Процесс расщепления белков до аминокислот

Важная и проверенная информация на тему: "процесс расщепления белков до аминокислот" от профессионалов для спортсменов и новичков.

Расщепление аминокислот

В первом разделе данной главы уже охарактеризована необходимость и основная стратегия расщепления аминокислот. Она объясняется невозможностью запасания аминокислот впрок и невозможностью их выведения из клеток целиком. Избыточные аминокислоты используются организмами как метаболическое топливо: их углеродные скелеты при перестройках определенного рода могут вовлекаться в биосинтез жирных кислот, глюкозы, кетоновых тел, изопреноидов и др., а также окисляться в ЦТК, обеспечивая клетку энергией. Следует отметить, что многие микроорганизмы, в частности аэробные бактерии, способны использовать отдельные аминокислоты в качестве единственного источника энергии и углерода. У анаэробных микроорганизмов, при отсутствии в клетках цикла трикарбоновых кислот, выработался другой механизм: катаболизм аминокислот в парах, когда одна из них служит донором электронов, а вторая—акцептором. Важно, что в таком процессе происходит образование АТР.

Кроме углеродных скелетов, при деградации аминокислот образуется аминный азот, который в отличие от углерода не пригоден для получения энергии за счет окисления, и более того, является токсичным для клеток. Поэтому те аминогруппы, которые не могут повторно использоваться в биосинтезе, превращаются в мочевину (или другие вещества) и выводятся из организма.

Ниже будут рассмотрены основные типы реакций, в которые могут вступать аминокислоты: реакции по a-аминогруппе, карбоксильной группе и боковой цепи.

Расщепление аминокислот по аминогруппе. Эти процессы представлены в основном реакциями трансаминирования и дезаминирования по a-аминогруппе. Реакции трансаминирования уже были рассмотрены в разделе, касающемся биосинтеза аминокислот. Они катализируются трансаминазами (аминотрансферазами), отличительной особенностью которых является использование пиридоксальфосфата (производное витамина В6) в качестве простетической группы. Наибольшее значение в процессах деградации аминокислот имеют глутамат-трансаминаза и аланин-трансаминаза. Эти ферменты выполняют роль «воронок», собирающих аминогруппы от разных аминокислот и включающих их в состав глутамата и аланина. У животных эти две аминокислоты служат переносчиками накапливающегося аминного азота из тканей в печень. В печени аминогруппа аланина переносится аланинтрансаминазой на a-кетоглутарат с образованием глутамата:

Таким образом, большинство аминогрупп различных аминокислот оказывается в составе глутамата, который легко подвергается дезаминированию.

Реакции дезаминирования аминокислот приводят к освобождению NH2-группы в виде аммиака и осуществляются тремя разными путями. Различают окислительное, гидролитическое и прямое дезаминирование (рис. 16.12). Наиболее распространенным типом является окислительное дезаминирование, которое осуществляется по a-аминогруппе и катализируется в основном глутаматдегидрогеназой — типичным для печени ферментом. Необычным свойством этого фермента является способность использовать как NAD, так и NADP в качестве коферментов. Активность глутаматдегидрогеназы регулируется аллостерическими активаторами (ADP, GDP) и ингибиторами (ATP, GTP).

Окислительное дезаминирование осуществляется в две стадии с образованием иминокислоты в качестве промежуточного продукта, который спонтанно гидролизуется, превращаясь в кетокислоту и аммиак (рис. 16.12). Обе реакции обратимы, и их константы равновесия близки к единице. Ранее (рис. 16.3) было показано, как в ходе обратной реакции аммиак включается в состав глутамата. Можно считать, что реакция образования и дезаминирования глутамата является центральной реакцией в процессе метаболизма аммиака.

У многих организмов окислительное дезаминирование осуществляется с помощью дегидрогеназ, использующих флавиновые кофакторы (FMN, FAD). Эти ферменты называют оксидазами аминокислот. Они характеризуются широкой субстратной специфичностью: одни специфичны к L-аминокислотам, другие — к их D-аналогам. Считается, что эти ферменты вносят небольшой вклад в обмен аминогрупп.

Гидролитическому дезаминированию подвержены немногие аминокислоты, из протеиногенных — аспарагин и глутамин. При их дезаминировании образуются соответственно аспартат и глутамат. Этот процесс правильнее называть дезамидированием, поскольку он осуществляется за счет амидной группы (рис. 16.12). В редких случаях таким путем отщепляется и aаминогруппа аминокислоты, тогда образуются аммиак и оксикислота.

В результате прямого (внутримолекулярного) дезаминирования возникают ненасыщенные соединения. Прямому дезаминированию обычно подвергается гистидин, а также серин. Однако первичная ферментативная атака серина приводит к отщеплению молекулы воды (фермент—серингидратаза), и в этом превращении участвует боковая гидроксильная группа серина. Спонтанному дезаминированию в данном случае подвергается нестабильное промежуточное соединение — аминоакрилат. Продуктом суммарной реакции является пируват, и этот тип дезаминирования вызывается перестройкой в боковой цепи аминокислоты.

