Последовательность аминокислот в полипептиде

Важная и проверенная информация на тему: "последовательность аминокислот в полипептиде" от профессионалов для спортсменов и новичков.

Определение последовательности аминокислот в полипептиде и структуру участка ДНК, кодирующего указанный полипептид.

Задача 10.
Часть молекулы белка имеет такую последовательность аминокислот: – аланин – тирозин – лейцин – аспарагин – серин –. Какие т-РНК (с какими антикодонами) участвуют в синтезе этого белка?
Решение:
По таблице генетического кода находим кодоны и-РНК:
ГЦУ, УАУ, ЦУУ, ААУ и АГУ. Антикодоны т-РНК будут комплементарны кодонам и-РНК: ЦГА, АУА, ГАА, УУА и УЦА.
Таким образом:
кодоны и-РНК – ГЦУ, УАУ, ЦУУ, ААУ, АГУ;
антикодоны т-РНК – ЦГА, АУА, ГАА, УУА, УЦА.

Задача 11.
Как изменится структура белка, если из участка гена АЦАТТТАААГТЦАТА удалить второй и 10-й слева нуклеотиды?
Решение:
Первоначально строим и-РНК УГУАААУУУЦАГУАУ, а затем, разбив ее на триплеты, строим участок искомого белка в норме: цистеин – лизин – фенилаланин – глутамин – тирозин. По условию задачи из цепи ДНК удаляется второй и десятый (слева) нуклеотиды. Остается ААТТТАААТЦАТА. По полученному участку строим цепь и-РНК УУАААУУУАГУАУ, вновь разбив ее на триплеты, находим строение участка белка после произошедших изменений в ДНК: лейцин – аспарагин – лейцин.
До замены:

[2]

ДНК – АЦА ТТТ ААА ГТЦ АТА;
и-РНК – УГУ — ААА — УУУ — ЦАГ — УАУ;
белок – Цис — Лиз — Фен — Глн — Тир.

ДНК – А АТТТА АА ТЦАТА;
и-РНК – УУА — ААУ — УУА — ГУА У;
белок – Лей — Асн — Лей — Вал.

Сравнивая строение участка белка до и после изменений в ДНК, видим, что произошла замена всех аминокислот, а длина цепи сократилась на одну аминокислоту.

Задача 12.
Полипептид состоит из следующих аминокислот: лизин – валин – серин – глутаминовая кислота – тирозин.
Определите структуру участка ДНК, кодирующего указанный полипептид.
Решение:
Дана последовательность аминокислот в полипептиде. По этим сведениям нетрудно установить строение и-РНК, которая управляла синтезом данного полипептида. По таблице генетического кода находим структуру триплета для лизина (ААА), валина (ГУУ), серина (УЦУ), глутаминовой кислоты (ГАА) и тирозина (УАУ). Подобрав кодирующие триплеты, составляем и-РНК для данного полипептида: ААА ГУУ УЦУ ГАА УАУ. По цепочке и-РНК можно восстановить участок цепи ДНК, с которой она снималась. Урацил вставал против аденина ДНК, гуанин – против цитозина и т.д. Следовательно, участок интересующей нас цепи ДНК будет иметь следующее строение:

Но ДНК состоит из двух цепочек. Зная строение одной цепи, по принципу комплементарности достраиваем вторую. Целиком участок двухцепочечной ДНК, кодирующий данный полипептид, будет иметь следующее строение:

Т Т Т Ц А А А Г А Ц Т Т А Т А
А А А Г Т Т Т Ц Т Г А А Т А Т.

Задача 13.
Определите аминокислотный состав полипептида, который кодируется и-РНК следующего состава: ЦЦУ – ЦЦЦ – ЦЦА – ЦЦГ.
Решение:
По таблице генетического кода последовательно находим для каждого триплета соответствующую аминокислоту и строим участок искомого полипептида, получим:

Про — Про — Про — Про.

Таким образом, тетрапептид состоит из четырех фрагментов аминокислоты пролин. Аминокислота пролин кодируется четырьмя триплетами, что указывает на вырожденность генетического кода.

