Применение и строение аминокислот

Важная и проверенная информация на тему: "применение и строение аминокислот" от профессионалов для спортсменов и новичков.

Строение аминокислот

Общие сведения о строении аминокислот

В зависимости от взаимного расположения обеих функциональных групп различают α-, β – и γ-аминокислоты:

CH3-CH(NH2)-COOH (α-аминопропионованя кислота);

Аминокислоты представляют собой твердые кристаллические вещества, хорошо растворимые в воде. Они плавятся при высоких температурах с разложением.

Электронное строение аминокислот

В зависимости от строения радикала все аминокислоты можно разделить на алифатические, ароматические (содержат бензольное кольцо) и гетероциклические:

Аланин (2-аминопропановая кислота).

Аспаргиновая кислота (аминобутандиовая кислота).

Цистеин (2-амино-3-меркаптопропановая кислота).

Существует также классификации аминокислот в зависимости от их кислотно-основных свойств:

— нейтральные (равное число амино- и карбоксильных групп);

— кислые (дополнительная карбоксильная группа, как, например в аспаргиновой или глутаминовой кислотах);

— основные (с дополнительной амино-группой, как, наприер в лизине).

В молекулах всех аминокислот, кроме глицина, атом углерода в α-положении содержит четыре различных заместителя, т.е. является асимметрическим. Благодаря центру хиральностиэти аминокислоты могут существовать в виде двух оптически активных энантиомеров. Отнесение аминокислот к D- или L-стереохимическим рядам проводят по стереохимическому стандарту – глицериновому альдегиду (рис. 1): к D-ряду принадлежат соединения, у которых аминогруппа расположена в формуле Фишера справа, и к L-ряду – у которых она слева.

Рис. 1. Проекционные формулы Фишера D- и L-аминокислот.

Типы изомерии аминокислот

Для аминокислот характерно несколько типов изомерии, среди которых:

— изомерия углеродного скелета;

— изомерия положения функциональных групп;

Одной из особенностей аминокислот является возможность взаимодействия их друг с другом. При этом происходит отщепление молекулы воды и образуется продукт, в котором фрагменты молекулы связаны между собой пептидной связью (-CO-NH-). Например,

Полученное соединение называют дипептидом. Вещества, построенные из многих остатков аминокислот, называются полипептидами.

Примеры решения задач

Задание Назовите области применения аминокислот
Ответ Аминокислоты и их производные нашли широкое применение в пищевой, медицинской, микробиологической и химической отраслях промышленности. Аминокислоты входят в состав спортивного питания и комбикорма.
Задание Укажите формулу аминокислоты:
Ответ Аминокислоты – органические бифункциональные соединения, в состав которых входят карбоксильная группа –СООН и аминогруппа – NH2. Такие функциональные группы имеются в составе вещества под буквой (б), следовательно, формуле аминокислоты соответствует вещество (б).

Копирование материалов с сайта возможно только с разрешения
администрации портала и при наличие активной ссылки на источник.

Аминокислоты

Характеристики и физические свойства аминокислот

Аминокислоты представляют собой твердые кристаллические вещества, характеризующиеся высокими температурами плавления и разлагающиеся при нагревании. Они хорошо растворяются в воде. Данные свойства объясняются возможностью существование аминокислот в виде внутренних солей (рис. 1).

Рис. 1. Внутренняя соль аминоуксусной кислоты.

Получение аминокислот

Исходными соединениями для получения аминокислот часто служат карбоновые кислоты, в молекулу которых вводится аминогруппа. Например, получение их из галогензамещенных кислот

Кроме этого исходным сырьем для получения аминокислот могут служить альдегиды (1), непредельные кислоты (2) и нитросоединения (3):

Химические свойства аминокислот

Аминокислота как гетерофункциональные соединения вступают в большинство реакций, характерных для карбоновых кислот и аминов. Наличие в молекулах аминокислот двух различных функциональных групп приводит к появлению ряда специфических свойств.

Аминокислоты – амфотерные соединения. Они реагируют как с кислотами, так и с основаниями:

Водные растворы аминокислот имеют нейтральную, щелочную и кислотную среду в зависимости от количества функциональных групп. Например, глутаминовая кислота образует кислый раствор, поскольку в её составе две карбоксильные группы и одна аминогруппа, а лизин – щелочной раствор, т.к. в её составе одна карбоксильная группа и две аминогруппы.