Реакции аминокислот по карбоксильной группе. Превращения по карбоксильной группе аминокислот могут использоваться организмами для деградации этих молекул, а также для превращения в другие, необходимые клетке соединения, в первую очередь аминоациладенилаты и биогенные амины. Образование аминоациладенилатов на подготовительной стадии синтеза белка уже было описано в главе 3. Биогенные амины возникают в реакциях, катализируемых декарбоксилазами аминокислот. Эти ферменты широко распространены у животных, растений и особенно у микроорганизмов, причем известно, что у патогенных микроорганизмов декарбоксилазы могут служить факторами агрессии, с помощью которых возбудитель проникает в соответствующие ткани. Декарбоксилазы L-аминокислот, так же как трансаминазы, используют в качестве простетической группы пиридоксальфосфат.

Моноамины (биогенные амины) выполняют в организмах разнообразные функции. Например, этаноламин, образующийся при декарбоксилировании серина, является составной частью полярных липидов. При декарбоксилировании цистеина и аспартата образуются соответственно цистеамин и b-аланин, которые входят в состав такого важного для клеток кофермента, как коэнзим А. Декарбоксилирование гистидина приводит к образованию гистамина — медиатора, участвующего в регуляции скорости метаболических процессов, деятельности желез внутренней секреции, регуляции кровяного давления у животных. Многие другие биогенные амины выполняют функции сигнальных веществ, в частности широко распространенных у животных и человека нейромедиаторов.

Реакции аминокислот по боковой цепи. Насколько разнообразна структура радикалов аминокислот, настолько разнообразны и химические превращения, которым они могут подвергаться. Среди этих многообразных реакций можно выделить те, которые позволяют клетке получать из одних аминокислот другие. Например, тирозин образуется при окислении ароматического кольца фенилаланина; гидролиз аргинина приводит к формированию орнитина (см. цикл мочевины); расщепление треонина сопровождается образованием глицина и т. п.

Читайте так же:  Л карнитин в бутылках

Кроме этих реакций, важное значение имеют превращения боковых групп, связанные с возникновением физиологически активных веществ. Так, из тирозина образуется гормон адреналин, из триптофана образуются никотиновая кислота (витамин РР, входящий в состав никотинамидных коферментов) и индолилуксусная кислота (ростовое вещество), из цистеина—меркаптуровые кислоты (участвуют в обезвреживании ароматических соединений). Уже отмечалась возможность превращения серина в пируват при дегидратации его боковой цепи и дезаминировании.

Таким образом, разнообразные химические превращения аминокислот могут приводить к образованию биологически активных веществ с широким спектром действия и, кроме того, к отщеплению аминогрупп в виде аммиака с формированием углеродных скелетов. В следующем разделе будет рассмотрена судьба аммиака и углеродных атомов расщепленных аминокислот.

Не нашли то, что искали? Воспользуйтесь поиском:

Переваривание белков в ЖКТ

Переваривание белков происходит в 3 этапа:в желудке;в тонком кишечнике;в клетках слизистой оболочки тонкого кишечника.

Расщепление белков происходит при участии нескольких групп ферментов:

Эндопептидазы – гидролизуют пептидные связи внутри полипептидной цепи.

Экзопептидазы – катализирует разрыв концевой пептидной связи с образованием одной какой-либо аминокислоты.

К эндопептидазам относятся следующие ферменты: пепсин, гастрин, трипсин, химотрипсин, эластаза.

К экзопептидазам относятся: карбоксипептидазы, аминопептидазы, дипептидазы.

1.Переваривание белков в желудке. Пепсин — важный фермент желудка, расщепляющий белки. Он наиболее активен при рН 2,0-3,0 и не активен при рН выше 5,0. Вследствие этого для проявления расщепляющего действия белка ферментом желудочный сок должен быть кислым. Железы желудка секретируют большое количество соляной кислоты. Когда кислота смешивается с желудочным содержимым, рН составляет в среднем 2,0-3,0, что чрезвычайно благоприятно для активности пепсина.

Одной из важных переваривающих особенностей пепсина является его способность переваривать белок коллаген — альбуминоподобный тип белка, который лишь незначительно расщепляется под действием других пищеварительных ферментов. Коллаген — главная составляющая часть межклеточной соединительной ткани мяса; поэтому для расщепления белков мяса ферментами пищеварительного тракта прежде всего необходимо переварить коллагеновые нити. Пепсин только начинает процесс переваривания белка, обычно обеспечивая только 10-20% полного переваривания белков и превращение их в альбумозы (крупные полипептиды), пептоны и мелкие полипептиды. Это расщепление белков происходит в результате гидролиза пептидной связи между аминокислотами.

2.Переваривание белков секретами поджелудочной железы. Переваривание белка преимущественно происходит в верхних отделах тонкого кишечника, в двенадцатиперстной кишке и тощей кишке под воздействием протеолитических ферментов, секретируемых поджелудочной железой. Частично расщепленные продукты белковой пищи, поступая в тонкий кишечник из желудка, подвергаются воздействию главных протеолитических панкреатических ферментов: трипсина, хемотрипсина, карбоксиполипептидазы и проэластазы.

