Расположение аминокислот в молекуле белка

Важная и проверенная информация на тему: "расположение аминокислот в молекуле белка" от профессионалов для спортсменов и новичков.

Аминокислоты и белки

Аминокислоты

В зависимости от взаимного расположения обеих функциональных групп различают α-, β – и γ-аминокислоты:

[2]

CH3-CH(NH2)-COOH (α-аминопропионованя кислота)

Для аминокислот характерны следующие виды изомерии: углеродного скелета, положения функциональных групп и оптическая изомерия.

Физические свойства аминокислот

Аминокислоты – твердые кристаллические вещества, хорошо растворимые в воде. Они плавятся при высоких температурах с разложением.

Аминокислоты получают путем замещения галогена на аминогруппу в галогензамещенных карбоновых кислотах. В общем виде уравнение реакции будет выглядеть так:

Химические свойства аминокислот

Аминокислоты – амфотерные соединения. Они реагируют как с кислотами, так и с основаниями:

При растворении аминокислот в воде аминогруппа и карбоксильная группа взаимодействуют друг с другом с образованием соединений, называемых внутренними солями:

Молекулу внутренней соли называют биполярным ионом.

Водные растворы аминокислот имеют нейтральную, щелочную и кислотную среду в зависимости от количества функциональных групп. Например, глутаминовая кислота образует кислый раствор, поскольку в её составе две карбоксильные группы и одна аминогруппа, а лизин – щелочной раствор, т.к. в её составе одна карбоксильная группа и две аминогруппы.

Две молекулы аминокислоты могут взаимодействовать друг с другом. При этом происходит отщепление молекулы воды и образуется продукт, в котором фрагменты молекулы связаны между собой пептидной связью (-CO-NH-). Например:

Полученное соединение называют дипептидом. Вещества, построенные из многих остатков аминокислот, называются полипептидами. Пептиды гидролизуются под действием кислот и оснований.

α-Аминокислоты играют особую роль в природе, поскольку при их совместной поликонденсации в природных условиях образуются важнейшие для жизни вещества – белки.

Также для аминокислот характерны все химические свойства карбоновых кислот (по карбоксильной группе) и аминов (по аминогруппе).

В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 стандартных аминокислот. Множество их комбинаций создают молекулы белков с большим разнообразием свойств. Кроме того, аминокислотные остатки в составе белка часто подвергаются посттрансляционным модификациям, которые могут возникать и до того, как белок начинает выполнять свою функцию, и во время его «работы» в клетке. Часто в живых организмах несколько молекул разных белков образуют сложные комплексы, например, фотосинтетический комплекс.

Белки обладают свойством амфотерности, то есть в зависимости от условий проявляют как кислотные, так и осно́вные свойства. В белках присутствуют несколько типов химических группировок, способных к ионизации в водном растворе: карбоксильные остатки боковых цепей кислых аминокислот (аспарагиновая и глутаминовая кислоты) и азотсодержащие группы боковых цепей основных аминокислот (в первую очередь, ε-аминогруппализина и амидиновый остаток CNH(NH2)аргинина, в несколько меньшей степени —имидазольный остаток гистидина).

Белки различаются по степени растворимости в воде. Водорастворимые белки называются альбуминами, к ним относятся белки крови и молока. К нерастворимым, или склеропротеинам, относятся, например, кератин (белок, из которого состоят волосы, шерсть млекопитающих, перья птиц и т. п.) и фиброин, который входит в состав шёлка и паутины. Растворимость белка определяется не только его структурой, но внешними факторами, такими как природа растворителя, ионная сила и pH раствора.

Какие группы аминокислот входят в состав белков?

Спортсмены и многие другие люди помнят курс биологии, в котором говорилось о важности белка в организме. Об аминокислотах упоминалось меньше, но они являются основой всех белковых соединений. В состав природных белков входит много различных аминокислот, все они отвечают за разные функции и нужны организму. Важность аминокислот и сколько из них находится в составе белка – это основная тема статьи.

Аминокислоты – содержат две функциональные группы – аминогруппу -NH2 и карбоксильную COOH

Аминокислоты, входящие в состав белков

Аминокислоты – это соединения органического происхождения, они формируют структуру белков и являются основой для их синтеза. Белки участвуют в ряде процессов жизнедеятельности, особенно важны для развития мускулатуры и других тканей.

Наибольшее количество аминокислот попадает в организм через пищу, а затем они способствуют формированию белков. При необходимости набора мышечной массы акцент нужно ставить на аминокислоты в составе белков.

Белковая структура довольно сложна, в рамках статьи возможно только базовое её рассмотрение, так как этому вопросу посвящено немало научных трудов. Аминокислоты соединяются посредством пептидных связей, формируя единое целое. Они выполняют задачи восстановления организма и заживления ран.

Существует понятие идеального белка, в котором строго указано из скольких аминокислот он состоит, но в действительности определить, сколько аминокислот входит в состав, бывает сложнее. Согласно научным исследованиям, всего выделено 20 аминокислот, которые и должны составлять белок. В большинстве структур содержится 20 аминокислот, но их количество может отличаться. При длительном нарушении состава будут появляться нарушения, в том числе опасные для жизни.

Чаще всего разделяют 2 основные группы – заменимые и незаменимые. Среди заменимых компонентов большая часть из всех веществ – 12 шт. Их отличие заключается в выработке внутри организма в достаточных количествах при условии наличия нужного «строительного материала». Несложно определить число незаменимых – 8 штук. Они наиболее важны, так как поступают исключительно из внешней среды: пищи, добавок или уколов.

