Расщепление белков до пептидов и аминокислот

Важная и проверенная информация на тему: "расщепление белков до пептидов и аминокислот" от профессионалов для спортсменов и новичков.

ОБМЕН БЕЛКОВ И АМИНОКИСЛОТ.

Белки являются источником N2 для организма, поступающий с белками азот выводится в виде конечных продуктов азотистого обмена, который характеризуется понятием азотистый баланс.

Азотистый баланс – разница между поступающими в организм N2 и выводимым из организма.

Различают три вида:

Ø Азотистое равновесие

Ø Положительный азотистый баланс

Ø Отрицательный азотистый баланс

При положительном азотистом балансе поступление N2 преобладает над выделением. Различают «+» азотистый баланс (беременность). Для детей 1 года жизни — +30%, в 4 года — +25%, в подростковом (14 лет) +14%. Ложный «+» азотистый баланс, при котором происходит задержка в организме конечных продуктов азотистого обмена. Это наблюдается при заболевании почек.

«-» азотистый баланс – преобладает выделение над поступлением. Это при тяжелых заболеваниях, туберкулез, ревматизм, онкологических заболеваний.

Азотистое равновесие – поступление N2=его выделению. Характерно для здоровых взрослых людей.

Азотистый обмен характеризуется коэффициентом изнашивания – то количество белка, которое теряется из организма в условиях полного белкового голодания. Для взрослого – 53 мг/1 кг, 24 г/сут. У новорожденных коэффициент изнашивание выше и составляет 120мг/кг. Азотистое равновесие обеспечивается белковым питанием. Этот белковый рацион должен иметь определенное количество и начальными характеристиками.

Для взрослых существует 2 нормы:

Белковый минимум – то количество белка, которое обеспечивает азотистое равновесие при условии, что все энергетические затраты обеспечиваются углеводами и жирами. 40-45 г/сут.

Белковый оптимум – если долго использовать белковый минимум, то постепенно при ограниченном доступе страдают иммунные процессы, процессы кроветворения, репродуктивная система, поэтому оптимально для взрослых является более высокая норма – оптимум (оно обеспечивает выполнение всех его функций без ущерба для здоровья). 100 – 120 г/сут.

Для детей: В настоящее время норма потребления пересматривается в сторону их снижения. Для новорожденного ≈ 2 г/кг, к концу 1 года до 1 г/сут (при естественном вскармливании). 1,5 – 2 г/сут (при искусственном вскармливании.

Все белки делятся на полноценные и неполноценные. Полноценные белки должны отвечать следующим требованиям:

Ø Содержать набор всех незаменимых аминокислот (валин, лейцин, изолейцин, тропин, метионин, лизин, аргенин, гистидин, триптофан, фенилаланин).

Ø Соотношение между аминокислотами должно быть близким к соотношению в тканевых белках

Ø Хорошо перевариваться в ЖКТ

Полноценные жиры – животные. Для новорожденных все белки должны быть полноценными (белки грудного молока). В возрасте 3-4 года ≈ 70-75% должны быть полноценными. Для взрослых ≈ 50%.

Ø Протеолитические ферменты выделяются в неактивном состоянии (защитный механизм от переваривания тканевых белков)

Ø Их активирование происходит в просвете ЖКТ путем частичного протеолиза

Ø Протеазы ЖКТ могут относится либо к эндопептидам или экзопептидазам (концевые аминокислоты отрываются) они отличаются субстратной специфичностью.

Переваривание белков происходит в желудке и в тонком кишечнике. Основной фермент расщепляющий белок является пепсин. Он выделяется в неактивном состоянии в виде профермента – пепсиногена. Под действием HCl идет частичный протеолиз и превращение его в активную форму пепсин.

Это обнажает активный центр, меняет структуру белка. Пепсин относится к эндопептидазам (разрывает внутри пептидные связи) тирозин – фенлиаланин действует после этих аминокислот.

Ø Специфичный активатор пепсиногена

Ø Обеспечивает оптимум рН для пепсина (рН = 1-2)

Ø Вызывает частичную денатурацию белка

Ø Бактерицидный барьер

Слизистая желудка имеет целый ряд защитных механизмов:

a) выработка слизи (основной компонент ТАГ)

b) выделение пепсина в неактивном состоянии

c) выделение бикарбонатов

У детей процессы переваривания менее активны, чем у взрослых так как менее активный пепсин, более щелочная среда в желудке у маленьких детей в желудке кроме пепсина есть хемозин (фермент створаживающий молоко), гастриксин (рН 4-5), протеазы грудного молока, катепсины. В желудке происходит частичное перевариваривание белков до пептидов. Дальнейшее переваривание в тонком кишечнике под действием ферментов поджелудочной железы и собственные ферменты.