Трипсин и хемотрипсин расщепляют молекулы белка на небольшие полипептиды; карбоксиполипептидаза отщепляет отдельные аминокислоты от карбоксильного конца полипептидов. Проэластаза, в свою очередь, превращается в эластазу, которая затем переваривает эластические волокна, частично содержащиеся в мясных продуктах. Под действием панкреатического сока небольшой процент белков переваривается до аминокислот. Большинство белков расщепляется до дипептидов и трипептидов.

3.Переваривание белков пептидазами энтероцитов. Заключительный этап переваривания белков обеспечивается энтероцитами тонкого кишечника, которые покрыты ворсинками, преимущественно в двенадцатиперстной кишке и тощей кишке. Эти клетки имеют щеточную каемку, которая состоит из сотен микроворсинок, выступающих над поверхностью клетки. В мембране каждой из этих микроворсинок содержатся многочисленные пептидазы, которые выступают над мембраной, где они взаимодействуют с кишечной жидкостью.

Наиболее важны два типа пептидаз: аминополипептидаза и некоторые дипептидазы. Они доводят расщепление оставшихся крупных полипептидов до дипептидов, трипептидов и меньшего числа аминокислот. И аминокислоты, и дипептиды с трипептидами свободно транспортируются сквозь мембрану микроворсинок во внутреннюю часть энтероцита, где перевариваются до конечной стадии в форме отдельных аминокислот, а отсюда в кровь.

28. Катаболизм аминокислот: образование и обезвреживание аммиака. Токсичность аммиака. Аммиак непрерывно образуется во всех органах и тканях организма. Наиболее активными его продуцентами в кровь являются органы с высоким обменом аминокислот и биогенных аминов – нервная ткань, печень, кишечник, мышцы. Основными источниками аммиака являются следующие реакции:

неокислительное дезаминирование некоторых аминокислот (серина, треонина, гистидина) – в печени

Реакция начинается с отщепления молекулы воды и образования метиленовой группы, затем происходит неферментативная перестройка молекулы, в результате которой образуется иминогруппа, слабо связанная с а-углеродным атомом. Далее в результате неферментативного гидролиза отщепляется молекула аммиака и образуется пируват.

окислительное дезаминирование глутаминовой кислоты во всех тканях (кроме мышечной), особенно в печени и почках,

Так как аммиак является чрезвычайно токсичным соединением, то в тканях существуют несколько реакций связывания (обезвреживания) аммиака – синтез глутаминовой кислоты и глутамина, синтез аспарагина, синтез карбамоилфосфата.

[2]

1.Синтез глутаминовой кислоты (восстановительное аминирование) – взаимодействие α-кетоглутарата с аммиаком. Реакция по сути обратнареакции окислительного дезаминирования, однако в качестве кофермента используется НАДФН. Происходит практически во всех тканях, кроме мышечной, но имеет небольшое значение, т.к. для глутаматдегидрогеназы предпочтительным субстратом является глутаминовая кислота и равновесие реакции сдвинуто в сторону α-кетоглутарата,

реакция синтеза глутаминовой кислоты.

2.Синтез глутаминавзаимодействие глутамата с аммиаком. Является главным способом уборки аммиака, наиболее активно происходит в нервной и мышечной тканях, в почках, сетчатке глаза, печени. Реакция протекает в митохондриях.

Аммиак является токсичным соединением, находящимся в крови в относительно небольших концентрациях (11,0-32,0 мкмоль/л). Симптомы аммиачного отравления проявляются при превышении этих пределов всего в 2-3 раза. Предельно допустимый уровень аммиака в крови 60 мкмоль/л. При повышении концентрации аммиака (гипераммониемия) до предельных величин может наступить кома и смерть. Токсичность аммиака обусловлена следующими обстоятельствами:

Читайте так же:  Какой протеин лучше для сжигания жира

1. Связывание аммиака при синтезе глутамата вызывает отток α-кетоглутарата из цикла трикарбоновых кислот, при этом понижается образование энергии АТФ и ухудшается деятельность клеток.

2. Ионы аммония NH4 + вызывают защелачиваниеплазмы крови. При этом повышается сродство гемоглобина к кислороду (эффект Бора), гемоглобин не отдает кислород в капиллярах, в результате наступает гипоксия клеток.

3. Накопление свободного иона NH4 + в цитозоле влияет на мембранный потенциал и работу внутриклеточных ферментов – он конкурирует с ионными насосами для Na + и K + .

4. Продукт связывания аммиака с глутаминовой кислотой – глутамин –является осмотически активным веществом. Это приводит к задержке воды в клетках и их набуханию, что вызывает отек тканей. В случае нервной ткани это может вызвать отек мозга, кому и смерть.

[3]

5. Использование α-кетоглутарата и глутамата для нейтрализации аммиака вызывает снижение синтеза γ- аминомасляной кислоты(ГАМК), тормозного медиатора нервной системы.