Две молекулы аминокислоты могут взаимодействовать друг с другом. При этом происходит отщепление молекулы воды и образуется продукт, в котором фрагменты молекулы связаны между собой пептидной связью (-CO-NH-). Например:

Полученное соединение называют дипептидом. Вещества, построенные из многих остатков аминокислот, называются полипептидами. Пептиды гидролизуются под действием кислот и оснований.

Применение аминокислот

Аминокислоты, необходимые для построения организма, как человек, так и животные получают из белков пищи.

γ-Аминомасляная кислота используется в медицине (аминалон / гаммалон) при психических заболеваниях; на её основе создан целый ряд ноотропных препаратов, т.е. оказывающих влияние на процессы мышления.

ε-Аминокапроновая кислота также используется в медицине (кровоостанавливающее средство), а кроме того представляет собой крупнотоннажный промышленный продукт, использующийся для получения синтетического полиамидного волокна – капрона.

Антраниловая кислота используется для синтеза красителей, например синего индиго, а также участвует в биосинтезе гетероциклических соединений.

Примеры решения задач

Понравился сайт? Расскажи друзьям!
Задание Напишите уравнения реакций аланина с: а) гидроксидом натрия; б) гидроксидом аммония; в) соляной кислотой. За счет каких групп внутренняя соль проявляет кислотные и основные свойства?
Ответ Аминокислоты часто изображают как соединения, содержащие аминогруппу и карбоксильную группу, однако с такой структурой не согласуются некоторые их физические и химические свойства. Строение аминокислот соответствует биполярному иону:

Запишем формулу аланина как внутренней соли:

Исходя из этой структурной формулы, напишем уравнения реакций:

Внутренняя соль аминокислоты реагирует с основаниями как кислота, с кислотами – как основание. Кислотная группа – N + H3, основная – COO — .

Задание При действии на раствор 9,63 г неизвестной моноаминокарбоновой кислоты избытком азотистой кислоты было получено 2,01 л азота при 748 мм. рт. ст. и 20 o С. Определите молекулярную формулу этого соединения. Может ли эта кислоты быть одной из природных аминокислот? Если да, то какая это кислота? В состав молекулы этой кислоты не входит бензольное кольцо.
Решение Напишем уравнение реакции:

Найдем количество вещества азота при н.у., применяя уравнение Клапейрона-Менделеева. Для этого температуру и давление выражаем в единицах СИ:

T = 273 + 20 = 293 K;

P = 101,325 × 748 / 760 = 99,7 кПа;

n(N2) = 99,7 × 2,01 / 8,31 × 293 = 0,082 моль.

По уравнению реакции находим количество вещества аминокислоты и её молярную массу.

Определим аминокислоту. Составим уравнение и найдем x:

[2]

14x + 16 + 45 = 117;

Из природных кислот такому составу может отвечать валин.

АМИНОКИСЛО́ТЫ

  • В книжной версии

    Читайте так же:  Комплекс л карнитина и таурина

    Том 1. Москва, 2005, стр. 612

    Скопировать библиографическую ссылку:

    АМИНОКИСЛО́ТЫ, ор­га­нич. со­еди­не­ния, со­дер­жа­щие кар­бок­силь­ные COOH и ами­но­груп­пы NH 2

    . Ис­клю­че­ние со­став­ля­ет про­лин. Об­ла­да­ют свой­ст­ва­ми и ки­слот и ос­но­ва­ний. В за­ви­си­мо­сти от по­ло­же­ния ами­но­груп­пы в уг­ле­род­ной це­пи от­но­си­тель­но кар­бок­силь­ной груп­пы раз­ли­ча­ют α -, β -, γ — и др. А. У ω -А. ами­но­груп­па на­хо­дит­ся на кон­це це­пи. Уча­ст­ву­ют в об­ме­не азо­ти­стых ве­ществ всех ор­га­низ­мов, яв­ля­ясь ис­ход­ны­ми со­еди­не­ния­ми при био­син­те­зе бел­ков, пеп­ти­дов, пу­ри­но­вых и пи­ри­ми­ди­но­вых ос­но­ва­ний, ря­да ви­та­ми­нов, пиг­мен­тов, ал­ка­лои­дов и др.