Аминокислоты могут реагировать друг с другом

Подошло время определить, сколько незаменимых аминокислот входит в состав белка:

  • лейцин защищает мышцы и восстанавливает их. Способствует набору мышечной массы;
  • изолейцин стимулирует выделение энергии;
  • лизин укрепляет иммунитет;
  • фенилаланин – это альфа-аминокислота, она влияет на правильную работу ЦНС;
  • метионин способствует сжиганию подкожного жира;
  • треонин влияет на ЦНС, ССС и иммунитет;
  • триптофан участвует в выделении серотонина;
  • валин ускоряет восстановление мышц и улучшает обменные процессы.

Заменимые аминокислоты лучше пополнять с пищей, иначе организм в полной мере покрыть необходимость спортсмена не всегда может.

Среди них:

  • аланин ускоряет процессы углеводного обмена и стимулирует выведение токсинов. Содержится в мясе, рыбе и молочных продуктах;
  • аспарагиновая кислота – это универсальный источник энергии. Поступает в организм из говядины, курятины, молока и сахара (только тростникового);
  • аспарагин улучшает функцию ЦНС. Его много во всех белках животного происхождения, картофеле, орехах и злачных культурах;
  • гистидин относится к ключевым строительным веществам для тела и способствует выделению кровяных телец. Его относительно много в молоке, злаках и мясе;
  • серин усиливает функцию головного мозга и ЦНС. Поступает в организм с арахисом, мясом, злаками и соей;
Читайте так же:  Глютаминовая кислота и глютамин отличия

Расщепление белков на аминокислоты

Виды и задачи белка

Белок покрывает различные задачи в организме, его роль зависит от типа структуры:

    миозин является одним из основных составных частей для роста мышц. Характерной особенностью миозина является участие в нормальной жизнедеятельности сердечной мышцы и системы пищеварения. При употреблении в достаточном количестве нормализуется течение крови;

Что такое белок

Каждый фрагмент белка имеет в своем составе аминокислоты и 4 ключевых компонента: азот, водород, углерод и кислород. Практически не уступает по важности фосфор с серой.

Белки разделяются на 2 категории в зависимости от скорости действия в организме:

  • быстрые – это сывороточный протеин, организм получает его из молока и продуктов из него. Характеристика белка заключается в быстром процессе переваривания и разделения на аминокислотный состав белков. После употребления подобного белка заметно быстрее формируется мышечная масса, после занятий организм восстанавливается значительно быстрее, активно пополняется энергетический состав и подпитываются участки строительным материалом;
  • медленные белки состоят из более сложных соединений, которые обрабатываются организмом за более длительное время. Чаще они имеют пролонгированное действие на протяжении 6–8 часов. Представителями группы медленных белков является соевый вид и казеин. Их используют спортсмены для подавления катаболизма и устранения излишнего количества жировых отложений.

Организм одинаково нуждается в обоих типах белков, иначе могут развиться последствия дефицита. Обычному человеку, не занимающемуся спортом или тяжёлой работой, достаточно 1 г на 1 кг массы. Если человек испытывает интенсивные нагрузки, дозировку следует увеличивать в 2–3 раза.

Суть аминокислот

Продукты богатые важными аминокислотами

Протеин – это результат участия аминокислот и такие знания можно использовать для повышения эффективности тренировок. Нельзя забывать об этой основе, иначе успешного построения мышечной массы добиться будет невозможно. Принципы построения белков стали раскрываться с 1810 года, а полностью состав был расшифрован до 1930 года. По результатам исследования было обнаружено 20 аминокислот, которые и составляют белок. С помощью различной структуры молекул они участвуют в создании миллионов различных белков.

Характерное свойство аминокислот – это растворимость в жидкости и способность лёгкого вступления в химические реакции со щелочными и кислотными растворами. Суть разных аминокислот заключается в способности выступать регулятором метаболизма и в участии в строении клеток мышц. Каждая группа обладает собственным радикалом R, это помогает разделять их на группы по природе происхождения.

Если будет недостаточно 1 аминокислоты в составе, организм возьмёт её из запаса, но постепенно резерв исчерпается. При дефиците даже одного элемента можно столкнуться с тяжёлыми осложнениями, а о росте мышц можно забыть. За счёт других аминокислот не удаётся покрыть недостаток другого типа элемента.

В химии и биологии есть понятие биологически полноценных белков. Оно означает, что присутствуют все аминокислоты с активным действием, входящие в состав белков. Для получения полноценного питания организма стоит добавить в рацион бобовые культуры. Определить, какие аминокислоты входят в состав белков конкретного человека, в домашних условиях невозможно, судить можно только на основании симптомов. Для обеспечения биологической ценности белков нужно воспользоваться лабораторным исследованием, оно выявит, сколько видов аминокислот входит в состав белков и поможет скорректировать питание или назначить добавки.

После получения нужного количества аминокислот, они подвергаются многоэтапным преобразованиям, которые сделают их пригодными для построения белка. Минимальное количество преобразований проходит куриный белок из яиц, так как его состав идеально подходит для усвоения человеком.

Зачем нужны аминокислоты в организме

Особенности и функции основных аминокислот

Наибольшее значение и риск появления дефицита отмечается в отношении незаменимых аминокислот.