В клетки печени и почек аммиак попадает в составе глутаминаи аспарагина, глутаминовой кислоты, аланинаи в свободномвиде и идет на синтез мочевины.

Не нашли то, что искали? Воспользуйтесь поиском:

Инфекции человека

  • Бактериальные инфекции (41)
  • Биохимия (5)
  • Вирусные гепатиты (12)
  • Вирусные инфекции (43)
  • ВИЧ-СПИД (28)
  • Диагностика (30)
  • Зооантропонозные инфекции (19)
  • Иммунитет (16)
  • Инфекционные заболевания кожи (33)
  • Лечение (38)
  • Общие знания об инфекциях (36)
  • Паразитарные заболевания (8)
  • Правильное питание (41)
  • Профилактика (23)
  • Разное (3)
  • Сепсис (7)
  • Стандарты медицинской помощи (26)

Расщепление белков в пищеварительном тракте

«Расщепление белков в желудочно-кишечном тракте» — это первая из четырёх статья из цикла «Обмен белков в организме человека»

В течение всей жизни в организме происходят одновременно разрушения и биосинтез клеток и тканей. Эти противоположные, но тесно связанные между собой процессы — ассимиляция и диссимиляция — составляют основу жизни. Итак, в организм должны постоянно поступать вещества, необходимые для построения новых клеток. Главная роль в этом принадлежит белкам, так как ни углеводы, ни жиры не могут их заменить в образовании основных структурных элементов органов и тканей. Среди различных преобразований, присущих живой материи, основное место занимает белковый обмен .

В связи с тем, что белки являются азотсодержащими веществами, одним из методов, характеризующим состояние белкового обмена в организме, может быть определение баланса азота. У здорового человека при нормальном питании отмечается состояние белкового равновесия, когда поступление азота компенсирует его затраты. При отрицательном азотистом балансе количество выведенного азота превышает его количество, поступающее в составе белков. Такое состояние может наблюдаться при нарушении деятельности пищеварительной системы, белковом голодании и т п.

Положительный азотистый баланс бывает в тех случаях, когда количество выведенного азота меньше того, что поступает в составе белков. Это характерно для растущего организма, при беременности, при повышении активности процессов биосинтеза белка (например, при физических нагрузках).

Для синтеза белков в организме необходимы различные аминокислоты. Некоторые из них, образующиеся в самом организме, называются заменимыми . Аминокислоты, не синтезирующиеся в организме человека, называются незаменимыми . Они должны регулярно поступать с пищей. Белки, в состав которых входят заменимые и незаменимые аминокислоты в соотношениях, приближающихся к таковым в организме, называют полноценными .

Среди пищевых продуктов практически нет белков, которые полностью соответствуют этим требованиям. Наиболее близки к полноценному белки материнского молока, куриного яйца. Итак, для полного обеспечения здорового организма полноценными белками в суточный рацион должны быть включены различные пищевые продукты как животного, так и растительного происхождения.

[1]

Для нормальной жизнедеятельности человека необходимо поступление такого количества полноценного белка, которое будет покрывать все потребности организма. Оно зависит от пола, возраста, интенсивности труда и т.д. С учетом этих факторов разработаны нормы белкового питания. Недостаточное потребление белков приводит к нарушению процессов жизнедеятельности, ухудшению здоровья, а длительное белковое голодание неизбежно заканчивается гибелью.

Белки необходимы для организма, прежде всего, как пластический материал, из которого строятся клетки всех тканей, органов и систем. Однако пищевые белки не могут быть использованы без предварительного расщепления в организме, так как они имеют сложную структуру и видовую специфичность.

Расщепление (гидролиз) белков на аминокислоты, которые лишены видовой и тканевой специфичности, происходит в желудочно-кишечном тракте.

Расщепление белков в пищеварительном тракте (ЖКТ).

Переваривание питательных веществ (белков, углеводов, липидов) — это процесс гидролиза соответствующих соединений, входящих в состав продуктов питания, который происходит в пищеварительном тракте и приводит к образованию простых биомолекул. Последние за счет действия специфических механизмов мембранного транспорта всасываются в кровь или лимфу.

Переваривание белков начинается в желудке под действием желудочного сока. В состав желудочного сока входит соляная кислота, которая вырабатывается обкладочными клетками слизистой оболочки желудка. Она денатурирует белок, облегчает его последующее расщепление. В состав желудочного сока входят кислые фосфаты и некоторые органические кислоты. Соляная кислота способствует превращению профермента пепсиногена, который секретируется главными клетками слизистой оболочки желудка, в активный протеолитический фермент пепсин .

Оптимальная концентрация водородных ионов для пепсина составляет 1,5 — 2,5, что соответствует кислотности желудочного сока в процессе пищеварения. При увеличении рН среды до 6,0 (в кишечнике) пепсин теряет свою активность. Пепсин относится к однокомпонентным ферментам, то есть к ферментам-протеинам. За сутки в желудке вырабатывается около 2 г пепсина.