Ферменты поджелудочной железы:

трипсин – выделяется поджелудочной железой в неактивном состоянии в виде трипсиногена, активируется ферментом энтеропептидазой (киназой) вырабатываемой слизистой кишечника. Активация путем частичного протеолиза ( 6 аминокислот)→освобождается активный центр. В активном центре в зоне связывания преобладают кислые кислоты (глю, асп), поэтому трипсин расщепляет пептидную связь образованную лизином и аргинином. Он активирует и другие ферменты и себя.

Хемотрипсин – вырабатывается в неактивном состоянии — хемотрипсиноген, активируется трипсином путем частичного протеолиза, относится к эндопептидазам, содержат в активном центре гидрофобной аминокислоты, расщепляет связи ароматических кислот (фен, тир)

Эластаза – активирует проэластаза, трипсином (частичный протеолиз), в активном центре эластазы преобладает ГЛИ, действует на пептидные связи.

Карбоксилазы – относятся к эндопептидазам, отщепляет концевые аминокислоты, тип А-отщепляют С-конец аминокислоты, ароматические (фен, тир) тип В – отщепления С-концевой от лизина и аргинина.

Ферменты поджелудочной железы:

Аминопептидазы – эйкопептидазы, отщепляют N-конец аминокислоты среди аминопептидаз активной является лейкоаминопептидаза (ЛАГ). Дипептидазы расщепляет дипептидазы. В тонком кишечнике происходит полная гидролитическое расщепление пищевых белков до аминокислот. Образовавшиеся аминокислоты подвергаются всасыванию. У детей снижена активность ферментов слизистой кишечника и поджелудочной железы.

Na-зависимый активный процесс, нужна АТФ; перенос отдельных аминокислот осуществляется специальными переносчиками. Среди транспортных систем наиболее важной является система, предполагающая участие:

Ø трипептидаза глютадиона (глю-гли-цис) и глю имеет свободные СООН группы

Аминакислота связана с глютаминовой кислотой и образует комплекс→подвергается всасыванию, глю-возвращается. Эта активно для ЦНС, сер, треонина.

У детей могут всасываться не только аминокислоты, но и пептиды и низкомолекулярными белками. Эта способность имеет 2 следствия:

Ø могут поступать Jg, антитела из грудного молока

Ø вызывают аллергическую реакцию

ГНИЕНИЕ БЕЛКОВ В ТОНКОМ КИШЕЧНИКЕ

Процессу гниения подвергаются не полностью расщепляющиеся белки и отдельные аминокислоты. Оно под действием ферментов гнилостной микрофлоры. При гниении образуется большое количество газообразного и негазообразного нередко токсичные веществ. К продуктам гниения относится: CO2, CH4, NH3, H2S, меркаптаны, альдегиды, кетоны, карболовые кислоты, диамины.

Читайте так же:  В 1 какой витамин

Диамины образуются из аминокислот (лизин, орнитин). При их декарбоксилировании образуется:

Могут выводится из кишечника или обезвреживаться в печени, могут обезвреживать токсичные циклические продукты.

Чрезвычайно токсичные, их всасывание происходит по системе vena porta, обезвреживание в печени.

ОБЕЗВРЕЖИВАНИЕ В ПЕЧЕНИ ПРОДУКТОВ ГНИЕНИЯ БЕЛКОВ

1. синтез мочевины из NН3

2.

микросомальное окисление токсичных веществ – участвуют мооксидазы, в результате гидроксилирования идет снижение токсичности, повышается водорастворимость, повышается реакционная способность.

3. образование парных нетоксичных соединений – образующихся путем присоединения к обезвреживанию продуктами Н24 в процессах обезвреживания участвует в активной форме ФАДС (фосфо-аденозил-фосо-сульфат), которая обезвреживает индоксил:

Калиевая соль этой кислоты выводится через почки. Его количество в моче свидетельствует об антитоксической функции почек и усилении гнилостных процессов.

Гиалуроновая кислота-активная форма это УДФ-глюкозовая кислота (урацил-рибоза-ф-ф-глюкуроновая кислота)

[2]

Глицин – бензойная кислота + глицерин→гиалуроновая кислота, используется для оценки антитоксической функции печени.

Проба Квина – вводят бензойную кислоту. Антипириновая проба – аптипириновое вещество, которое в печени подвергается микросомальное окисление.