Сколько аминокислот входит в состав белка из незаменимой группы:

Стоит рассмотреть важнейшие аминокислоты, формирующие состав белка:

  • гистидин. Был выявлен в 1896 году, а научились синтезировать его в 1911 году. Основная его роль заключается в поддержании уровня гемоглобина, участии в выработке кровяных телец. Примечательно, что гистидин причисляется к медиаторам ЦНС;
  • тирозин относится к одной из ключевых аминокислот. Была обнаружена в 1846 году. Функции: ускорение процесса восстановления сил мышц, улучшение настроения, нормализация обмена веществ. Тирозин помещают практически во всё спортивное питание;

Строение протеиногенных аминокислот

Разобравшись с вопросами, сколько видов аминокислот входит в состав белков, и определившись с важностью этих веществ, можно сделать вывод о жизненной необходимости этих компонентов. При составлении рациона нужно учитывать необходимость в аминокислотах, это позволит защититься от последствий их дефицита.

Аминокислоты и белки (стр. 1 из 2)

Аминокислоты и белки

Строительными блоками белков служат аминокислоты. Классификация аминокислот.

1. Моноаминомонокарбоновые: Глицин, аланин, валин, лейцин, изолейцин.

2. Моноаминодикарбоновые: глутаминовая и аспаргиновая кислоты.

3. Диаминомонокарбоновые: аргинин, лизин, оксилизин.

4. Гидроксилсодержащие: треонин, серин.

5. Серусодержащие: цистин, метионин.

6. Ароматические: фенилаланин, тирозин.

7. Гетероциклические: триптофан, пролин, оксипролин, гистидин.

Аминокислота представляет собой производное органиче­ской кислоты, в котором водород в α-положении замещен на аминогруппу (-NH2 ). Например, из уксусной кислоты образуется глицин, а из пропионовой — аланин. В аминокислотах одновременно присутствуют и кислотная и основная группы (карбоксил —СООН и аминогруппа —NH2 ), они относятся к амфотерным соединениям .

Присутствующие в клетке свободные аминокислоты образуются в ре­зультате расщепления белков или поступают из межклеточной жидкости. Свободные аминокислоты составляют так называемый аминокислотный фонд, из которого клетка черпает строительные блоки для синтеза новых белков.

Связь R—NH—СО—R называется пептидной связью. Образующаяся молекула также является амфотерной, поскольку на одном ее конце всегда находится кислая группа, а на другом — основная; боковые цепи (остатки аминокислот) могут быть основными или кислыми. Комбинация из двух аминокислот носит название дипептида, из трех — трипептида. Пептид, состоящий из небольшого числа аминокислот, назы­вается олигопептидо.и. Если же число аминокислот в молекуле достаточно велико, вещество называют полипептидом.

Расстояние между двумя пептидными связями равно примерно 0,35 нм. Молекула белка с мол. массой 30 000, состоящая из 300 аминокислотных остатков, в полностью вытянутом состоянии должна иметь длину 100 нм, ширину 1 нм и толщину 0,46 нм.

Белки называют протеинами (греч. протео — занимаю пер­вое место). Это слово [в русском языке оно сохранилось лишь в названиях сложных белков] указывает, что все основные функции организма связаны со специфическими белками. Они входят в состав ферментов и со­кратительного аппарата клеток, присутствуют в крови и других межклеточ­ных жидкостях. Некоторые длииноцепочечные белки, такие, как коллаген и эластин, играют важную роль в построении тканевых структур.

[3]

Кератин и кол­ лаген нерастворимы и обладают фибриллярной структурой; глобулярные белки, например яичный альбумин и белки сыворотки, растворимы в воде и солевых растворах и их молекулы имеют сферическую, а не нитевидную форму.

Читайте так же:  Витамины во время беременности

Сложные белки, в молекулу которых входит небелковая часть, так называемая простетическая группа. К ним принадлежат нуклеопротеиды ,липо протеиды и хромопротеиды (гемоглобин, гемоцианин и цитохромы), в которых простетической группой служит пигмент. Простетической группой гемоглобина и миоглобина (белка мышц) является гем — металлсодержащее органическое соединение, связывающее кислород.

Первичная структура белков . Полипептидная цепь, построенная из аминокислот, представляет собой первичную структуру белковой молекулы. Это наиболее важная специфическая структура, до некоторой степени опре­деляющая так называемые вторичную и третичную структуры белка. Агре­гаты белковых субъединиц, обладающих вторичной и третичной структурой, составляют четвертичную структуру.

Изучение порядка расположения аминокислот в молекуле белка стало возможным после того, как были разработаны методы расщепления белков. Первый успех принадлежит Сэнджеру, которому в 1954 г. удалось, наконец, полностью расшифровать последовательность аминокислот в инсулине. Молекула инсулина состоит из двух цепей: А-цепь содержит 21 аминокислоту, а В-цепь — 30. Обе цепи соединены двумя дисульфидными (—S—S—) связями.

В молекуле белка аминокислоты уложены как бусины на нити, и последовательность их расположения имеет важное биологическое значение. Например, ферментативные свойства некоторых белков определяются по­следовательностью аминокислот на небольшом участке цепи, называемом активным центром . В молекуле гемоглобина замена одной-единствен­ной аминокислоты уже приводит к глубоким биологическим изменениям.

Вторичная структура белков . Молекула белка состоит из нескольких сотен аминокислот, и поэтому полипептидная цепь лишь в редких случаях бывает вытянута полностью; обычно она определенным образом изогнута, образуя вторичную структуру. Фибриллярные белки (склеропротеины) часто характеризуются упорядоченным расположением цепей, благодаря чему их можно исследовать методом рентгеноструктур­ного анализа. В результате этих исследований было найдено, что фибриллярные белки можно разбить на три структурных типа или группы.