Видео (кликните для воспроизведения).

Каталитическая активность пепсина желудка очень высока. Он катализирует расщепление пептидных связей в молекуле белка, образованных аминогруппами ароматических и дикарбоновых аминокислот. В результате действия пепсина образуются полипептиды различной величины и отдельные свободные аминокислоты.

Кроме пепсина, в желудочном соке содержится протеолитический фермент гастриксин , оптимальное значение рН которого находятся в пределах 3,5 — 4,5. Гастриксин вступает в действие на последних этапах переваривания пищи в желудке.

Читайте так же:  Витамин д для чего он нужен

В желудке грудных детей обнаружен сычужный фермент — химозин. Оптимум действия этого фермента рН 3,5 — 4,0. Под влиянием химозина в присутствии солей кальция казеиноген молока в ходе гидролиза превращается в казеин и молоко свёртывается.

Легче других в желудке перевариваются альбумины и глобулины животного и растительного происхождения; плохо расщепляются белки соединительной ткани (коллаген и эластин) и совсем не расщепляются кератин и протамины.

Частично переваренная полужидкая масса питательных соединений, которая образуется в желудке (химус) периодически поступает через пилорический клапан в двенадцатиперстную кишку. В эту часть пищеварительного канала поступают из поджелудочной железы протеолитические ферменты и пептидазы, которые действуют на пептиды, поступающие из желудка. Каталитическое действие этих ферментов происходит в слабощелочной среде (рН 7,5 — 8,0), которая образуется имеющимися в кишечном соке бикарбонатами.

Большинство ферментов протеолитического действия, функционирующих в тонкой кишке, синтезируются в экзокринных клетках поджелудочной железы в виде проферментов, которые активируются после их поступления в двенадцатиперстную кишку (трипсиноген, химотрипсиноген, проэластаза, прокарбоксипептидазы А и Б). Гидролиз белков и пептидов, поступающих из желудка, происходит как в полости тонкой кишки, так и на поверхности энтероцитов — пристеночное или мембранное пищеварение .

Сок поджелудочной железы поступает в двенадцатиперстную кишку и смешивается с кишечным соком. Эта смесь содержит протеолитические ферменты, расщепляющие белки, альбумозы и пептоны до небольших пептидов, а затем до аминокислот. К протеолитическим ферментам относятся трипсин, химотрипсин, карбоксипептидазы, аминопептидазы и большая группа три- и дипептидаз.

Трипсин находится в соке поджелудочной железы в неактивной форме, в виде профермента трипсиногена . Его активация происходит под действием фермента кишечного сока — энтерокиназы. Для процесса активации необходимы ионы Са 2+. Процесс преобразования трипсиногена в трипсин осуществляется путем отщепления небольшого пептида с N-конца пептидной цепи фермента.

Трипсин гидролизует как нерасщепленные в желудке белки, так и высокомолекулярные пептиды, действуя главным образом на пептидные связи между аргинином и лизином. Оптимум рН для трипсина составляет 7,0 — 8,0. Трипсин делает сравнительно неглубокий гидролиз белка, образует полипептиды и небольшое количество свободных аминокислот.

Активность трипсина может снижаться под влиянием ряда ингибиторов. К ним относятся основные пептиды с молекулярной массой 9000 ед. Они обнаружены в поджелудочной железе, крови, легких, в бобах сои. Снижает активность трипсина и мукопротеин, содержащийся в сырых яйцах — авидин .

Химотрипсин — второй протеолитический фермент поджелудочной железы. Он также секретируется в неактивной форме, в виде химотрипсиногена. Под действием трипсина химотрипсиноген переходит в активный фермент — химотрипсин. Действие химотрипсина подобно действию трипсина. Оптимум рН для обоих ферментов примерно одинаковый, химотрипсин действует на белки и полипептиды, содержащие ароматические аминокислоты (тирозин, фенилаланин, триптофан), а также на пептидные связи, которые не подвергаются воздействию трипсина (метионин, лейцин).

Пептиды, которые образуютсяся в результате воздействия на белки пепсина, трипсина и химотрипсина в нижних отделах тонкой кишки, подвергаются дальнейшему расщеплению. Этот процесс осуществляют карбоксипептидазы, аминопептидазы . Эти ферменты относятся к металлоферментам. Они активируются двухвалентными ионами: Mg 2+ , Mn 2+ , Со 2+ , которые играют важную роль в формировании фермент-субстратного комплекса.

Механизм действия амино- и карбоксипептидаз заключается в отщеплении от пептидов конечных аминокислот, имеющих свободную аминную или карбоксильную группу. Небольшие пептиды, которые остались нерасщепленными и состоят из трех-четырех аминокислотных остатков, подвергаются гидролизу специфическими ди- и триаминопептидазами . В соке поджелудочной железы присутствует фермент эластаза . Эластаза — эндопептидаза, которая также имеет широкую субстратную специфичность, расщепляя пептидные связи, образующиеся остатками аминокислот малого размера — глицина, аланина, серина.