Задачи на транскрипцию и трансляцию

Генетический код (иРНК)
Первое
основание
Второе основание Третье
основание
У Ц А Г
У Фен Сер Тир Цис У
Фен Сер Тир Цис Ц
Лей Сер А
Лей Сер Три Г
Ц Лей Про Гис Арг У
Лей Про Гис Арг Ц
Лей Про Глн Арг А
Лей Про Глн Арг Г
А Иле Тре Асн Сер У
Иле Тре Асн Сер Ц
Иле Тре Лиз Арг А
Мет Тре Лиз Арг Г
Г Вал Ала Асп Гли У
Вал Ала Асп Гли Ц
Вал Ала Глу Гли А
Вал Ала Глу Гли Г
Читайте так же:  Креатин моногидрат после еды

Фрагмент цепи ДНК имеет следующую последовательность нуклеотидов: ТАЦЦЦТЦАЦТТГ. Определите последовательность нуклеотидов на иРНК, антикодоны соответствующих тРНК и аминокислотную последовательность соответствующего фрагмента молекулы белка, используя таблицу генетического кода.

ДНК Т А Ц Ц Ц Т Ц А Ц Т Т Г
иРНК А У Г Г Г А Г У Г А А Ц
тРНК У А Ц Ц Ц У Ц А Ц У У Г
АК мет гли вал асн

Последовательность нуклеотидов в цепи ДНК: ААТГЦАГГТЦАЦТЦАТГ. В результате мутации одновременно выпадают второй и пятый нуклеотиды. Запишите новую последовательность нуклеотидов в цепи ДНК. Определите по ней последовательность нуклеотидов в иРНК и последовательность аминокислот в полипептиде. Для выполнения задания используйте таблицу генетического кода.

ДНК А Т Г А Г Г Т Ц А Ц Т Ц А Т Г
иРНК У А Ц У Ц Ц А Г У Г А Г У А Ц
АК тир сер сер глу тир

Одна из цепей ДНК имеет последовательность нуклеотидов: ЦАТ- ГГЦ-ТГТ-ТЦЦ-ГТЦ… Объясните, как изменится структура молекулы белка, если произойдет удвоение четвертого триплета нуклеотидов в цепи ДНК?

Молекула белка удлинится на одну аминокислоту (аргинин). Форма третичной структуры белка изменится.

[1]

ДНК Ц А Т Г Г Ц Т Г Т Т Ц Ц Т Ц Ц Г Т Ц
иРНК Г У А Ц Ц Г А Ц А А Г Г А Г Г Ц А Г
АК вал про тре арг арг глн

В биосинтезе полипептида участвовали тРНК с антикодонами УУА, ГГЦ, ЦГЦ, АУУ, ЦГУ. Определите нуклеотидную последовательность участка каждой цепи молекулы ДНК, кото­рый несет информацию о синтезируемом полипептиде, и число нуклеотидов, содержащих аденин (А), гуанин (Г), тимин (Т) и цитозин (Ц) в двуцепочной молекуле ДНК. Ответ поясните.

тРНК У У А Г Г Ц Ц Г Ц А У У Ц Г У
иРНК А А У Ц Ц Г Г Ц Г У А А Г Ц А
ДНК Т Т А Г Г Ц Ц Г Ц А Т Т Ц Г Т
А А Т Ц Ц Г Г Ц Г Т А А Г Ц А

тРНК комплементарна иРНК, иРНК комплементарна кодирующей цепочке ДНК, две цепочки ДНК комплементарны друг другу. Количество аденина в двуцепочечной молекуле ДНК равно количеству тимина, количество гуанина равно количеству цитозина. Аденина и тимина по 7 штук, гуанина и цитозина по 8 штук.

В биосинтезе фрагмента молекулы белка участвовали последовательно молекулы тРНК с антикодонами ААГ, ААУ, ГГА, УАА, ЦАА. Определите аминокислотную последовательность синтезируемого фрагмента молекулы белка и нуклеотидную последовательность участка двухцепочечной молекулы ДНК, в которой закодирована информация о первичной структуре молекулы белка. Объясните последовательность ваших действий. Для решения задачи используйте таблицу генетического кода.

тРНК А А Г А А У Г Г А У А А Ц А А
иРНК У У Ц У У А Ц Ц У А У У Г У У
ДНК А А Г А А Т Г Г А Т А А Ц А А
Т Т Ц Т Т А Ц Ц Т А Т Т Г Т Т
аминокислоты фен лей про иле вал

1. По тРНК по принципу комплементарности находим иРНК.
2. По кодонам иРНК находим аминокислоты с использованием таблицы.
3. По иРНК по принципу комплементарности находим кодирующую цепь ДНК.
4. По кодирующей цепи ДНК по принципу комплементарности находим некодирующую цепь ДНК.

Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент молекулы ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов: АЦГЦЦГЦТААТТЦАТ. Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет соответствует антикодону тРНК. Ответ поясните. Для решения задания используйте таблицу генетического кода.

ДНК А Ц Г Ц Ц Г Ц Т А А Т Т Ц А Т
тРНК У Г Ц Г Г Ц Г А У У А А Г У А
Читайте так же:  Анализ катионный протеин эозинофилов

На цепочке ДНК по принципу комплементарности строится тРНК. Третий антикодон ГАУ будет присоединяться к кодону ЦУА. В таблице генетического кода находим, что кодону ЦУА соответствует аминокислота лейцин.

В результате мутации во фрагменте молекулы белка аминокислота треонин (тре) заменилась на глутамин (глн). Определите аминокислотный состав фрагмента молекулы нормального и мутированного белка и фрагмент мутированной иРНК, если в норме иРНК имеет последовательность ГУЦАЦАГЦГАУЦААУ. Ответ поясните. Для решения задания используйте таблицу генетического кода.

иРНК Г У Ц А Ц А Г Ц Г А У Ц А А У
нормальный белок вал тре ала иле асн

После мутации фрагмент молекулы белка будет иметь состав вал-глн-ала-иле-асн. Глутамин кодируется кодонами ЦАА и ЦАГ, следовательно, мутированная иРНК будет ГУЦЦААГЦГАУЦААУ или ГУЦЦАГГЦГАУЦААУ.

Последовательность аминокислот в полипептиде

До работы Cэнгера на выполнение которой ушло несколько лет, не было уверенности в том, что все молекулы данного белка являются строго идентичными по молекулярной массе и аминокислотному составу. В настоящее время известна аминокислотная последовательность многих сотен белков, выделенных из различных источников. Определение аминокислотной последовательности полипептцдной цепи основано на принципах, которые впервые были развиты Сэнгером. Они используются еще и сегодня, правда со всевозможными вариациями и усовершенствованиями.

Чтобы расшифровать аминокислотную последовательность любого полипептида, необходимо осуществить шесть основных стадий.

а. Стадия 1: определение аминокислотного состава

Первым шагом на пути к расшифровке аминокислотной последовательности служит гидролиз всех пептидных связей чистого полипептида. Образующаяся смесь аминокислот анализируется затем при помощи ионообменной хроматографии (разд. 5.18), что позволяет определить, какие аминокислоты и в каком соотношении присутствуют в гидролизате.

б. Стадия 2: идентификация амино- и карбоксиконцевых остатков

Следующий шаг состоит в идентификации аминокислотного остатка, находящегося на конце полипептидной цепи, несущего свободную

-аминогруппу, т. е. на аминоконце (-конце, или N-конце). Для этой цели Сэнгер предложил использовать реагент, 1 -фтор-2,4-динитробензол (разд. 5.22), который можно присоединить в качестве метки к аминоконцевому (-концевому) остатку цепи, в результате чего образуется окрашенное в желтый цвет (ДНФ) — производное полипептида. При кислотном гидролизе все пептидные связи в таком ДНФ — производном полипептида расщепляются, однако ковалентная связь между 2,4-динитрофенильной группой и -аминогруппой N-концевого остатка остается незатронутой. Следовательно, N-концевой остаток будет представлен в гидролизате в виде 2,4 производного (рис. 6-6).

Рис. 6-6. Идентификация аминоконцевого остатка тетрапептида путем получения 2,4-динитрофенильного производного. Тетрапептид вступает в реакцию с 1 -фтор-2,4-динитробензолом (ФДНБ) с образованием 2,4-дииитрофенильного производного. Последнее подвергают затем кипячению в присутствии 6 н. HCl с тем, чтобы расщепить все пептидные связи. При этом аминоконпевая аминокислота остается в виде 2,4-динитрофенильного производного.

Рис. 6-7. Введение метки в аминоконцевой остаток трипептида с помощью дансилхлорида. После гидролитического расщепления всех пептидных связей дансильное производное аминоконцевой аминокислоты можно выделить и идентифицировать. Благодаря интенсивной флуоресценции дансильных групп они выявляются в значительно меньших количествах, чем динитрофенильные группы. Поэтому дан — сильный метод по чувствительности намного превосходит метод с использованием фтординитробензола.