В белках типа β-кератина смежные цепи расположены таким образом, что образуют струк­туру складчатого слоя . В этой структуре боковые группы (амино­кислотные остатки) перпендикулярны плоскости, в которой лежат сами цепи; отдельные цепи соединены друг с другом водородными связями, образуя «пептидную решетку».

В белках типа α-кератина полипептидная цепь закручена в виде спи­рали, образуя так называемую а-спиральную структуру . Водо­родные связи в этом случае являются внутримолекулярными, а не межмо­лекулярными. Для группы коллагена предложена модель, состоящая из трех спиралей.

Третичная структура белков . В глобулярных белках полипептидные цепи определенным образом свернуты, образуя компактную структуру. Расположение таких цепей в пространстве очень сложно, но может быть выяснено мето­дом рентгеноструктурпого анализа.

Пространственное расположение це­пей до некоторой степени предопределено последовательностью чередования амино­кислот в первичной структуре и связями, образующимися между некоторыми амино­кислотными остатками. Многие биологи­ческие свойства белков, например фермен­тативная активность и антигенноетъ, свя­заны именно с третичной структурой.

Четвертичная структура белка; прин­ цип самосборки. В отличие от первич­ной, вторичной и третичной структур, которые содержат одну полипептидную цепь, четвертичная структура состоит из двух или более цепей. Эти цепи могут быть одинаковыми или раз­ными, но в обоих случаях они связаны слабыми связями (нековалентнымн). Нап­ример, молекула гемоглобина состоит из четырех полипептидных субъединиц — двух α и двух β-цепей. Разделение и ас­социация этих субъединиц может проис­ходить спонтанно.Под действием мочевины молекула ге­моглобина распадается на две половники, одна из которых состоит из двух α-субъединиц, в другая из двух β -субъединиц. При удалении мочевины они объединяются вновь, образуя четырехкомпонентную молекулу. Этот процесс высокоспецифичен: объединяться могут только две разные половинки молекул (так называемый принцип самосборки). Многие ферменты и другие белки с мол. массой свыше 50 000, вероятно, обладают четвертичной структурой. Например, альдолаза (мол. масса 150 000) распадается при низком рН на субъединицы с мол. массой 50 000 каждая, но вновь ассоциирует при ней­тральном рН.

Связи в белковой молекуле . В структуре белков встречаются самые различные типы связей. Первичная структура (пептидная связь) полностью определяется химическими, или ковалентными , связями. Между остаткам цистина (например, в инсулине и рибонуклеазе) образуются S—S-связи той же природы. Вторичная и третичная структуры стабилизируются рядом более слабых связей. Эти связи можно класси­фицировать следующим образом:

1. Ионные, или электростатические, связи между положительными и отрицательными ионами, находящимися на расстоянии 0,2. 0,3 нм.

2. Водородные связи (длина связи 0,25. 0,32 нм); эти по существу также электростатические связи, но более слабые, чем ионные, образуются между двумя сильно отрицательными атомами — С, N или О.

3. Слабые связи между неполярными боковыми цепями, возникающие в результате взаимного отталкивания молекул растворителя.

4. Связи, образующиеся за счет вандерваальсовых сил при взаимодействии полярных боковых цепей.

Электрические заряды белков . Все аминокислоты являются амфолитами (цвиттерионами), обладающими положительно и отрицательно заряженными группами (—NH2 и —СООН). Так как эти группы участвуют в образовании пептидной связи, в полипептидной цепи свободными остаются только кон­цевые СООН- и — NH2- группы, а также СООН-группы из дикарбоновых амино­кислот и NH2 -группы из диаминокислот. Все эти группы ионизируются сле­дующим образом:

1. Кислые группы теряют протоны и становятся отрицательно заряженными. Этот тип диссоциации встречается в дикарбоновых аминокислотах (аспарагиновая и глутаминовая), у которых свободная карбоксильная группа диссоциирует на СОО — и Н + .

2. Основные группы, приобретая протон, становятся положительно заряженными. Этот тип встречается в аминокислотах с двумя основными группами (лизин и аргинин), у которых свободные аминогруппы ионизи­руются с образованием положительного заряда.

Все эти так называемые ионогенные группы вместе с концевыми свобод­ными карбоксильными и аминогруппами участвуют в кислотно-щелочных реакциях белков и определяют электрические свойства белковых молекул.

Движение белков в электирическом поле — электрофорез.
Аминокислоты — соединения, содержащие амино- и карбок­сильную группы. В зависимости от расположения амино- и кар­боксильной групп различают α-, β-, γ-, δ- и т. д. аминокислоты:

α-Аминокислоты являются составными частями белков и уча­ствуют в важнейших биологических процессах. Первая аминокис­лота была выделена в 1820 г. французским исследователем X. Браконно кислотным гидролизом желатины, однако лишь через 13 лет в ней было обнаружено присутствие азота. Позднее была показана роль α-аминокислот как структурных элементов белка (Н. Н. Любавин, 1871 г.). К началу XX в. методом гидролиза бел­ка было выделено более 20 аминокислот.

Читайте так же:  Как принимать протеин мужчинам

Виды связей аминокислот в белках

Различают прочные, ковалентные связи: пептидные, дисульфидные и непрочные, нековалентные связи в молекуле белка: водородные, ионные, вандерваальсовые, гидрофобные.