Таким образом, в результате последовательного действия на белки протеолитических ферментов в кишечнике образуются свободные аминокислоты, которые всасываются в кровь через стенку кишечника.

Следующая вторая статья из цикла «Обмен белков в организме человека» — « Обезвреживание продуктов гниения белков в кишечнике ». Третья статья « Обмен аминокислот в тканях »

Инфекции человека

  • Бактериальные инфекции (41)
  • Биохимия (5)
  • Вирусные гепатиты (12)
  • Вирусные инфекции (43)
  • ВИЧ-СПИД (28)
  • Диагностика (30)
  • Зооантропонозные инфекции (19)
  • Иммунитет (16)
  • Инфекционные заболевания кожи (33)
  • Лечение (38)
  • Общие знания об инфекциях (36)
  • Паразитарные заболевания (8)
  • Правильное питание (41)
  • Профилактика (23)
  • Разное (3)
  • Сепсис (7)
  • Стандарты медицинской помощи (26)

Обмен аминокислот в тканях

Обмен белков в тканях.

Основная часть аминокислот, которые образуются в кишечнике из белков, поступает в кровь (95%) и небольшая часть — в лимфу. По воротной вене аминокислоты попадают в печень, где расходуются на биосинтез различных специфических белков (альбуминов, глобулинов, фибриногена). Другие аминокислоты током крови разносятся ко всем органам и тканям, транспортируются внутрь клеток, где они используются для биосинтеза белков.

Неиспользованные аминокислоты окисляются до конечных продуктов обмена. Процесс расщепления тканевых белков катализируется тканевыми ферментами – протеиназами — катепсинами (часто их называют тканевыми протеазами).

Соотношение между аминокислотами в белках, которые распадаются и синтезируются, разное, поэтому часть свободных аминокислот должна быть преобразована в другие аминокислоты или окислена до простых соединений и выведена из организма.

Итак, в организме существует внутриклеточный запас аминокислот, которые в значительной мере пополняется за счет процессов взаимопревращения аминокислот, гидролиза белков, синтеза аминокислот и поступления их из внеклеточной жидкости. В то же время благодаря синтезу белков и другим реакцям (образование мочевины, пуринов и т.п.) постоянно происходит удаление свободных аминокислот из внеклеточной жидкости.

Пути обмена аминокислот в тканях.

В основе различных путей обмена аминокислот лежат три типа реакций: по аминной и карбоксильной группам и по боковой цепи. Реакции по аминной группе включают процессы дезаминирования, переаминирования, аминирования , по карбоксильной группе — декарбоксилирование. Безазотистая часть углеродного скелета аминокислот подвергается различным превращениям с образованием соединений, которые затем могут включаться в цикл Кребса для дальнейшего окисления.

Читайте так же:  Л карнитин при кардиотренировках

Пути внутриклеточного превращения аминокислот сложны и перекрещиваются со многими другими реакциями обмена, в результате чего промежуточные продукты обмена аминокислот могут служить необходимыми предшественниками для синтеза различных компонентов клеток и быть биологически активными веществами.

Катаболизм аминокислот у млекопитающих (и у человека) происходит, в основном, в печени и немного слабее в почках.

Дезаминирование аминокислот.

Суть дезаминирования заключается в расщеплении аминокислот под действием ферментов на аммиак и безазотистый остаток (жирные кислоты, оксикислоты, кетокислоты). Дезаминирование может идти в виде восстановительного, гидролитического, окислительного и внутримолекулярного процессов. Последние два типа превалируют у человека и животных.

Окислительное дезаминирование подразделяется на две стадии. Первая стадия является ферментативной, она заканчивается образованием неустойчивого промежуточного продукта – иминокислоты (карбоновые кислоты, содержащие иминогруппу (=NH), которая во второй стадии спонтанно в присутствии воды распадается на аммиак и aльфа-кетокислоту. Ферменты, которые катализируют этот процесс, содержат в качестве простетической группы (органические соединение небелковой природы) НАД (никотинамидадениндинуклеотид) или ФАД (флавинадениндинуклеотид).

В организме человека наиболее активно протекает дезаминирование глутаминовой кислоты под действием фермента глутаматдегидрогеназы , которая находится в митохондриях клеток всех тканей. В результате этого процесса образует альфа-кетоглутаровая кислота, которая участвует во многих процессах обмена веществ.

Трансаминирование (переаминирование) аминокислот.

Обязательным условием трансаминирования является участие дикарбоновых аминокислот (глутаминовой и аспарагиновой), которые в виде соответствующих им кетокислот — альфа-кетоглутаровой и щавелевоуксусной могут взаимодействовать со всеми аминокислотами, за исключением лизина, треонина и аргинина.

При переаминировании происходит непосредственный перенос аминогруппы с аминокислоты на кетокислоту, а кетогруппы — с кетокислоты на аминокислоту без освобождения при этом аммиака. Этот процесс протекает в несколько этапов. Реакцию катализируют ферменты, относящиеся к классу трансфераз, их простетической группой является фосфорпиридоксаль-фосфорный эфир витамина В6. Процесс переаминирования широко распространен в живой природе. Его особенность — легкая обратимость.

