Пути превращения аминокислот в тканях

Важная и проверенная информация на тему: "пути превращения аминокислот в тканях" от профессионалов для спортсменов и новичков.

Вопрос 33. . Обмен фенилаланина и тирозина. Все пути превращения в норме.

Фенилаланин — незаменимая аминокислота, так как в клетках животных не синтезируется её бензольное кольцо. Тирозин — условно заменимая аминокислота, поскольку образуется из фенилаланина.

Основное количество фенилаланина расходуется по 2 путям:

-включается в белки;

-превращается в тирозин.

Превращение фенилаланина в тирозин прежде всего необходимо для удаления избытка фенилаланина, так как высокие концентрации его токсичны для клеток. Образование тирозина не имеет большого значения, так как недостатка этой аминокислоты в клетках практически не бывает.

Основной путь метаболизма фенилаланина начинается с его гидроксилирования (рис. 9-29), в результате чего образуется тирозин. Эта реакция катализируется специфической монооксиге-назой — фенилаланингидроксилазой, коферментом которой служит тетрагидробиоптерин (Н4БП). Активность фермента зависит также от наличия Fe2+. Реакция необратима. Н4БП в результате реакции окисляется в дигидробиоптерин (Н2БП). Регенерация последнего происходит при участии дигидроптеридинредуктазы с использованием NADPH + H+.

Обмен тирозина значительно сложнее, чем обмен фенилаланина. Кроме использования в синтезе белков, тирозин в разных тканях выступает предшественником таких соединений, как катехоламины, тироксин, меланины, и ка-таболизируется до СО2 и Н2О.

Катаболизм тирозина в печени: Ферменты :

1реакция – тирозинаминотрансфераза

3-диоксигеназа гомогентизиновой кислоты

Катаболизм в щитовидной– образование:

Превращения в меланоцитах – эумеланины и феомеланины. Эумеланины (чёрного и коричневого цвета) — нерастворимые высокомолекулярные гетерополимеры 5,6-дигидроксииндола и некоторых его предшественников. Феомеланины — жёлтые или красновато-коричневые полимеры, растворимые в разбавленных щелочах. Находятся они, в основном, в составе волос. Меланины присутствуют в сетчатке глаз. Цвет кожи зависит от распределения меланоцитов и количества в них разных типов меланинов.Синтез меланинов — сложный, многоступенчатый, разветвлённый процесс. Первую реакцию — превращение тирозина в ДОФА — катализирует тирозиназа, использующая в качестве кофактора ионы Сu+

В надпочечниках:

Вопрос 34 — Фенилкетонурия, биохимический дефект, проявление болезни, диаг­ностика, лечение.

В печени здоровых людей небольшая часть фенилаланина (∼10%) превращается в фенил-лактат и фенилацетилглутамин . Этот путь катаболизма фенилаланина становится главным при нарушении основного пути — превращения в тирозин, катализируемого фенилаланингидроксилазой. Такое нарушение сопровождается гиперфенилаланинемией и повышением в крови и моче содержания метаболитов альтернативного пути: фенилпирувата, фенилацетата, фениллактата и фенилацетилглу-тамина.

Дефект фенилаланингидроксилазы приводит к заболеванию фенилкетонурия (ФКУ). Выделяют 2 формы ФКУ:

Классическая ФКУ — наследственное заболевание, связанное с мутациями в гене фенилаланингидроксилазы, которые приводят к снижению активности фермента или полной его инактивации. При этом концентрация фенилаланина повышается в крови в 20-30 раз

Вариантная ФКУ (коферментзависимая гиперфенилаланинемия) — следствие мутаций в генах, контролирующих метаболизм Н4БП. Клинические проявления — близкие, но не точно совпадающие с проявлениями классической ФКУ. Частота заболевания — 1-2 случая на 1 млн новорождённых.

Прогрессирующее нарушение умственного и физического развития у детей, больных ФКУ, можно предотвратить диетой с очень низким содержанием или полным исключением фенилаланина. Если такое лечение начато сразу после рождения ребёнка, то повреждение мозга предотвращается. Считается, что ограничения в питании могут быть ослаблены после 10-летнего возраста (окончание процессов миелиниза-ции мозга), однако в настоящее время многие педиатры склоняются в сторону «пожизненной диеты».

Для диагностики ФКУ используют качественные и количественные методы обнаружения патологических метаболитов в моче, определение концентрации фенилаланина в крови и моче. Дефектный ген, ответственный за фенилкетонурию, можно обнаружить у фенотипически нормальных гетерозиготных носителей с помощью теста толерантности к фенилаланину. Для этого обследуемому дают натощак ∼10 г фенилаланина в виде раствора, затем через часовые интервалы берут пробы крови, в которых определяют содержание тирозина. В норме концентрация тирозина в крови после фенилаланиновой нагрузки значительно выше, чем у гетерозиготных носителей гена фежилкетонурии. Этот тест используется в генетической консультации для определения риска рождения больного ребёнка. Разработана схема скрининга для выявления новорождённых детей с ФКУ. Чувствительность теста практически достигает 100%.

В настоящее время диагностику мутантного гена, ответственного за ФКУ, можно проводить с помощью методов ДНК-диагностики (рестрикционного анализа и ПЦР).