Пептидные связи (- СО-NН -) являются основным видом связей в белках. Впервые они были изучены А.Я. Данилевским (1888 г.). Пептидные связи образованы путём взаимодействия ?- карбоксильной группы одной аминокислоты и ? — аминогруппы другой аминокислоты. Пептидная связь является сопряжённой связью, электронная плотность в ней смещена от азота к кислороду, в силу чего она занимает промежуточное положение между одинарной и двойной связью. Длина пептидной связи составляет 0,132 нм. Вращение атомов вокруг пептидной связи затруднено, атомы О и Н в ней находятся в транс-положении. Все атомы пептидной связи располагаются в одной плоскости. Атомы О и Н пептидной связи могут дополнительно образовывать водородные связи с другой пептидной связью. Пептидные связи определяют порядок чередования аминокислот в полипептидной цепи белка, т.е. формируют первичную структуру белка. Пептидные связи — прочные связи (энергия разрыва составляет около 95 ккал/моль). Расщепление пептидных связей осуществляется при кипячении белка в присутствии кислот, щелочей или под действием ферментов пептидаз.

Видео (кликните для воспроизведения).

Дисульфидные связи (-S- S-) образованы двумя молекулами цистеина в составе белковой молекулы. Возможны внутрицепочечные дисульфидные «мостики» в пределах одной полипептидной цепи и межцепочечные связи между отдельными полипептидными цепями. Например, в молекуле гормона инсулина присутствуют оба варианта дисульфидных связей. Дисульфидные связи определяют пространственную укладку белковой молекулы, т.е. третичную структуру белков. Дисульфидные связи разрываются при действии некоторых восстановителей и при денатурации белка.

Водородные связи возникают между атомом водорода и электроотрицательным атомом, чаще кислородом. Водородные связи примерно в 10 раз слабее пептидных связей. Наиболее часто они возникают между атомом Н и атомом О различных пептидных связей: либо близко расположенных в молекуле белка, либо находящихся в разных полипептидных цепях. Огромное количество водородных связей фиксирует в белках в основном вторичную структуру (?-спираль и ? — складчатую структуру) но также участвуют в образовании третичной и четвертичной структур белка. Непрочные водородные связи легко разрываются при денатурации белка.

Ионные связи образуются между противоположно заряженными аминокислотами в составе белковой молекулы (положительно заряженными лизином, аргинином, гистидином и отрицательно заряженными глютаматом и аспартатом). Ионные связи определяют пространственную укладку белков, т.е. формируют третичную и четвертичную структуры белков. Ионные связи разрываются при денатурации.

Ван-дер-ваальсовые взаимодействия — разновидность связей, возникающих при кратковременной поляризации атомов.

Гидрофобные связи возникают между неполярными (гидрофобными) радикалами аминокислот в полярном растворителе (вода). Гидрофобные радикалы погружаются внутрь белковой молекулы, меняя пространственное расположение полипептидной цепи. Гидрофобные взаимодействия имеют энтропийную природу, придают устойчивость молекуле белка, формируют его третичную, а также четвертичную структуру.

Расположение аминокислот в молекуле белка

§ 7. ОБЩИЕ ПРЕДСТАВЛЕНИЯ О БЕЛКАХ

Белки, или протеины (в переводе с греческого означает «первые», или «важнейшие»), присутствуют во всех клетках. На их долю у животных приходится около половины сухой массы, у растений – 20 – 35 %. В белках массовая доля углерода в среднем составляет

1 – 3 %. В их составе также встречаются и другие химические элементы.

Белки – наиболее многочисленные и исключительно многообразные по функциям макромолекулы, играющие фундаментальную роль в формировании и поддержании структуры и функций живых организмов. С белками в живом организме связаны такие биологические процессы, как рост, деление, размножение и развитие клеток, реализация наследственной информации, мышечные сокращения, нервная деятельность, обмен веществ и т.д.

Белки – это высокомолекулярные биополимеры, структурную основу которых составляют полипептидные цепи, состоящие из аминокислотных остатков, связанных друг с другом пептидной связью. При их гидролизе образуются аминокислоты. В составе белков встречаются двадцать стандартных аминокислот. Для каждой стандартной аминокислоты существует генетический код, при помощи которого в генах записана информация о кодируемом белке. Кроме двадцати стандартных аминокислот, в составе белка встречаются и другие аминокислоты, они образуются в результате модификации стандартных аминокислот, после того как последние были включены в состав молекулы белка. Например, в составе белка коллагена содержится 5-гидроксилизин, который образуется в результате модификации стандартной аминокислоты лизина:

Кроме аминокислотных остатков, в состав белков могут входить и другие компоненты: ионы металлов, углеводы, липиды, нуклеиновые кислоты и др. Многообразие белков определяется не только их качественным составом, но и числом аминокислотных остатков, и прежде всего порядком их чередования в молекуле. Потенциально разнообразие белков безгранично.

[1]

Между аминокислотными остатками в молекуле белка существуют различные химические взаимодействия, это – ковалентные, ионные, водородные связи, гидрофобные взаимодействия, ван-дер-ваальсовы силы.

Рассмотрим их подробнее.

Ковалентные связи

В молекуле белка аминокислотные остатки соединяются друг с другом пептидной связью. По своей природе пептидная связь является ковалентной. Ее образование происходит за счет аминогруппы одной аминокислоты и карбоксильной группы другой аминокислоты:

В результате взаимодействия двух аминокислот образуется дипептид, состоящий соответственно из двух аминокислотных остатков, расположенных по обе стороны пептидной связи. Аналогичным образом могут соединиться три аминокислоты и при помощи двух пептидных связей образовать трипептид:

Точно так же можно получить тетрапептиды, пентапептиды и т.д. Если таким образом соединить большое число аминокислот, то возникнет структура, называемая полипептидом. Таким образом, молекулы белков представляют собой длинные полипептидные цепи, в которых аминокислотные остатки соединены друг с другом пептидными связями.