Реакции переаминирования играют большую роль в обмене веществ. От них зависят такие важнейшие процессы, как биосинтез многих заменимых аминокислот из соответствующих им кетокислот, распад аминокислот, объединение путей углеводного и аминокислотного обмена, когда из продуктов распада глюкозы, например, пировиноградной кислоты, может образоваться аминокислота аланин и наоборот.

Восстановительное аминирование.

Этот процесс противоположен дезаминированию. Он обеспечивает связывание аммиака кетокислотами с образованием соответствующих аминокислот. Восстановительное аминирование катализируется хорошо функционирующей ферментной системой, обеспечивающей аминирование aльфа-кетоглутаровой или щавелевоуксусной кислоты с образованием глутаминовой или аспарагиновой кислоты.

При обезвреживании аммиака неорганическими и органическими кислотами происходит образование аммонийных солей. Этот процесс осуществляется в почках. Образовавшиеся аммонийные соли выводятся из организма с мочой и потом.

Декарбоксилирование аминокислот.

Процесс декарбоксилирования катализируется декарбоксилазами, специфическими для каждой аминокислоты, простетической группой которых служит пиридоксальфосфат. Эти ферменты относятся к классу лиаз. Процесс декарбоксилирования, который заключается в отщеплении от аминокислот СО2 с образованием аминов, можно показать на следующей схеме:

Механизм реакции декарбоксилирования аминокислот согласно общей теории пиридоксалевого катализа сводится к образованию пиридоксальфосфат-субстратного комплекса в активном центре фермента.

Таким путем из триптофана образуется триптамин, из гидрокситриптофана — серотонин. Из аминокислоты гистидина образуется гистамин . Из глутаминовой кислоты при декарбоксилировании образуется гамма-аминомасляная кислота (ГАМК) .

Амины, образованные из аминокислот, называют биогенными аминами, так как они оказывают на организм мощный биологический эффект. Биогенные амины проявляют физиологическое действие в очень малых концентрациях. Так, введение в организм гистамина приводит к расширению капилляров и повышению их проницаемости, сужению крупных сосудов, сокращению гладких мышц различных органов и тканей, повышению секреции соляной кислоты в желудке. Кроме того, гистамин участвует в передаче нервного возбуждения.

Серотонин способствует повышению кровяного давления и сужению бронхов; его малые дозы подавляют активность центральной нервной системы, в больших дозах это вещество оказывает стимулирующее действие. В различных тканях организма большие количества гистамина и серотонина находятся в связанной, неактивной форме. Биологическое действие они проявляют только в свободной форме.

Гамма-аминомасляная кислота (ГАМК) накапливается в мозговой ткани и представляет собой нейрогуморальный ингибитор-медиатор торможения центральной нервной системы.

Большие концентрации этих соединений могут представлять угрозу для нормального функционирования организма. Однако в животных тканях имеется аминоксидаза , расщепляющая амины до соответствующих альдегидов, которые потом превращаются в жирные кислоты и распадаются до конечных продуктов.

«Обмен аминокислот в тканях» — это третья статья из цикла «Обмен белков в организме человека». Первая статья – « Расщепление белков в пищеварительном тракте ». Вторая статья « Обезвреживание продуктов гниения белков в кишечнике ».

Параграф 61. Переваривание белков

Автор текста – Анисимова Елена Сергеевна.
Авторские права защищены. Продавать текст нельзя.
Курсив не зубрить.

Замечания можно присылать по почте: [email protected]
https://vk.com/bch_5

Параграф № 61.
«Переваривание белков»

Переваривание белков – это расщепление белков пищи до аминокислот и последующее всасывание АК. (Значение переваривания белков).
Оно необходимо 1) для снабжения организма АК для синтеза белков и нейромедиаторов организма и 2) для предотвращения поступления белков пищи в толстый кишечник.
Переваривание белков нарушается, если человек ест слишком много белка или если есть патология органов пищеварения. Сначала будет сказано о всасывании, а потом о расщеплении.

Субстратная с п е ц и ф и ч н о с т ь пищеварительных пептидаз и их продукты.

А к т и в а ц и я пищеварительных п е п т и д а з .

(таблица)

Читайте так же:  Глютамин олимп спорт нутришн

К л а с с и ф и к а ц и я пептидаз.
1) эндо- и экзо-, 2) (по органу, клетками которого синтезируются, в том числе в неактивной форме) желудочные, панкреатические и кишечные, 3) работающие в желудке и в кишечнике, 4) вырабатываемые в неактивной форме и в активной. К пептидазам желудочного сока относится пепсин, к пептидазам панкреатического сока – трипсин, химотрипсин и карбоксипептидаза (но составе этого сока они должны быть в неактивной форме, а активироваться должны только в кишечнике, став часть кишечного сока), к пептидазам кишечного сока относятся аминопептидаза и дипептидаза (но находятся они при этом на поверхности энтероцитов, которыми и вырабатываются). Панкреатические пептидазы не относятся к пептидазам кишечного сока, хоть и активируются и работают в кишечнике.