Это производное легко отделить от незамещенных свободных аминокислот и идентифицировать хроматографическим способом путем сравнения его с аутентичными динитрофенильными производными различных аминокислот.

Другим реагентом, используемым в качестве метки, позволяющей идентифицировать N-концевой остаток, служит дансилхлорид (рис. 6-7), который реагирует со свободной

-аминогруппой и дает дансильное производное. Последнее интенсивно флуоресцирует, вследствие чего его можно обнаружить и измерить при значительно более низких концентрациях, чем динитрофенильные производные.

Карбоксиконцевой (С-концевой) аминокислотный остаток полипептидной цепи тоже можно идентифицировать, используя тот или иной метод. Один из таких методов состоит в инкубировании полипептида с ферментом карбоксипептидазой, которая гидролизует только пептидную связь, находящуюся на карбоксильном конце (

-конце, или С-конце) цепи. Определив, какая из аминокислот первой отщепилась от полипептида при действии на него карбоксипептидазы, можно идентифицировать С-конце-вой остаток.

В результате идентификации N- и С-концевых остатков полипептида мы получаем две важные реперные точки для определения аминокислотной последовательности.

в. Стадия 3: расщепление полипептидной цепи на фрагменты

Теперь мы берем еще одну порцию анализируемого препарата, содержащего неповрежденные полипептидные цепи, и расщепляем их на более мелкие куски — короткие пептиды, состоящие в среднем из 10-15 аминокислотных остатков. Цель этой операции заключается в том, чтобы разделить полученные фрагменты и определить в каждом из них аминокислотную последовательность.

Читайте так же:  Жиросжигатели для похудения спортивное

Для расщепления полипептидной цепи на отдельные фрагменты можно использовать несколько методов. Один из широко распространенных методов — это частичный ферментативный гидролиз полипептида под воздействием пищеварительного фермента трипсина. Каталитическое действие этого фермента отличается высокой специфичностью: гидролизу подвергаются только те пептидные связи, в образовании которых участвовала карбоксильная группа остатка лизина или аргинина независимо от длины и аминокислотной последовательности полипептидной цепи (табл. 6-6). Число более мелких пептидов, образующихся под действием трипсина, можно, следовательно, предсказать, исходя из общего числа остатков лизина и аргинина в исходном полипептиде.

Таблица 6-6. Специфичность, свойственная четырем важным методам фрагментации полипептидных цепей

Рис. 6-8. Пептидная карта, полученная после расщепления нормального гемоглобина человека трипсином. Каждое пятно содержит один из пептидов. Чтобы получить такую двумерную карту, смесь пептидов наносят на лист бумаги квадратной формы, проводят электрофорез в одном направлении, параллельном одной из сторон квадрата, после чего бумагу высушивают, а затем проводят хроматографическое разделение пептидов в другом направлении, перпендикулярном первому. Ни один из этих двух процессов в отдельности не позволяет разделить пептиды полностью, однако последовательное их осуществление оказывается очень эффективным способом разделения сложных пептидных смесей.

Полипептид, в котором содержатся пять остатков лизина и (или) аргинина, при расщеплении трипсином обычно дает шесть более мелких пептидов, причем все эти пептиды, за исключением одного, имеют на карбоксильном конце остаток лизина или аргинина. Фрагменты, полученные под действием трипсина, разделяют либо методом ионообменной хроматографии на колонке, либо при помощи электрофореза и хроматографии на бумаге; при этом часто проводят двумерное хроматографическое разделение пептидов на листе бумаги, в результате чего получают хроматограмму с распределившимися на ней пептидами в виде пептидной карты (рис. 6-8).

г. Стадия 4: определение последовательности пептидных фрагментов

Укороченный пептид снова подвергается той же серии реакций, что позволяет идентифицировать новый

-концевой остаток. Повторяя таким образом отщепление одного за другим -концевых остатков, можно легко определить аминокислотную последовательность пептидов, состоящих из 10-20 остатков.

Определение аминокислотной последовательности проводится для всех пептидов, образовавшихся под действием трипсина. После этого сразу же возникает новая проблема — определить, в каком порядке трипсиновые фрагменты располагались в первоначальной полипептидной цепи.