В пептидах выделяют особую структуру – пептидную группу. Ее образуют атомы кислорода, углерода, азота и водорода. Все атомы, образующие пептидную группу, находятся в одной плоскости. Пептидная связь в какой-то степени имеет характер двойной связи: вокруг нее нет свободного вращения и она короче других C–N-связей. Кислород и водород относительно пептидной связи находятся преимущественно в транс-положении.

Пептидные связи очень прочные, и для их химического гидролиза требуются жесткие условия, они гидролизуются лишь при длительном нагревании при высоких температурах в кислой среде. В клетке пептидные связи могут разрываться в мягких условиях с помощью ферментов, называемых протеазами, или пептидгидролазами.

Между остатками цистеина в молекуле белка могут образовываться дисульфидные связи (или дисульфидные мостики):

Дисульфидные мостики так же, как и пептидные связи, относятся к ковалентным связям. Дисульфидные мостики могут возникать как внутри полипептидной цепи, так и между различными полипептидными цепями:

Читайте так же:  Как пить л глютамин

Дисульфидные связи имеются не во всех белках.

Интересно знать! В составе волос содержится белок кератин. В его молекуле имеется большое количество дисульфидных связей. С помощью химической завивки волосам можно придать другую форму. Для этого волосы сначала накручивают на бигуди, затем обрабатывают раствором реагента-восстановителя, разрушающего дисульфидные связи, и прогревают. В результате этого кератин приобретает иную пространственную структуру. Далее волосы промывают и обрабатывают реагентом-окислителем, при этом происходит образование новых дисульфидных связей. Вследствие этого вновь приобретенная структура кератина стабилизируется. Волосы приобретают другую форму.

Ионные связи возникают между радикалами аминокислотных остатков, имеющих противоположные заряды, например, между положительно заряженной аминогруппой (-NH3 + ) остатка лизина и отрицательно заряженной карбоксильной группой (-СОО — ) остатка глутаминовой кислоты:

Гидрофобные взаимодействия

Гидрофобные радикалы аминокислот избегают контактов с водой и поэтому стремятся собраться вместе с помощью так называемых гидрофобных взаимодействий, образуя плотное гидрофобное ядро. Такие взаимодействия возможны, например, между остатками изолейцина и фенилаланина:

Водородные связи

Водородная связь в молекуле белка осуществляется между имеющим частично положительный заряд атомом водорода одной группировки и атомом (кислород, азот), имеющим частично отрицательный заряд и неподеленную электронную пару другой группировки. В белках различают два варианта образования водородных связей: между пептидными группами

и между боковыми радикалами полярных аминокислот. В качестве примера рассмотрим образование водородной связи между радикалами аминокислотных остатков, содержащих гидроксильные группы:

Ван-дер-ваальсовы силы имеют электростатическую природу. Они возникают между разноименными полюсами диполя. В молекуле белка существуют положительно и отрицательно заряженные участки, между которыми возникает электростатическое притяжение.

Рассмотренные выше химические связи принимают участие в формировании структуры белковых молекул. Благодаря пептидным связям образуются полипептидные цепи и, таким образом, формируется первичная структура белка. Пространственная организация белковой молекулы определяется в основном водородными, ионными связями, ван-дер-ваальсовыми силами, гидрофобными взаимодействиями. Водородные связи, возникающие между пептидными группами, определяют вторичную структуру белка. Формирование третичной и четвертичной структуры осуществляется водородными связями, образующимися между радикалами полярных аминокислот, ионными связями, ван-дер-ваальсовыми силами, гидрофобными взаимодействиями. Дисульфидные связи принимают участие в стабилизации третичной структуры.

Биологическое значение белков

Белки-это высокомолекулярные (молеку­лярная масса варьируется от 5-10 тыс. до 1 млн и более) природные полимеры, молекулы которых построены из остатков аминокислот, соединенных амидной (пептидной) связью.

Белки также называют протеинами (греч. «протос» — первый, важный). Число остатков амино­кислот в молекуле белка очень сильно колеблется и иногда достигает несколь­ких тысяч. Каждый белок об­ладает своей присущей ему последовательностью распо­ложения аминокислотных остатков.

Белки выполняют разнообразные биологичес­кие функции: каталитические (ферменты), регуля­торные (гормоны), структурные (коллаген, фибро­ин), двигательные (миозин), транспортные (гемоглобин, миоглобин), защитные (иммуноглобули­ны, интерферон), запасные (казеин, альбумин, глиадин) и другие.

Белки — основа биомембран, важнейшей состав­ной части клетки и клеточных компонентов. Они играют ключевую роль в жиз­ни клетки, составляя как бы материальную основу ее хи­мической деятельности.

Исключительное свойство белка — самоорганизация структуры, т. е. его способ­ность самопроизвольно соз­давать определенную, свой­ственную только данному белку пространственную структуру. По существу, вся деятельность организма (развитие, движение, выполнение им различных функций и многое дру­гое) связана с белковыми веществами. Без белков невозможно представить себе жизнь.

Белки — важнейшая составная часть пищи че­ловека и животных, поставщик необходимых ами­нокислот.