Вопрос 35. Алкаптонурия, альбинизм. Биохимический дефект, проявление бо­лезней.

Алкаптонурия («чёрная моча»)

Причина заболевания — дефект диоксигеназы гомогентизиновой кислоты. Для этой болезни характерно выделение с мочой большого количества гомогентизиновой кислоты, которая, окисляясь кислородом воздуха, образует тёмные пигменты алкаптоны. Это метаболическое нарушение было описано ещё в XVI веке, а само заболевание охарактеризовано в 1859 г. Клиническими проявлениями болезни, кроме потемнения мочи на воздухе, являются пигментация соединительной ткани (охроноз) и артрит. Частота — 2-5 случаев на 1 млн новорождённых. Заболевание наследуется по аутосомнорецессивному типу. Диагностических методов выявления гетерозиготных носителей дефектного гена к настоящему времени не найдено.

Альбинизм

Причина метаболического нарушения — врождённый дефект тирозиназы. Этот фермент катализирует превращение тирозина в ДОФА в меланоцитах. В результате дефекта тирозиназы нарушается синтез пигментов меланинов.

Клиническое проявление альбинизма (от лат. albus — белый) — отсутствие пигментации кожи и волос. У больных часто снижена острота зрения, возникает светобоязнь. Длительное пребывание таких больных под открытым солнцем приводит к раку кожи. Частота заболевания 1:20 000.

Нарушение синтеза катехоламинов может вызывать различные нервно-психические заболевания, причём патологические отклонения наблюдаются как при снижении, так и при увеличении их количества.

Читайте так же:  Креатин какой лучше выбрать

Превращение аминокислот в тканях

Аминокислоты — основной источник азота для организма млекопитающих. Они являются связующим звеном между процессами синтеза и распада азотсодержащих веществ, в первую очередь белков.
В клетках постоянно поддерживается определенный стационарный уровень аминокислот — фонд (пул) свободных аминокислот. Этот фонд обновляется за счет поступления аминокислот и используется для синтеза биологически важных химических компонентов клетки.
Пути поступления свободных аминокислот, образующих аминокислотный фонд в клетке:

1. Транспорт аминокислот из внеклеточной жидкости — транспортируются аминокислоты, которые всасываются в кишечнике после гидролиза пищевых белков.

2. Синтез заменимых аминокислот — в клетке из промежуточных продуктов окисления глюкозы и цикла лимонной кислоты могут синтезироваться аминокислоты.

К заменимым аминокислотам относятся: аланин, аспарагиновая кислота, аспарагин, глутаминовая кислота, глутамин, пролин, глицин, серин.

3. Внутриклеточный гидролиз белков — это основной путь поступления аминокислот. Гидролитическое расщеп–ление тканевых белков катализируют лизосомальные протеазы. При голодании, онкологических и инфекцион–ных заболеваниях этот процесс усиливается. Т. Е : когда не хватает аминокислот, организм разрушает свои структуры клетки для восполнения этого запаса

Пути использования аминокислотного фонда:

1) Синтез белков и пептидов — это основной путь потребления аминокислот — 75-80% аминокислот клетки идет на их синтез.

2) Синтез небелковых азотсодержащих соединений:

— пуриновых и пиримидиновых нуклеотидов;

— некоторых витаминов и коферментов (НАД, КоА, фолиевая кислота);

— биогенных аминов (гистамин, серотонин);

— гормонов (адреналин, тироксин, трийодтиронин);

— медиаторов (норадреналин, ацетилхолин, ГАМК).

3) Синтез глюкозы с использованием углеродных скелетов гликогенных аминокислот (глюконеогенез).

[3]

4) Синтез липидов с использованием ацетильных остатков углеродных скелетов кетогенных аминокислот.

5) Окисление до конечных продуктов обмена (СО2, Н2О, NH3) — это один из путей обеспечения клетки энергией — до 10% общих энергетических потребностей. Все аминокислоты, которые не используются в синтезе белков и других физиологически важных cоединений, подвергаются расщеплению.

Существую общие и специфические пути метаболизма аминокислот. К общим путям катаболизма аминокислот относятся:

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась — это был конец пары: «Что-то тут концом пахнет». 8386 —

| 8012 — или читать все.

185.189.13.12 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Специфические пути обмена некоторых аминокислот

Помимо общих путей обмена, характерных для большинства аминокислот, в настоящее время в животных тканях довольно подробно выяснены индивидуальные пути превращения почти всех аминокислот, входящих в состав белковых молекул. Некоторые из этих превращений в количественном отношении имеют второстепенное значение, но образующиеся из них продукты реакции могут играть важную, а иногда и решающую роль в процессах обмена веществ. Далее рассматривается выборочно обмен тех аминокислот, специфические (так называемые частные) пути превращения которых в организме человека и животных определяют во многих отношениях его физиологическое состояние.