Гнилостные процессы у детей отсутствуют. У взрослых усиление гнилостных процессов при снижении активности протеолитических ферментов желудка и кишечника при снижении моторики ЖКТ, дизбактериозах.

ДИНАМИЧЕСКОЕ ОСОТОЯНИЕ БЕЛКОВ В ОРГАНИЗМЕ.

Белки тканей организма постоянно обновляются, то есть подвергается распаду и постепенно замещаюися вновь синтезированными. В таких тканях как кровь, слизистая кишечника, печень приблизительно за 10 дней, Белки обмениваются на ½ — период полуобмена. В других тканях – кожа, мышцы период полуобмена >. Распад тканевых белков (катаболизм) осуществляют особые тканевые протеолитические ферменты катепсины. Выделяют несколько видов, которые обозначают: А, В, Д, Н, N. Катепсины локализованы как в лизосомах так и в цитозоле. Лизосомальные называются кислыми катепсинами так как оптимум рН= 4,5-5,5. Катепсины могут быть как эндопептидазами, так и экзопептидазами. В активном центре катепсинов могут присутствовать цистеин, аспарагиновая кислота, серин. Например катепсин Д по эффекту аналогичен катепсину желудочного сока, катепсин Н – печени, катепсин N – обладает калогенолитической активностью.

Ø участвует в обновлении тканевых белков

Ø разрушает дефективный денатуриновый белок. Обычно эти белки вначале соединяются в особый белок убиквинтин и после этого начинается разрушение дефективных белков катепсинами

Ø реконструктивная функция – катепсины переводят неактивные формы белки в активные.

Ø При голодании, кровопотери, интоксикации катепсины обеспечивают мобилизацию белков из условных депо белков (плазма крови, мышцы, печень).

В ткани всегда существует определенный запас аминокислот. Он поддерживается на достаточно постоянном уровне благодаря сбалансированности путей образования и использования аминокислот.

Пути образования тканевых аминокислот

1. Аминокислоты всосавшиеся из кишечника в результате переваривания пищевых белков (1/3 фонда)

2. Аминокислоты, образовавшиеся при распаде белков

3. Синтез в тканях заменимых кислот

1. Синтез тканевых белков из пепетидов

2. образование небелковых N-содержащих веществ (пуриновые основания, креатинин, биогенные амины)

3. с энергитической целью

4. на синтез углеводов (глюконеогенез)

5. образование некоторых метаболитов липидного обмена

Катаболизм условно делят на: общие реакции (происходят в отношении радикала, аминогрупп, СООН-групп), специфические реакции.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Студент — человек, постоянно откладывающий неизбежность. 10547 —

| 7321 — или читать все.

185.189.13.12 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Расщепление аминокислот

В первом разделе данной главы уже охарактеризована необходимость и основная стратегия расщепления аминокислот. Она объясняется невозможностью запасания аминокислот впрок и невозможностью их выведения из клеток целиком. Избыточные аминокислоты используются организмами как метаболическое топливо: их углеродные скелеты при перестройках определенного рода могут вовлекаться в биосинтез жирных кислот, глюкозы, кетоновых тел, изопреноидов и др., а также окисляться в ЦТК, обеспечивая клетку энергией. Следует отметить, что многие микроорганизмы, в частности аэробные бактерии, способны использовать отдельные аминокислоты в качестве единственного источника энергии и углерода. У анаэробных микроорганизмов, при отсутствии в клетках цикла трикарбоновых кислот, выработался другой механизм: катаболизм аминокислот в парах, когда одна из них служит донором электронов, а вторая—акцептором. Важно, что в таком процессе происходит образование АТР.

Кроме углеродных скелетов, при деградации аминокислот образуется аминный азот, который в отличие от углерода не пригоден для получения энергии за счет окисления, и более того, является токсичным для клеток. Поэтому те аминогруппы, которые не могут повторно использоваться в биосинтезе, превращаются в мочевину (или другие вещества) и выводятся из организма.

Ниже будут рассмотрены основные типы реакций, в которые могут вступать аминокислоты: реакции по a-аминогруппе, карбоксильной группе и боковой цепи.

