов и один 96 нуклеотидов). Определите: количество нуклеотидов в м-РНК; количество кодонов в м-РНК; количество аминокислот в полипептидной цепи; количество т-РНК, участвующих в трансляции.

ДАНО:

· 3 экзона (2 по 120 и 1 по 96)

[3]

· 4 интрона (2 по 24 и 2 по 36)

ОПРЕДЕЛИТЬ:

· Количество нуклеотидов в м-РНК

Видео (кликните для воспроизведения).

· Количество кодонов в м-РНК

· Количество аминокислот в полипептидной цепи

· Количество т-РНК, участвующих в трансляции

РЕШЕНИЕ:

· Определим количество нуклеотидов в проматричной РНК, так как она является слепком с гена, который ген состоит из суммы экзонной и интронной частей.

2×120 + 1× 96 + 2 × 24 + 2 × 36 = 456

· определим количество нуклеотидов в м-РНК, удалив интроны

456 – (2 × 24 + 2 × 36) = 336

· определим количество кодонов в м-РНК, используя свойство триплетности генетического кода

· определим количество аминокислот в полипептидной цепи, используя принцип коллинеарности

112 кодонов = 112 аминокислот

· определим количество т-РНК, участвующих в трансляции, учитывая что одна молекуоа т-РНК доставляет в рибосому одну молекулу аминокислоты

112 аминокислот = 112 т -РНК

ОТВЕТ:

Если ген состоит из 4 интрона (2 по 24 нуклеотида и 2 по 36 нуклеотидов) и 3 экзона (2 по 120 нуклеотидов и 1 по 96 нуклеотидов), то:

— количество нуклеотидов в м-РНК – 336;

— количество кодонов в м-РНК – 112;

— количество аминокислот в полипептидной цепи – 112;

— количество т-РНК, участвущих в трансляции – 112.

ТЕОРЕТИЧЕСКОЕ ОБОСНОВАНИЕ:

Данная задача на этапы реализации генетической информации. Первым этапом является транскрипция, в результате проведения которой мы получаем про-м-РНК. Вторым этапом реализации является процессинг – вырезание несмысловой части про-м-РНК и получение цепи матричной РНК. Третьим этапом является трансляция в рибосомах и получение полипептидной цепи. Для определения количества аминокислот в цепи используем такие свойства генетического кода, как коллинеарность и триплетность.

Дата добавления: 2017-12-03 ; просмотров: 729 ;

Реакции матричного синтеза: репликация, транскрипция, трансляция

Репликация

Процесс редупликации ДНК идет в ядре под действием ферментов и специальных белковых комплексов. Принципы удвоения ДНК:

Антипараллельность: дочерняя цепь синтезируется в направлении от 5’ к 3’ концу.

Комплиментарность: строение дочерней нити ДНК определяется последовательностью нуклеотидов материнской нити, подбираются по принципу комплиментарности.

Полунепрерывность: одна из двух цепей ДНК – лидирующая, синтезируется непрерывно, а другая – запаздывающая, прерывисто с образованием коротких фрагментов Оказаки. Это происходит из-за свойства антипараллельности.

Полуконсервативность: молекулы ДНК, полученные в ходе редупликации, содержат одну консервативную материнскую нить и одну синтезированную дочернюю.

1) Инициация
Начинается с репликативной точки, к которой присоединяются белки, инициирующие репликацию. Под действием ферментов ДНК-топоизомеразы и ДНК-геликазы цепь раскручивается, и разрываются водородные связи. Далее идет фрагментарное разъединение двойной цепи ДНК с образованием репликационной вилки. Ферменты предотвращают повторное соединение цепей ДНК.

Читайте так же:  Л карнитин противопоказания к применению

2) Элонгация
Синтез дочерней цепи ДНК идет за счет фермента ДНК-полимеразы, который движется в направлении 5’ a 3’, подбирая нуклеотиды по принципу комплиментарности. Лидирующая цепь синтезируется непрерывно, а запаздывающая – прерывисто. Фермент ДНК-лигаза соединяет между собой фрагменты Оказаки. Специальные корректирующие белки распознают ошибки и устраняют неправильные нуклеотиды.

3) Терминация
Окончание репликации происходит, если встречаются две репликационные вилки. Белковые компоненты снимаются, молекулы ДНК спирализуются.