Трансаминирование аминокислот

Под трансаминированием подразумевают реакции межмолекулярного переноса аминогруппы (NH2—) от аминокислоты на α-кетокислоту без промежуточного образования аммиака. Впервые реакции трансаминиро-вания (прежнее название «переаминирование») были открыты в 1937 г. советскими учеными А.Е. Браунштейном и М.Г. Крицман при изучении дезаминирования глутаминовой кислоты в мышечной ткани. Было замечено, что при добавлении к гомогенату мышц глутаминовой и пировиноградной кислот образуются α-кетоглутаровая кислота и аланин без промежуточного свободного аммиака; добавление аланина и α-кетоглутаровой кислоты приводило к образованию соответственно пировиноградной и глутаминовой кислот.

Реакции трансаминирования являются обратимыми и, как выяснилось позже, универсальными для всех живых организмов. Эти реакции протекают при участии специфических ферментов, названных А.Е. Браун-штейном аминоферазами (по современной классификации, аминотранс-феразы, или трансаминазы). Теоретически реакции трансаминиро-вания возможны между любой амино- и кетокислотой, однако наиболее интенсивно они протекают в том случае, когда один из партнеров представлен дикарбоновой амино- или кетокислотой. В тканях животных и у микроорганизмов доказано существование реакций трансаминирования между монокарбоновыми амино- и кетокислотами. Донорами NН2-группы могут также служить не только α-, но и β-, γ- и ω-аминогруппы ряда аминокислот. В лаборатории А. Майстера доказано, кроме того, трансами-нирование глутамина и аспарагина с кетокислотами в тканях животных.

В переносе аминогруппы активное участие принимает кофермент транс-аминаз пиридоксальфосфат (производное витамина В6; см. главу 5), который в процессе реакции обратимо превращается в пиридоксаминфосфат.

Механизм реакции трансаминирования. Общую теорию механизма ферментативного трансаминирования разработали советские ученые А.Е. Браун-штейн и М.М. Шемякин. Одновременно подобный механизм был предложен американскими биохимиками Э. Снеллом и Д. Метцлером. Все трансаминазы (как и декарбоксилазы аминокислот) содержат один и тот же кофермент – пиридоксальфосфат. Для реакций трансаминирования харак -терен общий механизм. Специфичность трансаминаз обеспечивается белковым компонентом. Ферменты трансаминирования катализируют перенос NH2-группы не на α-кетокислоту, а сначала на кофермент пиридоксаль-фосфат. Образовавшееся промежуточное соединение (шиффово основание) подвергается внутримолекулярным превращениям (лабилизация α-водо-родного атома, перераспределение энергии связи), приводящим к освобождению α-кетокислоты и пиридоксаминфосфата; последний на второй стадии реакции реагирует с любой другой α-кетокислотой, что через те же стадии образования промежуточных соединений (идущих в обратном направлении) приводит к синтезу новой аминокислоты и освобождению пиридоксальфосфата. Опуская промежуточные стадии образования шиффовых оснований, обе стадии реакции трансаминирования можно представить в виде общей схемы:

Читайте так же:  Влияние креатина на организм

Более подробно механизм действия трансаминаз представлен на рис. 12.3.

В связи с тем что во всех пиридоксалевых ферментах (включая транс-аминазы) карбонильная группа кофермента (—СНО) оказалась связанной с ε-аминогруппой лизина белковой части, в классический механизм реакции трансаминирования А.Е. Браунштейн и Э. Снелл внесли следующее дополнение. Оказалось, что взаимодействие между субстратом, т.е. L-амино-кислотой (на рисунке – аспартат), и пиридоксальфосфатом происходит не путем конденсации с выделением молекулы воды, а путем реакции замещения, при которой NH2-группа субстрата вытесняет ε-NН2-группу лизина в молекуле ферментного белка, что приводит к формированию пиридоксальфосфатного комплекса.

Существование представленного механизма реакции трансаминирова-ния доказано разнообразными методами, включая методы спектрального анализа по идентификации промежуточных альдиминных и кетиминных производных пиридоксальфосфата.

Роль трансаминаз и реакций трансаминирования в обмене аминокислот.

Чрезвычайно широкое распространение трансаминаз в животных тканях, у микроорганизмов и растений, их высокая резистентность к физическим, химическим и биологическим воздействиям, абсолютная стереохимическая специфичность по отношению к L-аминокислотам, а также высокая каталитическая активность в процессах трансаминирования послужили предметом детального исследования роли этих ферментов в обмене аминокислот. Ранее было указано, что при физиологических значениях рН среды активность оксидазы L-аминокислот резко снижена. Учитывая это обстоятельство, а также высокую скорость протекания реакции трансами-нирования, А.Е. Браунштейн выдвинул гипотезу о возможности существования в животных тканях непрямого пути дезаминирования аминокислот через реакции трансаминирования, названного им трансдезаминированием. Основой для выдвижения этой гипотезы послужили также данные Г. Эйлера о том, что в животных тканях из всех природных аминокислот с высокой скоростью дезаминируется только L-глутаминовая кислота в реакции, катализируемой высокоактивной и специфической глутамат-дегидрогеназой.