д. Стадия 5: расщепление исходной полипептидной цепи еще одним способом

Видео (кликните для воспроизведения).

Рис. 6-9. Схема определения аминокислотной последовательности пептида путем его расщепления по Эдману. Исходный тетрапептид вступает в реакцию с фенилизотиоцианатом, в результате чего образуется фенилтиокарбамоильное производное аминоконцевого остатка. Этот остаток отщепляют от пептида без разрыва других пептидных связей и получают в виде фенилтиогидантоинового производного, которое можно идентифицировать хроматографическим способом. Оставшийся трипептид вновь проводят через тот же цикл реакций, что позволяет идентифицировать второй остаток. Эти операции повторяют до тех пор, пока не будут идентифицированы все остатки.

Чтобы установить порядок расположения пептидных фрагментов, образовавшихся под действием трипсина, берут новую порцию препарата исходного полипептида и расщепляют его на более мелкие фрагменты каким-либо иным способом, при помощи которого расщепляются пептидные связи, устойчивые к действию трипсина. В этом случае более предпочтительным часто оказывается не ферментативный, а химический метод.

Особенно хорошие результаты дает реагент бромциан, расщепляющий только те пептидные связи, в которых карбонильная группа принадлежит остатку метионина (табл. 6-6). Следовагельно, если полипептид содержит восемь остатков метионина, то при обработке бромцианом обычно образуются девять пептидных фрагментов. Полученные таким способом фрагменты можно разделить методом электрофореза или хроматографии. Каждый из этих коротких пептидов подвергают расщеплению по Эдману, как было описано для стадии 4, и таким путем устанавливают их аминокислотную последовательность.

Итак, мы получили два набора пептидных фрагментов — один после обработки исходного полипептида трипсином и другой после химического расщепления того же полипептида бромцианом. Мы знаем также аминокислотную последовательность каждого пептида, входящего в состав этих двух наборов.

Рис. 6-10. Расположение пептидных фрагментов в правильном порядке на основе данных по перекрывающимся участкам. В приведенном здесь примере полипептид, состоящий из 16 аминокислотных остатков, после идентификации N- и С-концевых остагков был подвергнут фрагментации двумя способами. Вверху показаны полученные фрагменты, а снизу — воссоздание полной последовательности полипептида по перекрывающимся участкам.

Читайте так же:  Количество аминокислот входящих в состав белков

е. Стадия 6: установление порядка расположения пептидных фрагментов по перекрывающимся участкам

Теперь сравнивают аминокислотные последовательности в пептидных фрагментах, полученных двумя способами из исходного полипептида, чтобы во втором наборе найти пептиды, в которых бы последовательности отдельных участков перекрывались (т.е. совпадали) с последовательностями тех или иных участков в пептидах первого набора. Принцип расположения пептидов показан на рис. 6-10. Пептиды из второго набора с перекрывающимися последовательностями позволяют соединить в правильном порядке пептидные фрагменты, полученные в результате первого расщепления исходной полипептидной цепи. Более того, эти два набора фрагментов позволяют выявить возможные ошибки в определении аминокислотной последовательности каждого фрагмента.

Иногда второго расщепления полипептида на фрагменты оказывается недостаточно, чтобы найти перекрывающиеся участки для двух или более пептидов, полученных после первого расщепления. В этом случае применяется третий, а то и четвертый способ расщепления, что позволяет в конце концов получить набор пептидов, обеспечивающих перекрывание всех участков, необходимых для установления полной последовательности исходной цепи. При этом для расщепления полипептида можно использовать другие протеолитические ферменты, например химотрипсин или пепсин, правда зти ферменты расщепляют пептидные связи гораздо менее избирательно, чем трипсин (табл. 6-6).