Свойства генетического кода

Триплетен – каждую аминокислоту кодирует код из 3 нуклеотидов.
Однозначен — каждый триплет кодирует лишь определенную кислоту.
Вырожден — каждая аминокислота кодируется несколькими триплетами (2-6). Лишь две из них кодируются одним триплетом: триптофан и метионин.
Неперекрываем – каждый кодон является самостоятельной единицей, а генетическая инф считывается только одним способом в одном направлении
Универсален — един для всех организмов. Одни и те же триплеты кодируют одни и те же аминокислоты у разных организмов.
Генетический код

Реализация наследственной информации идет по схеме ген-белок-признак.
Ген – участок молекулы ДНК, который несет информацию о первичной структуре одной молекулы белка и отвечает за ее синтез.
Генетический код – принцип кодирования наследственной инф в клетке. Представляет собой последовательность триплетов нуклеотидов в НК, которая задает определенный порядок аминокислот в белках. Инфа, заключенная в линейной последовательности нуклеотидов, используется для создания другой последовательности.
Из 4 нуклеотидов можно составить 64 триплета, 61 из которых кодируют аминокислоты. Стоп-кодоны – триплеты УАА, УАГ, УГА прекращают синтез полипептидной цепи.
Старт-кодон – триплет АУГ определяет начало синтеза полипептидной цепи.

Биосинтез белка

Один из основных процессов пластического обмена веществ. Часть реакций протекает в ядре, другая — в цитоплазме. Необходимые компоненты: АТФ, ДНК, и-РНК, т-РНК, р-РНК, Mg2+, аминокислоты, ферменты. Состоит из 3х процессов:
транскрипция: синтез и-РНК
процессинг: превращение и-РНК в м-РНК
трансляция: синтез белка

ДНК содержит информацию о структуре белка в виде последовательности аминокислот, но поскольку гены не покидают ядра, то непосредственного участия в биосинтезе белковой молекулы не принимают. И-РНК синтезируется в ядре клетки по ДНК и переносит инф от ДНК к месту синтеза белка (рибосомам). Затем, с помощью т-РНК из цитоплазмы выбираются комплементарные и-РНК аминокислоты. Таким образом синтезируются полипептидные цепи.

Транскрипция

1) Инициация
Синтез молекул иРНК по ДНК может протекать в ядре, митохондриях и пластидах. Под действием ферментов ДНК-геликазы и ДНК-топоизомеразы участок молекулы ДНК раскручивается, разрываются водородные связи. Считывание информации идет только с одной нити ДНК, которая называется кодирующейкодогенной. Фермент РНК-полимераза соединяется с промотером — зоной ДНК, которая содержит старт-сигнал ТАТА.

2) Элонгация
Процесс выстраивания нуклеотидов по принципу комплиментарности. РНК-полимераза продвигается по кодирующей цепи и соединяет между собой нуклеотиды, образуя полинуклеотидную цепь. Процесс продолжается до стоп-кодона.

3) Терминация
Окончание синтеза: фермент и синтезированная молекула РНК отделяются от ДНК, двойная спираль ДНК восстанавливается.
Процессинг

Превращение молекулы иРНК в мРНК в ходе сплайсинга в ядре под действием ферментов. Идет удаление интронов -участков, не несущих инф об аминокислотной последовательности и сшивание экзонов — участков, кодирующих последовательность аминокислот. Далее идет присоединение стоп-кодона АУГ, кэпирование для 5’ конца и полиаденилирование для защиты 3’ конца. Образуется зрелая м-РНК, она короче и идет к рибосомам.

Трансляция

Процесс перевода нуклеотидной последовательности триплетов м-РНК в аминокислотную последовательность полипептидной цепи. Идет в цитоплазме на рибосомах.

1) Инициация
Синтезированная м-РНК через ядерные поры идет в цитоплазму, где с помощью ферментов и энергии АТФ соединяется с малой субъединицей рибосом. Затем инициаторная т-РНК с аминокислотой метианин соединяется с пептидильным центром. Далее в присутствии Mg2+ идет присоединение большой субъединицы.