    Строение аминокислот: структурные формулы и классификации

    Строение основных аминокислот: 20 «магических», входящих в состав белка. Структура. Классификации. Таблицы с формулами. Название и международные сокращения протеиногенных аминокислот. С вами я, Галина Баева, 20 «магических» аминокислот и красивые таблицы со структурными формулами природных аминокислот.

    Природные аминокислоты — это структурные единицы (мономеры) белков. В состав белков входят всего 20 т.н. «магических» аминокислот, которые также называются протеиногенными. Все они имеют сходное строение.

    Кроме протеиногенных аминокислот в организме присутствуют и непротеиногенные, которые выполняют различную работу, в основном это промежуточные соединения в биохимическом конвейере, как например, орнитин, сигнальные молекулы, как β-аланин или нейромедиаторы, как ГАМК.

    Особенности строения природных аминокислот

    Строение аминокислот тесно связано с их функциями. Сходные по химической структуре вещества делают сходную работу. Попробуем разобраться, чтобы потом не путаться в аннотациях к препаратам.

    Все аминокислоты слеплены по одному лекалу.

    Голова – аминный остаток, содержащий азот N.

    Углеродный скелет, состоящий из цепочки атомов углерода (в простейшем случае – один углерод, к которому «спереди» прицеплен аминный остаток, а сзади – карбоновый хвост)

    Хвост – остаток карбоновой кислоты – СООН

    Сбоку к углеродному скелету может быть присоединена еще какая-нибудь химическая группировка, которая придает данному веществу особые свойства.

    Углеродная цепочка вместе с кислотным хвостом, присоединенная к аминной голове, называется мудреным словом «алифатический радикал».

    Номенклатура аминокислот

    Углеродная цепочка (скелет) может состоять как из 1 атома углерода, так и из нескольких. В последнем случае имеет значение, к какому атому углерода, начиная счет от карбоксильной группы, присоединится аминная голова. Это может быть как 1-ый атом углерода, так и 2-ой, 3-ий и далее. Химики договорились обозначать атомы углерода не цифрами, а буквами греческого алфавита: α — 1-ый атом углерода, начиная с карбоксильного хвоста, β— 2-ой, γ — 3-й, и т.д.

    Если аминогруппа присоединяется к углероду в α-положении, такую аминокислоту называют α-аминокислотой, соответственно, если аминогруппа присоединена в β-положении — то это β-аминокислота, если в γ — то γ -аминокислота.

    Все 20 природных протеиногенных аминокислот относятся к группе α -аминокислот.

    Из β — аминокислот наиболее известен β-аланин, а из γ-аминокислот наиболее известна γ-аминомасляная кислота (ГАМК). Их структурные формулы приведены ниже.

    Таблица 1 Строение протеиногенных аминокислот

    Таблица 2 Структурные формулы аминокислот

    Таблица 3 Модели структурных формул аминокислот

    Классификация аминокислот

    Существует несколько классификаций аминокислот:

    1. В зависимости от строения алифатического радикала, аминокислоты подразделяются на следующие группы:
    • Просто аминокислоты с алифатическим радикалом, т.е. такие, у которых углеродная цепочка не содержит дополнительных затей. Их называют МоноАминоМоноКарбоновые: глицин и аланин
    • Аминокислоты с разветвленной боковой цепью, у которых углеродный скелет образует боковые вилки: валин, лейцин, изолейцин. Изолейцин по химическому составу не отличим от лейцина, но его углеродный скелет по-другому загнут, т.е. он является стереоизомером. Иногда его выделяют в отдельную аминокислоту, а иногда – нет. Аминокислоты с разветвленной боковой цепью тоже относятся к группе МоноАминоМоноКарбоновых аминокислот.
    • Аминокислоты, у которых в алифатическом радикале имеются разные группировки:
    Читайте так же:  Л карнитин пауэр систем

    Спиртовая – ОН. Их называют ОксиМоноАминоМоноКарбоновые: серин и треонин

    Карбоксильная, т.е. второй кислотный хвост. Это МоноАминоДиКарбоновые аминокислоты: аспарагиновая кислота (аспартат) и глутаминовая кислота (глутамат). Их называют еще Кислые аминокислоты, этакое «масло масляное».