Строение белков

В пространственном строении белков большое значение имеет характер радикалов (остатков) R— в молекулах аминокислот. Неполярные радикалы аминокислот обычно располагаются внутри макро­молекулы белка и обусловливают гидрофобные взаимодействия; полярные радикалы, содержащие ионогенные (образующие ионы) группы, обычно находятся на поверхности макромолекулы белка и характеризуют электростатические (ионные) вза­имодействия. Полярные неионогенные радикалы (например, содержащие спиртовые ОН-группы, амидные группы) могут располагаться как на по­верхности, так и внутри белковой молекулы. Они участвуют в образовании водородных связей.

В молекулах белка α-аминокислоты связаны между собой пептидными (—СО—NH—) связями:

Построенные таким образом полипептидные це­пи или отдельные участки внутри полипептидной цепи могут быть в некото­рых случаях дополнительно связаны между собой дисульфидными (—S—S—) связями или, как их часто называют, дисульфидными мостиками.

Большую роль в создании структуры белков играют ион­ные (солевые) и водородные связи, а также гидрофобное взаимодействие — особый вид контактов между гидрофоб­ными компонентами молекул белков в водной среде. Все эти связи имеют различную прочность и обеспечивают образование сложной, большой молекулы белка.

Несмотря на различие в строении и функциях белковых веществ, их элементный состав колеб­лется незначительно (в % на сухую массу): угле­рода — 51-53; кислорода — 21,5-23,5; азота — 16,8-18,4; водорода — 6,5-7,3; серы — 0,3-2,5.

Некоторые белки содержат в небольших количе­ствах фосфор, селен и другие элементы.

Последовательность соединения аминокислот­ных остатков в полипептидной цепи получила на­звание первичной структуры белка.

Белковая молекула может состоять из одной или из нескольких полипептидных цепей, каж­дая из которых содержит различное число аминокис­лотных остатков. Учитывая число их возможных комби­наций, можно сказать, что разнообразие белков почти безгранично, но не все из них существуют в природе.

Общее число различных ти­пов белков у всех видов жи­вых организмов составляет 10 11 -10 12 . Для белков, строение которых отлича­ется исключительной сложностью, кроме первич­ной, различают и более высокие уровни структур­ной организации: вторичную, третичную, а иногда и четвертичную структуры.

Вторичной структурой обладает большая часть белков, правда, не всегда на всем протяжении полипептидной цепи. Полипептидные цепочки с определенной вторичной структурой могут быть по-разному расположены в пространстве.

В формировании третичной структуры, кроме водородных связей, большую роль играют ион­ное и гидрофобное взаимодействия. По характеру «упаковки» белковой молекулы различают глобу­лярные, или шаровидные, и фибриллярные, или нитевидные, белки (табл. 12).

Для глобулярных белков более характерна а-спиральная структура, спирали изогнуты, «свер­нуты». Макромолекула имеет сферическую форму. Они растворяются в воде и солевых растворах с об­разованием коллоидных систем. Большинство бел­ков животных, растений и микроорганизмов отно­сится к глобулярным белкам.

Для фибриллярных белков более характерна нитевидная структура. Они, как правило, не рас­творяются в воде. Фибриллярные белки обычно выполняют структурообразующие функции. Их свойства (прочность, способность растягиваться) за­висят от способа упаковки полипептидных цепо­чек. Примером фибриллярных белков служат мио­зин, кератин. В ряде случаев отдельные субъ­единицы белка с помощью во­дородных связей, электроста­тического и других взаимо­действий образуют сложные ансамбли. В этом случае об­разуется четвертичная струк­тура белков.

Читайте так же:  Пить протеин перед тренировкой

Примером белка с четвер­тичной структурой служит гемоглобин крови. Только с такой структурой он выполняет свои функции — связывание кислорода и транспортировка его в ткани и органы.

Однако следует отметить, что в организации бо­лее высоких структур белка исключительная роль принадлежит первичной структуре.

Классификация белков

Существует несколько классификаций белков:

  1. По степени сложности (простые и сложные).
  2. По форме молекул (глобулярные и фибрилляр­ные белки).
  3. По растворимости в отдельных растворителях (водорастворимые, растворимые в разбавлен­ных солевых растворах— альбумины, спирто­растворимые — проламины, растворимые в раз­бавленных щелочах и кислотах — глутелины).
  4. По выполняемым функциям (например, запас­ные белки, скелетные и т. п.).

Свойства белков

Белки — амфотерные электролиты. При опреде­ленном значении pH среды (оно называется изоэлектрической точкой) число положительных и от­рицательных зарядов в молекуле белка одинаково. Это одно из основных свойств белка. Белки в этой точке электронейтральны, а их растворимость в во­де наименьшая. Способность белков снижать рас­творимость при достижении электронейтральности их молекул используется для выделения из раство­ров, например, в технологии получения белковых продуктов.

Гидратация. Процесс гидратации означает свя­зывание белками воды, при этом они проявля­ют гидрофильные свойства: набухают, их масса и объ­ем увеличиваются. Набуха­ние отдельных белков за­висит исключительно от их строения. Имеющиеся в со­ставе и расположенные на поверхности белковой ма­кромолекулы гидрофильные амидные (—СО—NH—, пеп­тидная связь), аминные (—NH2) и карбоксильные (—СООН) группы притягивают к себе молекулы воды, строго ориентируя их на поверхности моле­кулы. Окружающая белковые глобулы гидратная (водная) оболочка препятствует агрегации и осаж­дению, а следовательно, способствует устойчиво­сти растворов белка. В изоэлектрической точке белки обладают наименьшей способностью свя­зывать воду, происходит разрушение гидратной оболочки вокруг белковых молекул, поэтому они соединяются, образуя крупные агрегаты. Агрега­ция белковых молекул происходит и при их обе­звоживании с помощью некоторых органических растворителей, например, этилового спирта. Это приводит к выпадению белков в осадок. При из­менении pH среды макромолекула белка стано­вится заряженной, и его гидратационная способ­ность меняется.