2) Элонгация
Удлинение белковой цепи. Аминокислоты с помощью собственной т-РНК доставляются к рибосомам. По форме молекулы т-РНК напоминают трилистник, на среднем из которых имеется антикодон, комплиментарный нуклеотидам кодона м-РНК. К противоположному основанию молекулы т-РНК присоединяется соответствующая аминокислота.
Первая т-РНК закрепляется в пептидильном центре, а вторая — в аминоациальном. Затем аминокислоты сближаются и между ними образуется пептидная связь, возникает дипептид, первая т-РНК уходит в цитоплазму. После этого, рибосома делает 1 трехнуклеотидный шаг по м-РНК. В результате чего, вторая т-РНК оказывается в пептидильном центре, освобождая аминоацильный. Процесс присоединения аминокислоты идет с затратой энергии АТФ и требует наличия фермента аминоацил-т-РНК-синтетаза.

3) Терминация
Когда в аминоациальный центр попадает стоп-кодон, синтез завершается, и к последней аминокислоте присоединяется вода. Рибосома снимается с м-РНК и распадается на 2 субъединицы, т-РНК возвращается в цитоплазму.

Методы определения С-концевой аминокислоты

Ферментативные методы. Обработка белка карбоксипептидазой приводит к отщеплению С-концевой аминокислоты, которую определяют методом хроматографии.

Химический метод Акабори. Гидразин расщепляет пептидные связи и реагирует со всеми аминокислотами, за исключением С-концевой.

Следующим этапом является определение последовательности аминокислот в полипептидной цепи. Проводят частичный гидролиз полипептидной цепи; в результате образуются короткие пептиды. Избирательно гидролизующие вещества: цианогенбромид CNBr (по остаткам мет), гидроксиламин (по связям между остатками асп и гли), N-бромсукцинамид (по остаткам три). Пепсин ускоряет гидролиз пептидных связей, образованных фен, тир и глу, трипсин — арг и лиз, химотрипсин — три, тир и фен.

Читайте так же:  Жиросжигатели для похудения мужчин рейтинг

Используют также рентгеноструктурный анализ, а также данные о нуклеотидной последовательности ДНК (ДНК кодирует последовательность аминокислот в белке).

Вторичная структура белка – конфигурация полипептидной цепи, т.е. способ укладки полипептидной цепи в определенную конформацию
(рис. 1). Процесс этот протекает не беспорядочно, а в соответствии с первичной структурой белка.

а б
Рис. 1. Вторичная структура белка: а — a-спираль, б — b-структура

Вторичная структура поддерживается в основном водородными связями, хотя для некоторых белков определенный вклад вносят пептидные и дисульфидные ковалентные связи.

Наиболее вероятным типом вторичной структуры глобулярных белков является a-спираль. Закручивание полипептидной цепи в спираль происходит по часовой стрелке. Для каждого белка характерна определенная степень спирализации. Так, полипептидные цепи гемоглобина спирализованы на 75%, а молекула пепсина — на 30%.

Тип конфигурации полипептидных цепей, когда сегменты пептидной цепи располагаются в один слой, образуя структуру, подобную листу, сложенному в гармошку, называется b-структурой. Такой тип вторичной структуры обнаружен в белках мышц, волос, шелка. b-Слой может быть внутримолекулярным, а также образованным двумя или более полипептидными цепями.

Способность к образованию водородных связей, являющихся движущей силой при возникновении α- и β-структур в белковой молекуле, выражена у разных аминокислот в неодинаковой степени. Выделяют группу спиралеобразующих аминокислот: ала, глн, глу, лей, мет, лиз, гис. Вал, иле, тир, тре, фен способствуют образованию b-структур полипептидной цепи. Наличие сер, гли, про, асн, асп приводит к преимущественному образованию неупорядоченных фрагментов в белковой молекуле.

В природе существуют белки, строение которых не соответствует ни
β-, ни a-структуре (коллаген).

Третичная структура белка – пространственная ориентация полипептидной спирали или способ укладки полипептидной цепи в определенном объеме. Первый белок, Третичная структура белка (миоглобин кашалота) впервые была установлена методом рентгеноструктурного анализа (рис. 2).

В стабилизации пространственной структуры белков, помимо ковалентных связей, основная роль принадлежит нековалентным связям (межмолекулярные ван-дер-ваальсовы силы, водородные связи, электростатические взаимодействия ионизированных групп, гидрофобные взаимодействия и т.д.).

[2]

Методом рентгеноструктурного анализа установлено существование специфических уровней структурной организации белковой молекулы, промежуточных между вторичной и третичной структурами. Домен — это компактная глобулярная структурная единица внутри полипептидной цепи (рис. 3). Открыты белки (в частности, иммуноглобулины), в которых существуют различные по структуре и функциям домены.