    Амидная. Карбоксильный хвост отрастил себе вторую аминную голову: аспарагин и глутамин. Кажется, понятным, что это производные соответственно аспартата и глутамата. Их называют Амиды МоноАминоДиКарбоновых аминокислот

    Аминная. Вторая аминная голова присоединилась к углеродному скелету: лизин

    Гуанидиновая: дополнительные аминные вставки — аргинин

    Лизин и Аргинин относят также к группе ДиАминоМоноКарбоновых аминокислот, ибо у них есть по второй аминной группе. Поскольку эти аминокислоты в нейтральной среде (вода, рН=7), проявляют щелочные (основные) свойства, повышая водородный показатель (рН становится › 7), то их относят к группе Основных аминокислот

    Серосодержащие аминокислоты. Имеют в радикале атом серы S: цистеин, метионин

    Аминокислоты, содержащие ароматический радикал– углеродное колечко или Ароматические аминокислоты фенилаланин, тирозин, триптофан

    Аминокислоты с гетероциклическим радикалом – колечко с атомом азота вместо углерода, поэтому он «гетеро» — «разнообразный»: триптофан и гистидин.

    Нетрудно заметить, что триптофан входит в группу как ароматических аминокислот, так и в группу аминокислот с гетероциклическим радикалом, а все потому, что у него есть как гетороциклический радикал, так и ароматический.

    Иминокислоты – углеродный скелет не вытянут в цепочку, а замкнут в колечко, из которого торчат аминная голова и рядом кислотный хвост: пролин и оксипролин

    2. Классификация, в основу которой положена полярность алифатического радикала.

    • Неполярные (гидрофобные) аминокислоты. Они имеют неполярные связи между атомами C-C, C-H. Это глицин, аланин, валин, лейцин, изолейцин, пролин, триптофан — 8 аминокислот
    • Полярные незаряженные (гидрофильные) аминокислоты. Они имеют полярные связи между атомами С-О, C-N, O-H, S-H. Это серин, аспарагин, глутамин, треонин, метионин — 5 аминокислот
    • Полярные отрицательно-заряженные аминокислоты. У них в радикале присутствуют группы, которые в водной среде (рН = 7) заряжены отрицательно, т.е. они выступают как отрицательно-заряженный ион (анион). Это аспарагиновая и глутаминовая кислоты, тирозин, цистеин — 4 аминокислоты
    • Полярные положительно-заряженные аминокислоты. У них в радикале присутствуют группы, которые в водной среде (рН=7) заряжены положительно, т.е. они выступают как положительно-заряженный ион (катион). Это лизин, аргинин, гистидин — 3 аминокислоты.

    Чем больше в белке аминокислот, обладающих полярностью, тем выше способность белка к химическим реакциям, т.е. его реактогенность. С реактогенностью белка непосредственно связаны его функции. Белки соединительной ткани, например кератин, входящий в состав волос и ногтей, имеет мало полярных аминокислот. Напротив, ферменты — белки-катализаторы биохимических реакций, обладают аминокислотным составом с множеством полярных групп.

    3. Классификация по отношению к водородному показателю (рН)

    • Аминокислоты, обладающие нейтральными свойствами с рН 5,97 – 6,02. Это глицин, аланин, серин, валин, лейцин, изолейцин,треонин, цистин, метионин — 9 аминокислот. Они имеют одну аминную голову и один карбоксильный хвост
    • Аминокислоты, обладающие слабокислыми свойствами рН 3,0 – 5,7. Это аспарагиновая и глутаминовая кислоты. Они имеют одну аминную голову, но два карбоксильных хвоста, поэтому их называют «кислотами».
    • Аминокислоты, обладающие щелочными свойствами с рН 9,7 – 10,7. У них две аминные головы и один карбоксильный хвост. Это лизин, аргинин, гистидин.

    4. Классификация по способности к синтезу в организме человека и животных.

    • Заменимые аминокислоты: глицин, серин, аланин, аспарагиновая кислота, аспарагин, глутаминовая кислота, глутамин, пролин
    • Условно-заменимые аминокислоты: аргинин, гистидин, тирозин, цистеин
    • Незаменимые аминокислоты: валин, лейцин, изолейцин, треонин, лизин, триптофан, фенилаланин, метионин

    5. Классификация аминокислот по путям биосинтеза.

    В живых организмах аминокислоты могут производится (синтезироваться) из других соединений. Путь биосинтеза — это последовательность химических реакций, которые обусловлены наследственной (генетической) матрицей. Он записан в генетическом коде и обусловлен наличием ферментов, запускающих данные реакции. Биосинтез идет не хаотично, а количество исходных и промежуточных соединений ограничено. Так из всего многообразия природных аминокислот для синтеза белка используются только 20. Соответственно, исходные и промежуточные соединения на путях биосинтеза отдельных аминокислот образуют кластеры или семейства, где соединения могут преобразовываться друг в друга.