Согласно гипотезе, получившей экспериментальное подтверждение, все или почти все природные аминокислоты (исключение составляет метионин) сначала реагируют с α-кетоглутаровой кислотой в реакции трансами-нирования с образованием глутаминовой кислоты и соответствующей кетокислоты. Образовавшаяся глутаминовая кислота затем подвергается непосредственному окислительному дезаминированию под действием глу-таматдегидрогеназы. Схематически механизм трансдезаминирования можно представить в следующем виде:

Суммарная реакция при этом следующая:

Поскольку обе реакции (трансаминирование и дезаминирование глу-таминовой кислоты) являются обратимыми, создаются условия для синтеза по существу любой аминокислоты, если в организме имеются соответствующие α-кетокислоты. Известно, что организм животных и человека не наделен способностью синтеза углеродных скелетов (α-кетокислот), так называемых незаменимых аминокислот; этой способностью обладают только растения и многие микроорганизмы.

Рис. 12.4. Центральная роль трансаминаз L-аминокислот и глутаматдегидрогеназы в биосинтезе и распаде аминокислот в тканях животных. АМК — аминокислоты; α-КГ — α-кетоглутарат.

Механизм, при помощи которого в живых организмах осуществляется синтез природных аминокислот из α-кетокислот и аммиака, был назван А.Е. Браунштейном трансреаминированием. Сущность его сводится к восстановительному аминированию α-кетоглутаровой кислоты с образованием глутаминовой кислоты (реакцию катализирует НАДФ-зависимая глута-матдегидрогеназа, работающая в режиме синтеза) и к последующему трансаминированию глутамата с любой α-кетокислотой. В результате образуется L-аминокислота, соответствующая исходной кетокислоте, и вновь освобождается α-кетоглутаровая кислота, которая может акцептировать новую молекулу аммиака. Роль реакций трансаминирования как в дезаминировании, так и в биосинтезе аминокислот может быть представлена в виде схемы:

Таким образом, трансаминазы катализируют опосредованное через глутаматдегидрогеназу дезаминирование природных аминокислот (черные стрелки) и биосинтез аминокислот (красные стрелки). В более упрощенной форме роль этих ключевых ферментов азотистого обмена представлена на рис. 12.4.

Получены доказательства существования в организме теплокровных животных еще одного механизма непрямого (опосредованного) дезами-нирования L-аминокислот, при котором Глу, Асп и АМФ выполняют роль системы переноса NН2-группы; гидролитическое дезаминирование АМФ приводит к образованию инозинмонофосфата (ИМФ) и аммиака:

Возможно, что в аналогичной системе в качестве промежуточного переносчика NH2-группы вместо АМФ участвует НАД.

Клиническое значение определения активности трансаминаз. Широкое распространение и высокая активность трансаминаз в органах и тканях человека, а также сравнительно низкие величины активности этих ферментов в крови послужили основанием для определения уровня ряда трансаминаз в сыворотке крови человека при органических и функциональных поражениях разных органов. Для клинических целей наибольшее значение имеют две трансаминазы – аспартат-аминотрансфераза (AcAT) и аланин-аминотрансфераза (АлАТ), катализирующие соответственно следующие обратимые реакции:

Превращения α-кетокислот. Образовавшиеся в процессе дезаминиро-вания и трансдезаминирования α-кетокислоты подвергаются в тканях животных различным превращениям и могут вновь трансаминироваться с образованием соответствующей аминокислоты. Это так называемый синтетический путь превращения. Опыты с перфузией растворов α-кето-кислот и аммиака через изолированную печень показали, что в оттекающей из печени жидкости действительно имеются соответствующие исходным кетокислотам L-аминокислоты. Открыты, кроме того, гликогенные, кето-генные и окислительные пути, ведущие к образованию соответственно глюкозы, жирных кислот, кетоновых тел и компонентов цикла трикарбоновых кислот (ЦТК). Эти процессы можно представить в виде общей сводной схемы:

Углеродные скелеты аминокислот могут включаться в ЦТК через ацетил-КоА, пируват, оксалоацетат, α-кетоглутарат и сукцинил-КоА. Пять аминокислот (Фен, Лиз, Лей, Трп, Тир) считаются «кетогенными», поскольку они являются предшественниками кетоновых тел, в частности ацетоуксусной кислоты, в то время как большинство других аминокислот, обозначаемых как «гликогенные», служат в организме источником углеводов, в частности глюкозы. Подобный синтез углеводов de novo усиливается при некоторых патологических состояниях, например при сахарном диабете, а также при гиперфункции коркового вещества надпочечников и введении глюкокортикоидов (см. главу 8). Разделение аминокислот на «кетогенные» и «гликогенные» носит, однако, условный характер, поскольку отдельные участки углеродных атомов Лиз, Трп, Фен и Тир могут включаться и в молекулы предшественников глюкозы, например Фен и Тир – в фумарат. Истинно «кетогенной» аминокислотой является только лейцин.

Читайте так же:  Гуарана или аргинин что лучше

1 Пути превращения аминокислот в тканях

Аминокислоты — основной источник азота для организма млекопитающих. Они являются связующим звеном между процессами синтеза и распада азотсодержащих веществ, в первую очередь белков. За сутки в организме человека обновляется до 400 г белка. В целом период распада всех белков организма человека составляет 80 суток. Необратимо распадается четвертая часть белковых аминокислот (около 100 г). Эта часть возобновляется за счет пищевых аминокислот и эндогенного синтеза — синтеза заменимых аминокислот.