З н а ч е н и е п е п т и д а з .
Если их мало или они малоактивны, то происходит неполное расщепление белков, о последствиях чего говорилось выше (аллергии, дисбактериоз и т.д.). Причины дефицита пептидаз (или их сниженной активности): 1) снижение синтеза из-за: а) патологии клеток, которые их вырабатывают (желудка, поджелудочной железы, тонкого кишечника), б) мутаций кодирующих генов, в) недостатка стимуляции выработки (или секреции), г) дефицита пищевых белков, 2) недоступность пептидных связей белков для действия пептидаз (при плохом пережевывании пищи, при дефицит соляной кислоты), 3) дефицит активаторов (соляной кислоты, энтеро/пептидазы).

Таблица «Пищеварительные п е п т и д а з ы».
(Таблица)

Таблица «Э т а п ы п е р е в а р и в а н и я б е л к о в в ЖКТ»

С о л я н а я к и с л о т а (HCl) в желудке.

HCl денатурирует наряду с белками пищи белки микробов, попавших с пищей – это приводит к гибели микробов, то есть HCl оказывает бактерицидное действие. Благодаря этому уменьшается риск заражения ЖКТ микроорганизмами пищи (что особенно актуально, если пища приготовлена в антисанитарных условиях и съедается немытыми руками; риск уменьшается, но остается, так что мыть руки все-таки желательно). При пониженной кислотности риск заражения увеличивается.

Патологическая роль HCl.
Избыток HCl способствует развитию язвы желудка (пептической), поэтому повышенная кислотность – признак наличия язвы или риска ее развития. Но нормальная кислотность не гарантирует отсутствия язвы – при нормальной кислотности язвы тоже бывают (см. о медиагастральной язве). Развитие язвы – результат денатурации белков клеток желудка и гибели клеток, когда клетки не защищены слизью. Язва доставляет (не всегда) очень болезненные ощущения и представляет угрозу для жизни (особенно при прободении) ; лечить обязательно. При лечении язвы принимают меры для снижения [HCl] (какие именно – далее).
Ф У Н К Ц И И (роли) соляной кислоты (прежде всего протона: Н+)

(Таблица)

С е к р е ц и я HCl.

Соляная кислота вырабатывается обкладочными клетками желудка, поэтому при повреждении обкладочных клеток (при атрофии СОЖ и др.) [HCl] снижается – см. последствия в таблице выше. Н+ и Cl – транспортируются в полость желудка через мембраны обкладочных клеток разными белками-транспортерами.

Р е г у л я ц и я выработки HCl и ; [HCl]. Гормоны, увеличивающие секрецию HCl, увеличивают [HCl] и тем самым способствуют развитию язвы. Гормоны, которые снижают секрецию HCl, снижают [HCl] в желудке и тем самым препятствую развитию язвы. Секрецию снижают простагландины ПГ Е2 и ПГ I2; эти же гормоны увеличивают выработку слизи (бокаловидными клетками), что защищает стенку желудка от HCl и от пепсина. Аспирин снижает синтез и [ПГ Е2 и ПГ I2], поэтому частый прием аспирина может способствовать развитию язвы. Увеличивают секрецию [HCl] гастрин, кортизол, ацетилхолин и гистамин. [кортизола] увеличивается при стрессе, и стрессы считаются важным фактором развития язвы, а умение не нервничать защищает от язвы. Ацетилхолин увеличивает секрецию через М1-рецепторы, гистамин – через Н2-рецепторы. Эти знания применяются при лечении язвы: наличие и применение блокаторов названных рецепторов позволяет снизить стимуляцию секреции HCl ацетилхолином и гистамином и добиться снижения [HCl] в желудке. Наряду со снижением [HCl] нужно стимулировать выработку слизи (ПГ) и регенерацию СОЖ.

С е к р е ц и я соляной кислоты:

(Таблица)

Видео (кликните для воспроизведения).

Р е г у л я ц и я секреции пептидаз.
Секреция препепсина, как и HCl, стимулируется гистамином и гастринами, которые секретируются в ответ на поступление в желудок белков.
Секреция препепсина снижается секретином и соматостатином.
Секреция панкреатического сока, в котором содержатся пептидазы и другие пищеварительные ферменты, происходит при стимуляции гормоном холецистокинином (он же стимулирует секрецию желчи), который секретируется при поступлении пептидов в ДПК

Источники


  1. Идеальная система питания для людей с малоподвижным образом жизни. — М.: Современная школа, 2006. — 304 c.

  2. Драгоценные камни: лечебные и магические свойства. — М.: СПб: Кристалл, 2006. — 237 c.

  3. Лаптев, А. П. Гигиена массового спорта / А.П. Лаптев. — М.: Физкультура и спорт, 1984. — 144 c.
Процесс расщепления белков до аминокислот
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here