    • Семейство аспартата: аспарагиновая кислота (аспартат), аспарагин, изолейцин, лизин, треонин, метионин
    • Семейство глутамата: глутаминовая кислота (глутамат), глутамин, пролин, аргинин
    • Семейство пирувата: аланин, валин, лейцин
    • Семейство серина: серин, глицин, цистеин
    • Семейство пентоз: гистидин, триптофан, фенилаланин, тирозин
    • Семейство шикимата: триптофан, фенилаланин, тирозин
    Читайте так же:  Какие витамины для женщин

    Надо сказать, что данные пути метаболизма реализуются в биологических системах, но не все они имеются в организме человека. Так высшие животные и человек не способны синтезировать ароматическое кольцо, поэтому путь шикимата — это не для нас. Аналогично с другими путями синтеза незаменимых аминокислот. Для наглядности незаменимые аминокислоты выделены жирным шрифтом.

    6. Классификация аминокислот по путям катаболизма

    Катаболизм — процесс распада, противоположен анаболизму или процессу синтеза. В организме катаболизм также обусловлен генетической программой и набором ферментов. Конечным итогом деградации аминокислот является аммиак, вода и углекислый газ, а также выделяется энергия в виде тепла или связанная в молекулах АТФ. В зависимости от промежуточных соединений, дающих энергию, аминокислоты подразделяются на следующие группы:

    • Глюкогенные: дающие метаболиты (промежуточные соединения), из которых может быть синтезирована глюкоза: глицин, аланин, серин, треонин, валин, аспарагиновая кислота, аспарагин, глутаминовая кислота, глутамин, пролин, аргинин, гистидин, цистин, метионин
    • Кетогенные: распадающиеся до ацетоацетилКоА и ацетилКоА, из которых могут быть синтезированы кетонные тела: лизин, лейцин
    • Промежуточные: при распаде этих аминокислот образуются метаболиты обоих типов: изолейцин, триптофан, фенилаланин, тирозин

    Подробнее о глюкогенных и кетогенных аминокислотах можно прочитать здесь: Гликогенные аминокислоты

    Правые и левые аминокислоты

    В зависимости от прикрепления аминогруппы по отношению к карбоксильному хвосту в углеродной цепочке, аминокислоты могут быть «правыми» или «левыми», иначе говоря, их относят к D- или L- изомерам. Такие формы называют оптически активными, они не отличаются по химическому составу, но в пространстве относятся друг другу, как левая и правая рука.

    В белковые молекулах присутствуют только L (левые) -изомеры аминокислот, правые (D) -изомеры могут обладать особыми свойствами и выступать как медиаторы, т.е. сигнальные молекулы, но чаще они образуют балласт. В обычных продуктах питания D-аминокислот практически нет. Они образуются при химическом синтезе и могут встречаться в искусственных протеинах, используемых в спортивном питании или в качестве биологически-активных добавок к пище. D-аминокислоты с трудом расщепляются ферментами, ибо они не физиологичны. В печени и почках содержится особый фермент — оксидаза D-аминокислот, предполагают, что она превращает нефизиологичные правые аминокислоты в физиологичные левые. Количество ее невелико, т.к. обычно в пище содержится очень мало D-аминокислот.

    При химическом синтезе образуется равное количество D- и L- изомеров, но в синтезе белка участвуют аминокислоты только L – ряда. Это следует учитывать лицам, принимающим препараты аминокислот: L-аминокислоты будут существенно дороже из-за необходимости их выделения из смеси, но эффект от их применения будет существенно выше

    Читайте далее о том, что делает в организме каждая аминокислота. Поверьте, им есть, чем заняться. С вами была Галина Баева. Делитесь информацией в соц.сетях.

    Аминокислоты. Строение, изомерия, номенклатура, свойства

    Аминокислоты

    -органические бифункциональные соединения, в состав которых входят карбоксильные группы –СООН и аминогруппы NH2

    Видео (кликните для воспроизведения).

    Строение:-

    этозамещенные карбоновые кислоты ,в молекулах которых один или несколько атомов водорода углеводородного радикала заменены аминогруппами

    Классификация

    : Аминокислоты классифицируют по двум структурным признакам.