В клетках постоянно поддерживается определенный стационарный уровень аминокислот — фонд (пул) свободных аминокислот. Этот фонд обновляется за счет поступления аминокислот и используется для синтеза биологически важных химических компонентов клетки, т.е. можно выделить пути поступления и использования клеточного пула аминокислот.

Пути поступления свободных аминокислот, образующих аминокислотный фонд в клетке:

1Транспорт аминокислот из внеклеточной жидкости — транспортируются аминокислоты, которые всасываются в кишечнике после гидролиза пищевых белков.

2Синтез заменимых аминокислот — в клетке из промежуточных продуктов окисления глюкозы и цикла лимонной кислоты могут синтезироваться аминокислоты. К заменимым аминокислотам относятся: аланин, аспарагиновая кислота, аспарагин, глутаминовая кислота, глутамин, пролин, глицин, серин.

Внутриклеточный гидролиз белков — это основной путь поступления аминокислот. Гидролитическое расщеп–ление тканевых белков катализируют лизосомальные протеазы. При голодании, онкологических и инфекцион–ных заболеваниях этот процесс усиливается.

Пути использования аминокислотного фонда:

Видео (кликните для воспроизведения).

1)Синтез белков и пептидов — это основной путь потребления аминокислот — 75-80% аминокислот клетки идет на их синтез.

2)Синтез небелковых азотсодержащих соединений:

-пуриновых и пиримидиновых нуклеотидов;

-некоторых витаминов и коферментов (НАД, КоА, фолиевая кислота);

-биогенных аминов (гистамин, серотонин);

[2]

— гормонов (адреналин, тироксин, трийодтиронин);

-медиаторов (норадреналин, ацетилхолин, ГАМК).

3)Синтез глюкозы с использованием углеродных скелетов гликогенных аминокислот (глюконеоге–нез).

4)Синтез липидов с использованием ацетильных остатков углеродных скелетов кетогенных аминокислот.

5)Окисление до конечных продуктов обмена (СО2, Н2О, NH3) — это один из путей обеспечения клетки энергией — до 10% общих энергетических потребностей. Все аминокислоты, которые не используются в синтезе белков и других физиологически важных cоединений, подвергаются расщеплению.

Существую общие и специфические пути метаболизма аминокислот. К общим путям катаболизма аминокислот относятся:

ПРЕВРАЩЕНИЯ АМИНОКИСЛОТ В ТКАНЯХ

Аминокислоты, поступившие в ткани, используются для синтеза собственных белков организма, ферментов, нуклеиновых кислот, белковых и пептидных гормонов, витаминов, пигментов и других соединений.

Только 10-25% аминокислот организма подвергается окислению. Превращения углеводородного остова аминокислот приводит к соединениям, которые далее включаются в цикл Кребса в различных его местах и подвергаются там дальнейшему окислению. Энергетический баланс расщепления аминокислот до углекислого газа и воды через ЦТК довольно значительный, так при расщеплении 1 молекулы аминокислоты треонина синтезируется 27 АТФ.

Энергетическому окислению аминокислот в тканях предшествуют 3 основных вида превращений: 1. окислительное дезаминирование; 2 трансаминирование; 3. декарбоксилирование.

Окислительное дезаминирование аминокислот идет путем дегидрирования и катализируется ферментами дегидрогеназами с коферментом НАД или ФМН, в состав которых входят витамин РР (никотинамид) или В2 (рибофлавин), с образованием аммиака и кетокислот:

Аммиак

Читайте также:
  1. L-Аминокислоты ОРГАНИЗМА
  2. Аллотропия или полиморфные превращения.
  3. АМИНОКИСЛОТНЫЙ СОСТАВ БЕЛКОВ
  4. АМИНОКИСЛОТНЫЙ СОСТАВ БЕЛКОВ. ПЕПТИДЫ.
  5. АМИНОКИСЛОТЫ
  6. Аминокислоты, пептиды и белки.
  7. Биоэлектрические явления в живых тканях

яд, он обезвреживается путем превращения его в печени в безвредную мочевину, которая через почки удаляется с мочой (см. п.8.1.4.).

Кетокислоты

: 1. подвергаются окислительному декарбоксилированию до жирных кислот, которые далее окисляются до углекислого газа и воды; 2. участвуют в синтезе заменимых аминокислот путем реакции трансаминирования; 3.идут на восстановительное аминирование; 4. поступают в ЦТК.

Трансаминирование —это основной путь превращений аминокислот в тканях, представляющий собой обратимый перенос аминогрупп и кетогрупп между аминокислотой и кетокислотой. Реакция катализируется аминотрансферазами, коферментом которых является витамин В6 (пиридоксин). Эта реакция – основной путь синтеза заменимых аминокислот в организме:

Декарбоксилирование аминокислот катализируется ферментами декарбоксилазами аминокислот, коферментом которых является витамин В6, как и у трансаминаз с образованием аминов:

Образующиеся амины названы биогенными, так как обладают сильным фармакологическим действием на множество физиологических функций человека и животных. Например, гистамин, образующийся из гистидина, расширяет сосуды, вызывает секрецию соляной кислоты желудочного сока, является проводником боли.