Рис. 2. Третичная структура миоглобина Рис. 3. Глобулярные домены в белке хрусталика глаза человека g-кристаллине

Согласно современным представлениям, белка после окончания синтеза белка его третичная структура формируется самопроизвольно. Процесс формирования нативной пространственной структуры полипептидной цепи — фолдинг. Основной движущей силой фолдинга является взаимодействие радикалов аминокислот с молекулами воды. При этом гидрофобные радикалы аминокислот ориентируются внутрь белковой молекулы, а гидрофильные радикалы повернуты в сторону воды.

В клетках существуют белки, названные шаперонами. Их основная функция — участие в фолдинге (рис. 4). Описан ряд заболеваний человека, имеющих наследственную природу, возникновение которых связывают с нарушением процесса фолдинга вследствие мутаций (пигментозы, фиброзы и др.).

Рис. 4. Участие шаперонов в фолдинге белков

Все биологические свойства белков связаны с образованием и сохранностью третичной структуры, называемой нативной. Белковая глобула не является абсолютно жесткой структурой: возможны обратимые перемещения фрагментов полипептидной цепи. Эти изменения не приводят к нарушению общей конформации молекулы. Факторы, влияющие на конформацию белковой молекулы — ионная сила раствора, рН среды, взаимодействие с компонентами раствора. Любые воздействия, приводящие к нарушению нативной структуры молекулы, приводят к частичной или полной утрате белком его биологических свойств.

Четвертичная структура белка — укладка отдельных полипептидных цепей, обладающих специфической первичной, вторичной или третичной структурой, в пространстве, и формирование единого макромолекулярного образования.

Белок, состоящий из нескольких полипептидных цепей, называют олигомером, а каждую входящую в него полипептидную цепь — протомером. Олигомерные белки, как правило, состоят из четного числа псубъединиц, например, молекула гемоглобина построена из двух a- и двух b-полипептидных цепей (рис. 5).

Рис. 5. Молекула гемоглобина

Четвертичную структуру имеют около 5% белков, такие как ферритин, иммуноглобулины. Субъединичное строение свойственно многим ферментам, в первую очередь тем, которые выполняют сложные функции. Почти все ДНК- и РНК-полимеразы имеют четвертичную структуру. Полипептидные цепи, входящие в состав белка с четвертичной структурой, образуются на рибосомах по отдельности. Только после завершения синтеза происходит их объединение в надмолекулярную структуру. Биологическую активность белок приобретает на уровне четвертичной структуры. Стабилизация четвертичной структуры происходит при участии тех же связей, что и при формировании третичной структуры, за исключением ковалентных связей.

Ряд исследователей признают наличие пятого уровня структурной организации белков. Полифункциональные макромолекулярные комплексы разных ферментов, катализирующие весь путь превращений субстрата, получили назвение метаболонов (пируватдегидрогеназный комплекс, синтетазы ВЖК, дыхательная цепь).

Читайте так же:  Как пить спортивное питание

Белок, выполняющий специфическую функцию в метаболизме клетки, может быть представлен несколькими формами — изофункциональными белками, или изобелками. В эритроцитах крови человека обнаружено несколько форм гемоглобина: У взрослого человека преобладающей формой является НbА. Ч Для эмбриональной стадии развития человека характерен фетальный гемоглобин HbF. Все формы гемоглобинов выполняют функцию переноса кислорода из легких в ткани, однако свойства разных гемоглобинов отличаются.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась — это был конец пары: «Что-то тут концом пахнет». 8386 —

| 8012 — или читать все.

Определение аминокислотной последовательности в белке

Определение N-концевой аминокислоты в белке и последовательности аминокислот в олигопептидах

Фенилизотиоционат (ФИТЦ) — реагент, используемый для определения N-концевой аминокислоты в пептиде. Он способен реагировать с α-аминогруппой и α-карбоксильной группой свободных аминокислот, а также с N-концевой аминокислотой в пептидах (см. схему ниже).

В результате взаимодействия с N-концевой аминокислотой полипептида образуется фенил-тиогидантионовое производное, в котором дестабилизирована пептидная связь между α-карбоксильной группой N-концевой аминокислоты и α-аминогруппой второй аминокислоты в пептиде. Эта связь избирательно гидролизуется без повреждения других пептидных связей.