При ограниченном набухании концентрирован­ные белковые растворы образуют сложные систе­мы, называемые студнями.

Студни не текучи, упруги, обладают пластичностью, определенной механической прочностью, способны сохра­нять свою форму. Глобуляр­ные белки могут полностью гидратироваться, растворяться в воде (например, белки молока), образуя растворы с невысокой кон­центрацией. Гидрофильные свойства белков, т. е. их способность набухать, образовывать студни, стабилизировать суспензии, эмульсии и пены, имеют большое значение в биологии и пищевой промышленности. Очень подвижным студнем, по­строенным в основном из молекул белка, является цитоплазма — сырая клейковина, выделенная из пшеничного теста; она содержит до 65 % воды. Различная гидрофильность клейковинных бел­ков — один из признаков, характеризующих ка­чество зерна пшеницы и получаемой из него муки (так называемые сильные и слабые пшеницы). Ги­дрофильность белков зерна и муки играет боль­шую роль при хранении и переработке зерна, в хлебопечении. Тесто, которое получают в хлебо­пекарном производстве, представляет собой набух­ший в воде белок, концентрированный студень, содержащий зерна крахмала.

Денатурация белков. При денатурации под вли­янием внешних факторов (температуры, механиче­ского воздействия, действия химических агентов и ряда других факторов) происходит изменение вторичной, третич­ной и четвертичной структур белковой макромолекулы, т. е. ее нативной простран­ственной структуры. Первич­ная структура, а следователь­но, и химический состав белка не меняются. Изменяются физические свой­ства: снижается растворимость, способность к ги­дратации, теряется биологическая активность. Меняется форма белковой макромолекулы, проис­ходит агрегирование. В то же время увеличивает­ся активность некоторых химических групп, об­легчается воздействие на белки протеолитических ферментов, а следовательно, он легче гидролизу­ется.

В пищевой технологии особое практическое значение имеет тепловая денатурация белков, степень которой зависит от температуры, продол­жительности нагрева и влажности. Это необходи­мо помнить при разработке режимов термообра­ботки пищевого сырья, полуфабрикатов, а иногда и готовых продуктов. Особую роль процессы те­пловой денатурации играют при бланшировании растительного сырья, сушке зерна, выпечке хлеба, получении макаронных изделий. Денатура­ция белков может вызываться и механическим воздействием (давлением, растиранием, встряхи­ванием, ультразвуком). Наконец, к денатурации белков приводит действие химических реагентов (кислот, щелочей, спирта, ацетона). Все эти при­емы широко используются в пищевой и биотех­нологии.

Пенообразование. Под процессом пенообразования понимают способность белков образовывать высококонцентрированные системы «жидкость — газ», называемые пенами. Устой­чивость пены, в которой бе­лок является пенообразовате­лем, зависит не только от его природы и от концентрации, но и от температуры. Белки в качестве пенообразо­вателей широко используются в кондитерской про­мышленности (пастила, зефир, суфле). Структуру пены имеет хлеб, а это влияет на его вкусовые ка­чества.

Молекулы белков под влиянием ряда факторов могут разрушаться или вступать во взаимодействие с другими веществами с образованием новых про­дуктов. Для пищевой промышленности можно вы­делить два важных процесса:

1) гидролиз белков под действием ферментов;

2) взаимодействие аминогрупп белков или амино­кислот с карбонильными группами восстанавли­вающих сахаров.

Под влиянием ферментов протеаз, катализиру­ющих гидролитическое расщепление белков, по­следние распадаются на более простые продукты (поли- и дипептиды) и в конечном итоге на ами­нокислоты. Скорость гидролиза белка зависит от его состава, молекулярной структуры, активности фермента и условий.

Гидролиз белков. Реакцию гидролиза с образо­ванием аминокислот в общем виде можно записать так:

Горение. Белки горят с образованием азота, углекислого газа и воды, а также некоторых дру­гих веществ. Горение сопровождается характер­ным запахом жженых перьев.

Цветные реакции на белки. Для качественного определения белка используют следующие реакции:

1) ксантопротеиновую, при которой происходит взаимодействие ароматических и гетероатомных циклов в молекуле белка с концентриро­ванной азотной кислотой, сопровождающееся появлением желтой окраски.

Видео (кликните для воспроизведения).

2) биуретовую, при которой происходит взаимо­действие слабощелочных растворов белков с раствором сульфата меди (II) с образованием комплексных соединений между ионами Сu 2+ и полипептидами. Реакция сопровождается по­явлением фиолетово-синей окраски.

Источники


  1. Гурвич, М. М. Диетология. Полное руководство / М.М. Гурвич. — М.: Эксмо, 2013. — 592 c.

  2. Ситель, Анатолий Гимнастика будущего / Анатолий Ситель. — М.: Метафора, 2010. — 128 c.

  3. Велла, М. Атлас анатомии для силовых упражнений и фитнеса / М. Велла. — М.: АСТ, 2007. — 247 c.
Расположение аминокислот в молекуле белка
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here