Дата добавления: 2015-07-15 ; просмотров: 453 | Нарушение авторских прав

Инфекции человека

  • Бактериальные инфекции (41)
  • Биохимия (5)
  • Вирусные гепатиты (12)
  • Вирусные инфекции (43)
  • ВИЧ-СПИД (28)
  • Диагностика (30)
  • Зооантропонозные инфекции (19)
  • Иммунитет (16)
  • Инфекционные заболевания кожи (33)
  • Лечение (38)
  • Общие знания об инфекциях (36)
  • Паразитарные заболевания (8)
  • Правильное питание (41)
  • Профилактика (23)
  • Разное (3)
  • Сепсис (7)
  • Стандарты медицинской помощи (26)

Обмен аминокислот в тканях

Обмен белков в тканях.

Основная часть аминокислот, которые образуются в кишечнике из белков, поступает в кровь (95%) и небольшая часть — в лимфу. По воротной вене аминокислоты попадают в печень, где расходуются на биосинтез различных специфических белков (альбуминов, глобулинов, фибриногена). Другие аминокислоты током крови разносятся ко всем органам и тканям, транспортируются внутрь клеток, где они используются для биосинтеза белков.

Неиспользованные аминокислоты окисляются до конечных продуктов обмена. Процесс расщепления тканевых белков катализируется тканевыми ферментами – протеиназами — катепсинами (часто их называют тканевыми протеазами).

Соотношение между аминокислотами в белках, которые распадаются и синтезируются, разное, поэтому часть свободных аминокислот должна быть преобразована в другие аминокислоты или окислена до простых соединений и выведена из организма.

Читайте так же:  Изотоник макс моушен как принимать

Итак, в организме существует внутриклеточный запас аминокислот, которые в значительной мере пополняется за счет процессов взаимопревращения аминокислот, гидролиза белков, синтеза аминокислот и поступления их из внеклеточной жидкости. В то же время благодаря синтезу белков и другим реакцям (образование мочевины, пуринов и т.п.) постоянно происходит удаление свободных аминокислот из внеклеточной жидкости.

Пути обмена аминокислот в тканях.

В основе различных путей обмена аминокислот лежат три типа реакций: по аминной и карбоксильной группам и по боковой цепи. Реакции по аминной группе включают процессы дезаминирования, переаминирования, аминирования , по карбоксильной группе — декарбоксилирование. Безазотистая часть углеродного скелета аминокислот подвергается различным превращениям с образованием соединений, которые затем могут включаться в цикл Кребса для дальнейшего окисления.

Пути внутриклеточного превращения аминокислот сложны и перекрещиваются со многими другими реакциями обмена, в результате чего промежуточные продукты обмена аминокислот могут служить необходимыми предшественниками для синтеза различных компонентов клеток и быть биологически активными веществами.

Катаболизм аминокислот у млекопитающих (и у человека) происходит, в основном, в печени и немного слабее в почках.

Дезаминирование аминокислот.

Суть дезаминирования заключается в расщеплении аминокислот под действием ферментов на аммиак и безазотистый остаток (жирные кислоты, оксикислоты, кетокислоты). Дезаминирование может идти в виде восстановительного, гидролитического, окислительного и внутримолекулярного процессов. Последние два типа превалируют у человека и животных.

Окислительное дезаминирование подразделяется на две стадии. Первая стадия является ферментативной, она заканчивается образованием неустойчивого промежуточного продукта – иминокислоты (карбоновые кислоты, содержащие иминогруппу (=NH), которая во второй стадии спонтанно в присутствии воды распадается на аммиак и aльфа-кетокислоту. Ферменты, которые катализируют этот процесс, содержат в качестве простетической группы (органические соединение небелковой природы) НАД (никотинамидадениндинуклеотид) или ФАД (флавинадениндинуклеотид).

В организме человека наиболее активно протекает дезаминирование глутаминовой кислоты под действием фермента глутаматдегидрогеназы , которая находится в митохондриях клеток всех тканей. В результате этого процесса образует альфа-кетоглутаровая кислота, которая участвует во многих процессах обмена веществ.

Трансаминирование (переаминирование) аминокислот.

Обязательным условием трансаминирования является участие дикарбоновых аминокислот (глутаминовой и аспарагиновой), которые в виде соответствующих им кетокислот — альфа-кетоглутаровой и щавелевоуксусной могут взаимодействовать со всеми аминокислотами, за исключением лизина, треонина и аргинина.

При переаминировании происходит непосредственный перенос аминогруппы с аминокислоты на кетокислоту, а кетогруппы — с кетокислоты на аминокислоту без освобождения при этом аммиака. Этот процесс протекает в несколько этапов. Реакцию катализируют ферменты, относящиеся к классу трансфераз, их простетической группой является фосфорпиридоксаль-фосфорный эфир витамина В6. Процесс переаминирования широко распространен в живой природе. Его особенность — легкая обратимость.

Реакции переаминирования играют большую роль в обмене веществ. От них зависят такие важнейшие процессы, как биосинтез многих заменимых аминокислот из соответствующих им кетокислот, распад аминокислот, объединение путей углеводного и аминокислотного обмена, когда из продуктов распада глюкозы, например, пировиноградной кислоты, может образоваться аминокислота аланин и наоборот.