    1. В зависимости от взаимного расположения амино- и карбоксильной групп аминокислоты подразделяют на a-, b-, g-, d-, e- и т. д.

    2. По характеру углеводородного радикала различают алифатические (жирные) и ароматические аминокислоты. Приведенные выше аминокислоты относятся к жирному ряду. Примером ароматической аминокислоты может служить пара-аминобензойная кислота:

    Номенклатура:

    По систематической номенклатуре названия аминокислот образуются из названий соответствующих кислот прибавлением приставки амино и указанием места расположения аминогруппы по отношению к карбоксильной группе.

    Часто используется также другой способ построения названий аминокислот, согласно которому к тривиальному названию карбоновой кислоты добавляется приставка амино- с указанием положения аминогруппы буквой греческого алфавита. Пример:

    1. Изомерия углеродного скелета

    2. Изомерия положения функциональных групп

    3. Оптическая изомерия

    Все a-аминокислоты, кроме глицина H2N-CH2-COOH, содержат асимметрический атом углерода (a-атом) и могут существовать в видеоптических изомеров (зеркальных антиподов).

    Оптическая изомерия природных a -аминокислот играет важную роль в процессах биосинтеза белка.

    Физические свойства

    Аминокислоты – твердые кристаллические вещества с высокой т.пл., при плавлении разлагаются. Хорошо растворимы в воде, водные растворы электропроводны. Эти свойства объясняются тем, что молекулы аминокислот существуют в виде внутренних солей, которые образуются за счет переноса протона от карбоксила к аминогруппе.

    Химические св-ва

    1.Аминокислоты реагируют как с кислотами, так и с основаниями:

    Н2N-СН2-СООН + HCl→ Сl[Н3N-СН2-СООН],

    Н2N-СН2-СООН + NaOH → H2N-CH2-COONa + Н2О.

    Белки.Классификация, строение, качественные реакции, биологическое значение.

    Белки

    -это высокомолекулярные органические вещества, построенные из аминокислот и других соединений; играют фундаментальную роль в структуре и жизнедеятельности живых организмов.

    Классификация: Простые(ПРОТЕИНЫ) Сложные(СЛОЖНЫЕ БЕЛКИ или ПРОТЕИДЫ)

    Строение:

    Молекула аминокислоты состоит из двух одинаковых для всех аминокислот частей, одна из которых является аминогруппой (—NH2) с основными свойствами, другая — карбоксильной группой (—COOH) с кислотными свойствами. Часть молекулы, называемая радикалом (R), у разных аминокислот имеет различное строение.

    Читайте так же:  Креатин для волос в домашних условиях

    Биологическое значение:

    Биологическое значение белков чрезвычайно велико. Упомя­нем только важнейшие функции белков в живых организмах.

    1. Абсолютно все химические реакции в организме протекают в присутствии катализаторов — ферментов. Даже такая простая реакция как гидратация углекислого газа катализируется ферментом карбоангидразой. Все известные ферменты представляют со­бой белковые молекулы. Белки — это очень мощные и, самое главное, селективные катализаторы. Они ускоряют реакции в миллионы раз, причем для каждой реакции существует свой единственный фермент.

    2. Некоторые белки выполняют транспортные функции и пе­реносят молекулы или ионы в места синтеза или накопления. На­пример, содержащийся в крови белок гемоглобин переносит кис­лород к тканям, а белок миоглобин запасает кислород в мышцах.

    3. Белки — это строительный материал клеток. Из них постро­ены опорные, мышечные, покровные ткани.

    4. Белки играют важную роль в иммунной системе организма.

    Существуют специфические белки (антитела), которые способ­ны распознавать и связывать чужеродные объекты — вирусы, бактерии, чужие клетки.

    5. Белки-рецепторы воспринимают и передают сигналы, по­ступающие от соседних клеток или из окружающей среды. На­пример, действие света на сетчатку глаза воспринимается фото­рецептором родопсином. Рецепторы, активизируемые низкомолекулярными веществами типа ацетилхолина, передают нервные импульсы в местах соединения нервных клеток.