Ферментативное расщепление полипептида по специфическим участкам

Читайте также:

  1. ДОГОВОР МЕНЫ И ОБМЕН ЗЕМЕЛЬНЫМИ УЧАСТКАМИ.
  2. Общая характеристика права постоянного бессрочного пользования земельными участками.
  3. Особенности права безвозмездного срочного пользования земельными участками.
  4. ПОЖИЗНЕННОЕ НАСЛЕДУЕМОЕ ВЛАДЕНИЕ ЗЕМЕЛЬНЫМИ УЧАСТКАМИ
  5. Право пользования лесными участками предоставляется
  6. Право постоянного пользования и право пожизненного наследуемого владения земельными участками.
  7. Право постоянного пользования и право пожизненного наследуемого владения земельными участками. Сервитуты.
  8. Расщепление разума, тела и духа при травме
  9. Расщепление характера
  10. Результаты химических анализов по участкам скважин Киши-Майтобе и Дос (радиология и микробиология)
  11. Тема 12.17 Правонарушения против порядка приписки граждан к призывным участкам, призыва на воинскую службу и воинского учета

Многие полипептиды имеют первичную структуру, состоящую более чем из 100 аминокислот. Так как с помощью секвенаторов наиболее продуктивно определяют аминокислотную последовательность лишь небольших пептидов, молекулы полипептида расщепляют по специфическим местам на фрагменты.

Определение N-концевой аминокислоты в белке и последовательности аминокислот в олигопептидах

Фенилизотиоционат (ФИТЦ) — реагент, используемый для определения N-концевой аминокислоты в пептиде. Он способен реагировать с ?-аминогруппой и ?-карбоксильной группой свободных аминокислот, а также с N-концевой аминокислотой в пептидах (см. схему ниже).

[3]

В результате взаимодействия с N-концевой аминокислотой полипептида образуется фенил-тиогидантионовое производное, в котором дестабилизирована пептидная связь между ?-карбоксильной группой N-концевой аминокислоты и а-аминогруппой второй аминокислоты в пептиде. Эта связь избирательно гидролизуется без повреждения других пептидных связей.

После реакции выделяют комплекс ФИТЦ-АК1 идентифицируют его хроматографически-ми методами. ФИТЦ можно использовать вновь с укороченным пептидом, полученным в предыдущем цикле, для определения следующей аминокислоты. Этот процесс ступенчатого расщепления пептида с N-конца был автоматизирован и реализован в приборе — секвенаторе, с помощью которого можно определять последовательность аминокислотных остатков в олигопептидах, состоящих из 10-20 аминокислот.

Используя несколько разных расщепляющих агентов (ими могут быть ферменты или химические вещества) в разных пробах очищенного полипептида, можно получить частично перекрывающие друг друга фрагменты с установленной аминокислотной последовательностью. С их помощью можно воссоздать правильный порядок фрагментов и получить полную последовательность аминокислот в полипептидной цепи.

Для специфического расщепления пептидных связей в белке можно использовать несколько разных ферментов. Наиболее широко используют ферментативный гидролиз полипептида протеолитическим ферментом — трипсином, который относят к группе пищеварительных ферментов (его вырабатывает поджелудочная железа). Фермент обладает высокой специфичностью действия. Он расщепляет пептидные связи, в образовании которых участвует карбоксильная группа остатков лизина или аргинина.

Дата добавления: 2015-05-07 ; Просмотров: 793 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Нуклеиновые кислоты. Белки (полипептиды) – биополимеры, построенные из остатков α-аминокислот, соединенных пептидными (амидными) связями

Читайте также:

  1. IV Сб-СЗ-ряда — окснкорнчные кислоты.
  2. Альдегидокислоты
  3. Аминокислоты
  4. Аминокислоты
  5. Аминокислоты
  6. Аминокислоты используются в качестве лекарств
  7. Аминокислоты используются в качестве лекарств
  8. Аминокислоты могут давать энергию
  9. Аминокислоты надо переносить через мембраны
  10. Аминокислоты, первичная структура белка.
  11. Аминокислоты, первичная структура белка.
  12. Аминокислоты.
Читайте так же:  Аминокислоты простые и сложные

Белки

Белки (полипептиды) – биополимеры, построенные из остатков α-аминокислот, соединенных пептидными (амидными) связями.

Формально образование белковой макромолекулы можно представить как реакцию поликонденсации α-аминокислот:

При взаимодействии двух молекул α-аминокислот происходит реакция между аминогруппой одной молекулы и карбоксильной группы — другой. Это приводит к образованию дипептида (часть V, раздел 4.3), например:

Следует отметить, что в искусственных условиях (вне организма) две различных аминокислоты могут образовать 4 изомерных дипептида (в данном случае — глицилаланин, аланилглицин, аланилаланин и глицилглицин).

Из трех молекул α-аминокислот (глицин+аланин+глицин) можно получить трипептид:


глицилаланилглицин

Аналогично происходит образование тетра-, пента- и полипептидов.