Восстановительное аминирование.

Этот процесс противоположен дезаминированию. Он обеспечивает связывание аммиака кетокислотами с образованием соответствующих аминокислот. Восстановительное аминирование катализируется хорошо функционирующей ферментной системой, обеспечивающей аминирование aльфа-кетоглутаровой или щавелевоуксусной кислоты с образованием глутаминовой или аспарагиновой кислоты.

При обезвреживании аммиака неорганическими и органическими кислотами происходит образование аммонийных солей. Этот процесс осуществляется в почках. Образовавшиеся аммонийные соли выводятся из организма с мочой и потом.

Декарбоксилирование аминокислот.

Процесс декарбоксилирования катализируется декарбоксилазами, специфическими для каждой аминокислоты, простетической группой которых служит пиридоксальфосфат. Эти ферменты относятся к классу лиаз. Процесс декарбоксилирования, который заключается в отщеплении от аминокислот СО2 с образованием аминов, можно показать на следующей схеме:

Механизм реакции декарбоксилирования аминокислот согласно общей теории пиридоксалевого катализа сводится к образованию пиридоксальфосфат-субстратного комплекса в активном центре фермента.

Таким путем из триптофана образуется триптамин, из гидрокситриптофана — серотонин. Из аминокислоты гистидина образуется гистамин . Из глутаминовой кислоты при декарбоксилировании образуется гамма-аминомасляная кислота (ГАМК) .

Амины, образованные из аминокислот, называют биогенными аминами, так как они оказывают на организм мощный биологический эффект. Биогенные амины проявляют физиологическое действие в очень малых концентрациях. Так, введение в организм гистамина приводит к расширению капилляров и повышению их проницаемости, сужению крупных сосудов, сокращению гладких мышц различных органов и тканей, повышению секреции соляной кислоты в желудке. Кроме того, гистамин участвует в передаче нервного возбуждения.

Серотонин способствует повышению кровяного давления и сужению бронхов; его малые дозы подавляют активность центральной нервной системы, в больших дозах это вещество оказывает стимулирующее действие. В различных тканях организма большие количества гистамина и серотонина находятся в связанной, неактивной форме. Биологическое действие они проявляют только в свободной форме.

Гамма-аминомасляная кислота (ГАМК) накапливается в мозговой ткани и представляет собой нейрогуморальный ингибитор-медиатор торможения центральной нервной системы.

Большие концентрации этих соединений могут представлять угрозу для нормального функционирования организма. Однако в животных тканях имеется аминоксидаза , расщепляющая амины до соответствующих альдегидов, которые потом превращаются в жирные кислоты и распадаются до конечных продуктов.

«Обмен аминокислот в тканях» — это третья статья из цикла «Обмен белков в организме человека». Первая статья – « Расщепление белков в пищеварительном тракте ». Вторая статья « Обезвреживание продуктов гниения белков в кишечнике ».

Общие пути катаболизма аминокислот в тканях.

Тема 2. ОБЩИЕ ПУТИ КАТАБОЛИЗМА АМИНОКИСЛОТ. ОБРАЗОВАНИЕ АММИАКА В ОРГАНИЗМЕ И ПУТИ ЕГО ОБЕЗВРЕЖИВАНИЯ

Читайте так же:  Аргинин при диабете 2 типа

Практическая значимость темы. Для большинства аминокислот характерны общие реакции, связанные с превращениями их амино- и карбоксильных групп — реакции трансаминирования, дезаминирования и декарбоксилирования. Роль этих превращений в организме велика, так как перечисленные типы реакций обеспечивают интеграцию аминокислотного обмена с метаболизмом углеводов и липидов, способствуют перераспределению азота в организме, участвуют в образовании биомолекул, способных регулировать обмен веществ и ряд физиологических процессов.

Аммиак, образующийся в организме человека в реакциях катаболизма азотсодержащих соединений, чрезвычайно токсичен и должен быть обезврежен путём превращения его в мочевину. Поэтому согласованное протекание метаболического превращения аммиака в мочевину имеет важное значение для сохранения здоровья. Понимание патогенеза расстройств, возникающих при заболеваниях печени (гепатит, цирроз) и врождённых дефектах ферментов цикла мочевинообразования, лечение больных, страдающих этими заболеваниями, требуют знания механизмов обезвреживания аммиака в тканях.

Цель занятия. После изучения данной темы студент должен знать общие пути катаболизма аминокислот в тканях и их биологическую роль, основные источники образования аммиака и пути его обезвреживания в организме, их регуляцию, возможные причины нарушений, уметь применять приобретённые знания для решения теоретических и практических задач.

Исходный уровень знаний.

  1. Строение аминокислот (аланин, аспартат, аспарагин, аргинин, глутамат, глутамин, гистидин, тирозин, триптофан, цистеин).
  2. Кислотно-основные свойства органических соединений.
  3. Высокоэнергетические фосфатные соединения: роль в организме.
  4. Цикл трикарбоновых кислот: реакции, роль в организме.
  5. Принципы диагностики врождённых дефектов ферментов.