    Из приведенного перечня функций белков ясно, что белки жизненно необходимы любому организму и являются, следова­тельно, важнейшей составной частью продуктов питания. В про­цессе пищеварения белки гидролизуются до аминокислот, кото­рые служат исходным сырьем для синтеза белков, необходимых данному организму. Существуют аминокислоты, которые орга­низм не в состоянии синтезировать сам и приобретает их только с пищей. Эти аминокислоты называются незаменимыми. Для чело­века незаменимы триптофан, лейцин, изолейцин, валин, треонин, лизин, метионин и фенилаланин.

    Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

    Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

    Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

    Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

    [3]

    Применение и строение аминокислот

    Известно около 200 природных аминокислот, но только 20 из них играют важнейшую роль в жизни человека. Эти аминокислоты называют протеиногеннымистроящими белки.

    Первые аминокислоты были открыты в начале XIX века.

    В пищевых продуктах наиболее распространены 22 аминокислоты.

    В составе белков найдено 20 различных α-аминокислот (одна из них – пролин, является не амино- , а иминокислотой), поэтому их называют белковыми аминокислотами.

    Все другие аминокислоты существуют в свободном состоянии или в составе коротких пептидов, или комплексов с другими органическими веществами.

    Многие из них найдены только в определенных организмах, а некоторые – только в одном каком-либо организме.

    Большинство микроорганизмов и растения синтезируют необходимые им аминокислоты, животные и человек не способны к образованию так называемых незаменимых аминокислот, получаемых с пищей.

    К заменимым относятся аминокислоты, присутствие которых в пище не обязательно для нормального развития организма. В случае их недостаточности они могут синтезироваться из других аминокислот или из небелковых компонентов. Аминокислоты валин, лейцин, изолейцин, лизин, метионин, треонин, триптофан и фенилаланин являются незаменимыми почти для всех видов животных.

    Аминокислоты являются наиболее важной составной частью организма. Аминокислоты – строительные блоки, из которых строятся белковые структуры, мышечные волокна. Организм использует их для собственного роста, восстановления, укрепления и выработки различных гормонов, антител и ферментов.

    Они содержатся в ядре, протоплазме и стенках клеток, где выполняют разнообразные функции жизнедеятельности.

    Аминокислоты участвуют в обмене белков и углеводов, в образовании важных для организмов соединений (например, пуриновых и пиримидиновых оснований, являющихся неотъемлемой частью нуклеиновых кислот), входят в состав гормонов, витаминов, алкалоидов, пигментов, токсинов, антибиотиков и т. д.

    Некоторые аминокислоты служат посредниками при передаче нервных импульсов.

    С нарушением обмена аминокислот связан ряд наследственных и приобретенных заболеваний, сопровождающихся серьезными проблемами в развитии организма.

    Главными продуктами разложения аминокислот являются аммиак, мочевина и мочевая кислота. Восполнение потерь аминокислот происходит в основном в результате расщепления белков.

    [1]

    Аминокислоты обеспечивают:

    — основные метаболические процессы: синтез и утилизация витаминов, липотропное (жиромобилизующее) действие, гликолиз и гликонеогенез;

    — процессы детоксикации организма, в том числе при токсикозе беременных; — формирование иммунной системы организма;

    — энергетические потребности клеток и, прежде всего, мозга, участвуют в образовании нейромедиаторов, обладают антидепрессантной активностью, улучшают память;

    — метаболизм углеводов, участвуют в образовании и накоплении гликогена в мышцах и печени, обеспечивают наращивание мышечной массы, cнижают утомляемость, улучшают работоспособность;

    Читайте так же:  Витамины для волос в домашних условиях

    — стимулируют работу гипофиза, увеличивают выработку гормона роста, гормонов щитовидной железы, надпочечников;

    — участвуют в образовании коллагена и эластина, способствуют восстановлению кожи и костной ткани, а также заживлению ран;

    — принимают участие в кроветворении, и, прежде всего, в выработке гемоглобина.

    Интересно знать

    Во время беременности повышается потребность женского организма в триптофане и лизине, у грудных детей – в триптофане и изолейцине.

    Особенно увеличивается потребность организма в незаменимых аминокислотах после больших потерь крови, ожогов, а также вовремя других процессов, сопровождаемых регенерацией тканей.

    Для птиц незаменимой аминокислотой является глицин.

    У жвачных животных биосинтез всех незаменимых аминокислот производится микроорганизмами кишечного тракта.

    Для человека высокую «биологическую ценность» имеют лишь немногие животные белки, такие, как белок куриного яйца или белок материнского молока. Они содержат незаменимые аминокислоты не только в достаточном количестве, но и в необходимом для человека соотношении.