После реакции выделяют комплекс ФИТЦ-АК1, идентифицируют его хроматографическими методами. ФИТЦ можно использовать вновь с укороченным пептидом, полученным в предыдущем цикле, для определения следующей аминокислоты. Этот процесс ступенчатого расщепления пептида с N-конца был автоматизирован и реализован в приборе — секвенаторе, с помощью которого можно определять последовательность аминокислотных остатков в олигопептидах, состоящих из 10-20 аминокислот.

Многие полипептиды имеют первичную структуру, состоящую более чем из 100 аминокислот. Так как с помощью секвенаторов наиболее продуктивно определяют аминокислотную последовательность лишь небольших пептидов, молекулы полипептида расщепляют по специфическим местам на фрагменты.

Используя несколько разных расщепляющих агентов (ими могут быть ферменты или химические вещества) в разных пробах очищенного полипептида, можно получить частично перекрывающие друг друга фрагменты с установленной аминокислотной последовательностью. С их помощью можно воссоздать правильный порядок фрагментов и получить полную последовательность аминокислот в полипептидной цепи.

Ферментативное расщепление полипептида по специфическим участкам

Для специфического расщепления пептидных связей в белке можно использовать несколько разных ферментов. Наиболее широко используют ферментативный гидролиз полипептида протеолитическим ферментом — трипсином, который относят к группе пищеварительных ферментов (его вырабатывает поджелудочная железа). Фермент обладает высокой специфичностью действия. Он расщепляет пептидные связи, в образовании которых участвует карбоксильная группа остатков лизина или аргинина.

Исходя из установленного количества остатков лизина и аргинина, можно предсказать количество получаемых при гидролизе трипсином фрагментов. Так, если в полипептидной цепи 6 остатков аргинина и лизина, то при расщеплении трипсином можно получить 7 фрагментов. Затем в каждом фрагменте устанавливают аминокислотную последовательность.

Химическое расщепление полипептида по специфическим участкам

В некоторых случаях предпочтителен не ферментативный, а химический гидролиз. Так, реагент бромциан расщепляет только пептидные связи, в которых карбоксильная группа принадлежит остатку метионина. Зная количество остатков метионина в полипептидной цепи, легко установить количество получаемых фрагментов. Далее для каждого фрагмента в секвенаторе также устанавливают аминокислотную последовательность.

Получение аминокислотной последовательности полипептида с помощью перекрывающихся фрагментов

Для успешного установления последовательности полученных фрагментов полипептида необходимо получить пептиды с перекрывающимися аминокислотными последовательностями. Это достигают обработкой отдельных проб данного полипептида разными реагентами, расщепляющими белок в разных местах. Необходимо провести столько расщеплений, чтобы получить набор пептидов, обеспечивающих перекрывание всех участков, необходимых для определения последовательности исходного полипептида.

Рис. 4. Установление первичной структуры белка с помощью перекрывающихся пептидных фрагментов.

4. Отдельные представители пептидов: аспартам, глутатион.

Один из наиболее распространенных представителей трипептидов — глутатион — содержится в организме всех животных, в растениях и бактериях.

Цистеин в составе глутатиона обусловливает возможность существования глутатиона как в восстановленной, так и окисленной форме.

Глутатион участвует в ряде окислительно-восстановительных процессов. Он выполняет функцию протектора белков, т.е. вещества, предохраняющего белки со свободными тиольными группами SH от окисления с образованием дисульфидных связей -S-S-. Это касается тех белков, для которых такой процесс нежелателен. Глутатион в этих случаях принимает на себя действие окислителя и таким образом «защищает» белок. При окислении глутатиона происходит межмолекулярное сшивание двух трипептидных фрагментов за счет дисульфидной связи. Процесс обратим.

Аспартам — дипептид, состоящий из остатков L-аспарагиновой кислоты и метилового эфира L-фенилаланина, используется в качестве заменителя сахара – низкокалорийной пищевой добавки. Почти в 200 раз слаще сахарозы.

Видео (кликните для воспроизведения).

Дата добавления: 2015-05-26 ; просмотров: 3991 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источники


  1. Здоровое питание. Плакат. — М.: Эксмо, 2014. — 149 c.

  2. Бушлякова, Р. Г. Артикуляционная гимнастика с биоэнергопластикой / Р.Г. Бушлякова. — М.: Детство-Пресс, 2011. — 240 c.

  3. Новоселов, Владимир Восстановление после гепатита. Рекомендации диетолога / Владимир Новоселов. — М.: Невский проспект, 2016. — 160 c.
Определите последовательность аминокислот в полипептидной цепи
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here