Расщепление аминокислот по аминогруппе. Эти процессы представлены в основном реакциями трансаминирования и дезаминирования по a-аминогруппе. Реакции трансаминирования уже были рассмотрены в разделе, касающемся биосинтеза аминокислот. Они катализируются трансаминазами (аминотрансферазами), отличительной особенностью которых является использование пиридоксальфосфата (производное витамина В6) в качестве простетической группы. Наибольшее значение в процессах деградации аминокислот имеют глутамат-трансаминаза и аланин-трансаминаза. Эти ферменты выполняют роль «воронок», собирающих аминогруппы от разных аминокислот и включающих их в состав глутамата и аланина. У животных эти две аминокислоты служат переносчиками накапливающегося аминного азота из тканей в печень. В печени аминогруппа аланина переносится аланинтрансаминазой на a-кетоглутарат с образованием глутамата:

Таким образом, большинство аминогрупп различных аминокислот оказывается в составе глутамата, который легко подвергается дезаминированию.

Реакции дезаминирования аминокислот приводят к освобождению NH2-группы в виде аммиака и осуществляются тремя разными путями. Различают окислительное, гидролитическое и прямое дезаминирование (рис. 16.12). Наиболее распространенным типом является окислительное дезаминирование, которое осуществляется по a-аминогруппе и катализируется в основном глутаматдегидрогеназой — типичным для печени ферментом. Необычным свойством этого фермента является способность использовать как NAD, так и NADP в качестве коферментов. Активность глутаматдегидрогеназы регулируется аллостерическими активаторами (ADP, GDP) и ингибиторами (ATP, GTP).

Окислительное дезаминирование осуществляется в две стадии с образованием иминокислоты в качестве промежуточного продукта, который спонтанно гидролизуется, превращаясь в кетокислоту и аммиак (рис. 16.12). Обе реакции обратимы, и их константы равновесия близки к единице. Ранее (рис. 16.3) было показано, как в ходе обратной реакции аммиак включается в состав глутамата. Можно считать, что реакция образования и дезаминирования глутамата является центральной реакцией в процессе метаболизма аммиака.

[1]

У многих организмов окислительное дезаминирование осуществляется с помощью дегидрогеназ, использующих флавиновые кофакторы (FMN, FAD). Эти ферменты называют оксидазами аминокислот. Они характеризуются широкой субстратной специфичностью: одни специфичны к L-аминокислотам, другие — к их D-аналогам. Считается, что эти ферменты вносят небольшой вклад в обмен аминогрупп.

Читайте так же:  Лучший жидкий л карнитин

Гидролитическому дезаминированию подвержены немногие аминокислоты, из протеиногенных — аспарагин и глутамин. При их дезаминировании образуются соответственно аспартат и глутамат. Этот процесс правильнее называть дезамидированием, поскольку он осуществляется за счет амидной группы (рис. 16.12). В редких случаях таким путем отщепляется и aаминогруппа аминокислоты, тогда образуются аммиак и оксикислота.

В результате прямого (внутримолекулярного) дезаминирования возникают ненасыщенные соединения. Прямому дезаминированию обычно подвергается гистидин, а также серин. Однако первичная ферментативная атака серина приводит к отщеплению молекулы воды (фермент—серингидратаза), и в этом превращении участвует боковая гидроксильная группа серина. Спонтанному дезаминированию в данном случае подвергается нестабильное промежуточное соединение — аминоакрилат. Продуктом суммарной реакции является пируват, и этот тип дезаминирования вызывается перестройкой в боковой цепи аминокислоты.

Реакции аминокислот по карбоксильной группе. Превращения по карбоксильной группе аминокислот могут использоваться организмами для деградации этих молекул, а также для превращения в другие, необходимые клетке соединения, в первую очередь аминоациладенилаты и биогенные амины. Образование аминоациладенилатов на подготовительной стадии синтеза белка уже было описано в главе 3. Биогенные амины возникают в реакциях, катализируемых декарбоксилазами аминокислот. Эти ферменты широко распространены у животных, растений и особенно у микроорганизмов, причем известно, что у патогенных микроорганизмов декарбоксилазы могут служить факторами агрессии, с помощью которых возбудитель проникает в соответствующие ткани. Декарбоксилазы L-аминокислот, так же как трансаминазы, используют в качестве простетической группы пиридоксальфосфат.

Моноамины (биогенные амины) выполняют в организмах разнообразные функции. Например, этаноламин, образующийся при декарбоксилировании серина, является составной частью полярных липидов. При декарбоксилировании цистеина и аспартата образуются соответственно цистеамин и b-аланин, которые входят в состав такого важного для клеток кофермента, как коэнзим А. Декарбоксилирование гистидина приводит к образованию гистамина — медиатора, участвующего в регуляции скорости метаболических процессов, деятельности желез внутренней секреции, регуляции кровяного давления у животных. Многие другие биогенные амины выполняют функции сигнальных веществ, в частности широко распространенных у животных и человека нейромедиаторов.