    Низкая ценность многочисленных растительных белков связана с небольшим содержанием в них отдельных незаменимых аминокислот (главным образом лизина и метионина). В белке соевой муки мало метионина, в кукурузе – лизина и триптофана.

    Признаки недостаточности аминокислот в организме

    При недостаточном количестве аминокислотных соединений в организме формируется дисбаланс белкового обмена, в результате которого недостающие элементы «извлекаются» из соединительной ткани, мышц, крови и печени.

    В первую очередь высвобожденные белки используются для питания мозга и обеспечения работы сердечно-сосудистой системы.

    Расходуя собственные аминокислоты и не получая их с пищей, организм начинает слабеть и истощаться, это приводит к сонливости, выпадению волос, анемии, потере аппетита, ухудшению состояния кожи, задержке роста и умственному развитию.

    Аминокислоты. Строение молекулы, свойства, применение

    Аминокислоты – гетерофункциональные соединения, которые содержат две функциональные группы: аминогруппу – NH2 и карбоксильную группу – СООН, связанные с углеводородным радикалом.

    Аминогруппа – NH2 определяет основные свойства аминокислот, так как способна присоединять к себе катион водорода за счет наличия свободной электронной пары у атома азота.

    Группа– СООН (карбоксильная группа) определяет кислотные свойства этих соединений. Аминокислоты – это амфотерные органические соединения.

    Со щелочами они реагируют как кислоты.

    С сильными кислотами – как основания-амины.

    Аминогруппа в молекуле аминокислоты вступает во взаимодействие с входящей в ее состав карбоксильной группой, образуя внутреннюю соль.

    Аминокислоты представляют собой бесцветные кристаллические вещества, плавящиеся с разложением при температуре выше 200 0 С. Они растворимы в воде. В зависимости от состава радикала они могут быть сладкими, горькими или бесвкусными.

    Аминокислоты подразделяют на природные (обнаруженные в живых организмах) и синтетические.

    Важнейшим свойством аминокислот является способность вступать в молекулярную конденсацию с выделением воды и образованием амидной группы –NH – CO–. Высокомолекулярные соединения, содержащие большое число амидных фрагментов, называются полиамидами.

    Полиамиды альфа аминокислот называются пептидами. В зависимости от числа остатков аминокислот различают дипептиды, трипептиды, полипептиды. В таких соединениях группы –NH – CO– называются пептидными.

    Аминокислоты, необходимые для построения белков организма, человек и животные получают с пищей.

    Применяют: как лечебное средство, для производства синтетических волокон (капрон).

    Часть 2. Выполните практическое задание.

    Задача экспериментальная.

    Даны вещества: многоатомный спирт глицерин и одноатомный спирт этанол. Как определить эти вещества?

    Этанол горит голубоватым пламенем.

    Качественная реакция на многоатомные спирты – это взаимодействие их со свежеприготовленным гидроксидом меди (II) в присутствии щелочи. Если данную реакцию провести для глицерина, многоатомного спирта, то образуется раствор ярко-синего цвета – глицерат меди (II).

    Э Т А Л О Н

    к варианту 17

    Количество вариантов(пакетов) заданий для экзаменующихся:

    Вариант № 17 из 25 вариантов

    Время выполнения заданий:

    Вариант № 17 45 мин.

    Не нашли то, что искали? Воспользуйтесь поиском:

    Лучшие изречения: Для студента самое главное не сдать экзамен, а вовремя вспомнить про него. 10050 —

    | 7508 — или читать все.
    Видео (кликните для воспроизведения).

    185.189.13.12 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

    Отключите adBlock!
    и обновите страницу (F5)

    очень нужно

    Источники


    1. Кириллов, А.И. Квант-силовая физика. Гипотеза / А.И. Кириллов. — М.: Ивановский государственный университет, 2006. — 706 c.

    2. Айзенстайн Йога питания / Айзенстайн, Чарльз. — М.: София, 2007. — 240 c.

    3. Барановский, А.Ю. Болезни нарушенного питания. Лечение и профилактика. Рекомендации профессора-гастроэнтеролога / А.Ю. Барановский. — М.: СПб: Наука и Техника, 2007. — 304 c.
    Применение и строение аминокислот
    Оценка 5 проголосовавших: 1

    ОСТАВЬТЕ ОТВЕТ

    Please enter your comment!
    Please enter your name here