· Количество изомерных пептидов резко возрастает с увеличением числа участвующих в их образовании неодинаковых α-аминокислот. В живом организме (in vivo) биосинтез полипептидов (белков) с заданной природой последовательностью α-аминокислотных остатков направляют дезоксирибонуклеиновые кислоты (ДНК). Непосредственно его осуществляют рибонуклеиновые кислоты (РНК информационные, транспортные, рибосомные) и ферменты.

· Для искусственного получения олиго- и полипептидов заданного строения применяются специальные приёмы пептидного синтеза: блокирование (защита) одних функциональных групп и активация других.

· При синтезе полипептидов, содержащих большое число аминокислотных остатков, требуется проведение множества реакций, которые сопровождаются операциями по выделению и очистке продукта на каждой стадии. В классическом синтезе это сопряжено не только с большими затратами времени, но и с потерями вещества, поэтому при завершении эксперимента удается получить лишь ничтожно малые количества конечного продукта.

· Для решения этих проблем был предложен твердофазный синтез пептидов на полимерной матрице (Мэррифилд, 1962). В настоящее время созданы автоматизированные приборы (синтезаторы), которые в запрограммированной последовательности осуществляют все необходимые операции. Если в классическом синтезе для присоединения одной аминокислоты требуются дни и даже недели, то условия твердофазного синтеза позволяют присоединить 6 аминокислот в сутки.

Молекулярные массы различных белков (полипептидов) составляют от 10 000 до нескольких миллионов. Макромолекулы белков имеют стеререгулярное строение, исключительно важное для проявления ими определенных биологических свойств.
Несмотря на многочисленность белков, в их состав входят остатки не более 22 α-аминокислот.

Функции белков в природе универсальны:

  • каталитические (ферменты);
  • регуляторные (гормоны);
  • структурные (кератин шерсти, фиброин шелка, коллаген);
  • двигательные (актин, миозин);
  • транспортные (гемоглобин);
  • запасные (казеин, яичный альбумин);
  • защитные (иммуноглобулины) и т.д.

Разнообразные функции белков определяются α-аминокислотным составом и строением их высокоорганизованных макромолекул.

Выделяют 4 уровня структурной организации белков.

Первичная структура — определенная последовательность α-аминокислотных остатков в полипептидной цепи.
Вторичная структура — конформация полипептидной цепи, закрепленная множеством водородных связей между группами N-H и С=О. Одна из моделей вторичной структуры — α-спираль. Другая модель — β-форма («складчатый лист»), в которой преобладают межцепные (межмолекулярные) Н-связи.
Третичная структура — форма закрученной спирали в пространстве, образованная главным образом за счет дисульфидных мостиков -S-S-, водородных связей, гидрофобных и ионных взаимодействий.
Четвертичная структура — агрегаты нескольких белковых макромолекул (белковые комплексы), образованные за счет взаимодействия разных полипептидных цепей

Нуклеиновые кислоты — это биополимеры, макромолекулы которых состоят из многократно повторяющихся звеньев — нуклеотидов. Поэтому их называют также полинуклеотидами.

В состав нуклеотида — структурного звена нуклеиновых кислот — входят три составные части:

  • азотистое основание — пиримидиновое или пуриновое
    (часть V, разделы 3.3.1 и 3.3.2);
  • моносахарид — рибоза или 2-дезоксирибоза;
  • остаток фосфорной кислоты.

Нуклеотид — фосфорный эфир нуклеозида. В состав нуклеозида входят два компонента: моносахарид (рибоза или дезоксирибоза) и азотистое основание.

| следующая лекция ==>
Целлюлоза | ДНК и РНК

Дата добавления: 2014-01-20 ; Просмотров: 498 ; Нарушение авторских прав? ;

Видео (кликните для воспроизведения).

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источники


  1. Боровская, Э. Здоровое питание школьника / Э. Боровская. — Москва: Машиностроение, 2010. — 320 c.

  2. Добров, А. Диабет — не проблема. Основы немедикаментозного лечения / А. Добров. — М.: Феникс, 2014. — 280 c.

  3. Ситель, Анатолий Гимнастика для сосудов (+ DVD-ROM) / Анатолий Ситель. — М.: Книжный клуб 36.6, 2009. — 224 c.
Последовательность аминокислот в полипептиде
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here