Общие пути катаболизма аминокислот в тканях.

К общим путям катаболизма аминокислот относятся реакции трансаминирования, дезаминирования и декарбоксилирования.

2.1.1. Трансаминирование аминокислот – перенос аминогруппы (NН2-) от аминокислоты на α-кетокислоту без промежуточного образования аммиака. Реакции трансаминирования катализируют ферменты – аминотрансферазы (или трансаминазы). Кофермент аминотрансфераз – пиридоксальфосфат (производное витамина В6). В реакции принимает участие альдегидная группа кофермента. Реакция легко обратима. Механизм реакции трансаминирования представлен на рисунке 2.1.

Рисунок 2.1. Механизм переноса аминогруппы с аминокислоты на α-кетокислоту в реакции трансаминирования.

Примеры реакций трансаминирования:

Роль реакций трансаминирования в организме:

  • участие в непрямом дезаминировании аминокислот;
  • путь синтеза заменимых аминокислот;
  • образующиеся в реакции α-кетокислоты могут включаться в общий путь катаболизма и глюконеогенез.

2.1.2.Дезаминирование аминокислот – отщепление аминогруппы от аминокислоты с образованием аммиака (NН3). В тканях человека преобладает окислительное дезаминирование, то есть сопряжённое с переносом водорода.

Большинство ферментов, участвующих в окислительном дезаминировании аминокислот, при физиологических значениях рН малоактивны. Поэтому основная роль в окислительном дезаминировании принадлежит глутаматдегидрогеназе, которая катализирует прямое окислительное дезаминирование глутамата. В качестве кофермента используются НАД + или НАДФ + (производные витамина РР). Реакция обратима.

Глутаматдегидрогеназа – аллостерический фермент, его аллостерическими активаторами являются АДФ и ГДФ, аллостерическими ингибиторами – АТФ, ГТФ и НАДН.

Непрямое дезаминирование

характерно для большинства аминокислот. Оно называется непрямым, потому что происходит в 2 этапа:

  1. на первом этапе аминокислота подвергается трансаминированию с образованием глутамата;
  2. на втором этапе происходит окислительное дезаминирование глутамата (см. рисунок 4).

Рисунок 2.2. Схема непрямого дезаминирования аминокислот.

Участие аминотрансфераз в этом процессе позволяет собрать аминогруппы различных аминокислот в составе одной аминокислоты – глутамата, который затем подвергается окислению с образованием аммиака и α-кетоглутарата.

2.1.3. Декарбоксилирование аминокислот – отщепление карбоксильной группы от аминокислоты с образованием СО2. Продуктами реакций декарбоксилирования аминокислот являются биогенные амины, участвующие в регуляции обмена веществ и физиологических процессов в организме (см. таблицу 2.1).

Таблица 2.1

Биогенные амины и их предшественники.

Аминокислота Биогенный амин
Гистидин Гистамин
Глутамат γ-аминомасляная кислота (ГАМК)
Тирозин Дофамин
Триптофан Триптамин
Серотонин
Цистеин Тиоэтиламин
Таурин

Реакции декарбоксилирования аминокислот и их производных катализируют декарбоксилазы аминокислот. Кофермент – пиридоксальфосфат (производное витамина В6). Реакции являются необратимыми.

2.1.3.1. Примеры реакций декарбоксилирования. Некоторые аминокислоты непосредственно подвергаются декарбоксилированию:

Гистамин обладает мощным сосудорасширяющим действием, особенно капилляров в очаге воспаления; стимулирует желудочную секрецию как пепсина, так и соляной кислоты, и используется для исследования секреторной функции желудка.

[1]

ГАМК – тормозный медиатор в центральной нервной системе.

Ряд аминокислот подвергается декарбоксилированию после предварительного окисления.

Серотонин образуется главным образом в клетках центральной нервной системы, обладает сосудосуживающим действием. Участвует в регуляции артериального давления, температуры тела, дыхания, почечной фильтрации.

Дофамин служит предшественником катехоламинов; является медиатором ингибирующего типа в центральной нервной системе.

Таурин образуется главным образом в печени; участвует в синтезе парных желчных кислот (таурохолевой кислоты).

2.1.3.2. Катаболизм биогенных аминов. В органах и тканях существуют специальные механизмы, предупреждающие накопление биогенных аминов. Основной путь инактивации биогенных аминов – окислительное дезаминирование с образованием аммиака – катализируется моно- и диаминооксидазами.

Моноаминооксидаза (МАО) — ФАД-содержащий фермент – осуществляет реакцию:

Видео (кликните для воспроизведения).

В клинике используются ингибиторы МАО (ниаламид, пиразидол) для лечения депрессивных состояний.

Источники


  1. Педагогика физической культуры и спорта. — М.: Academia, 2017. — 336 c.

  2. Мазнев, Н. Все о лечебном питании. Витамины. Минералы. Соли / Н. Мазнев. — М.: Рипол Классик, Дом. XXI век, 2007. — 132 c.

  3. Болезни органов дыхания / ред. Н.Р. Палеев. — М.: Медицина, 1990. — 649 c.
Пути превращения аминокислот в тканях
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here