Реакции аминокислот по боковой цепи. Насколько разнообразна структура радикалов аминокислот, настолько разнообразны и химические превращения, которым они могут подвергаться. Среди этих многообразных реакций можно выделить те, которые позволяют клетке получать из одних аминокислот другие. Например, тирозин образуется при окислении ароматического кольца фенилаланина; гидролиз аргинина приводит к формированию орнитина (см. цикл мочевины); расщепление треонина сопровождается образованием глицина и т. п.

Кроме этих реакций, важное значение имеют превращения боковых групп, связанные с возникновением физиологически активных веществ. Так, из тирозина образуется гормон адреналин, из триптофана образуются никотиновая кислота (витамин РР, входящий в состав никотинамидных коферментов) и индолилуксусная кислота (ростовое вещество), из цистеина—меркаптуровые кислоты (участвуют в обезвреживании ароматических соединений). Уже отмечалась возможность превращения серина в пируват при дегидратации его боковой цепи и дезаминировании.

Таким образом, разнообразные химические превращения аминокислот могут приводить к образованию биологически активных веществ с широким спектром действия и, кроме того, к отщеплению аминогрупп в виде аммиака с формированием углеродных скелетов. В следующем разделе будет рассмотрена судьба аммиака и углеродных атомов расщепленных аминокислот.

Не нашли то, что искали? Воспользуйтесь поиском:

Инфекции человека

  • Бактериальные инфекции (41)
  • Биохимия (5)
  • Вирусные гепатиты (12)
  • Вирусные инфекции (43)
  • ВИЧ-СПИД (28)
  • Диагностика (30)
  • Зооантропонозные инфекции (19)
  • Иммунитет (16)
  • Инфекционные заболевания кожи (33)
  • Лечение (38)
  • Общие знания об инфекциях (36)
  • Паразитарные заболевания (8)
  • Правильное питание (41)
  • Профилактика (23)
  • Разное (3)
  • Сепсис (7)
  • Стандарты медицинской помощи (26)

Расщепление белков в пищеварительном тракте

«Расщепление белков в желудочно-кишечном тракте» — это первая из четырёх статья из цикла «Обмен белков в организме человека»

В течение всей жизни в организме происходят одновременно разрушения и биосинтез клеток и тканей. Эти противоположные, но тесно связанные между собой процессы — ассимиляция и диссимиляция — составляют основу жизни. Итак, в организм должны постоянно поступать вещества, необходимые для построения новых клеток. Главная роль в этом принадлежит белкам, так как ни углеводы, ни жиры не могут их заменить в образовании основных структурных элементов органов и тканей. Среди различных преобразований, присущих живой материи, основное место занимает белковый обмен .

В связи с тем, что белки являются азотсодержащими веществами, одним из методов, характеризующим состояние белкового обмена в организме, может быть определение баланса азота. У здорового человека при нормальном питании отмечается состояние белкового равновесия, когда поступление азота компенсирует его затраты. При отрицательном азотистом балансе количество выведенного азота превышает его количество, поступающее в составе белков. Такое состояние может наблюдаться при нарушении деятельности пищеварительной системы, белковом голодании и т п.

Положительный азотистый баланс бывает в тех случаях, когда количество выведенного азота меньше того, что поступает в составе белков. Это характерно для растущего организма, при беременности, при повышении активности процессов биосинтеза белка (например, при физических нагрузках).

Читайте так же:  Л карнитин при плавании

Для синтеза белков в организме необходимы различные аминокислоты. Некоторые из них, образующиеся в самом организме, называются заменимыми . Аминокислоты, не синтезирующиеся в организме человека, называются незаменимыми . Они должны регулярно поступать с пищей. Белки, в состав которых входят заменимые и незаменимые аминокислоты в соотношениях, приближающихся к таковым в организме, называют полноценными .

Среди пищевых продуктов практически нет белков, которые полностью соответствуют этим требованиям. Наиболее близки к полноценному белки материнского молока, куриного яйца. Итак, для полного обеспечения здорового организма полноценными белками в суточный рацион должны быть включены различные пищевые продукты как животного, так и растительного происхождения.

Видео (кликните для воспроизведения).

Для нормальной жизнедеятельности человека необходимо поступление такого количества полноценного белка, которое будет покрывать все потребности организма. Оно зависит от пола, возраста, интенсивности труда и т.д. С учетом этих факторов разработаны нормы белкового питания. Недостаточное потребление белков приводит к нарушению процессов жизнедеятельности, ухудшению здоровья, а длительное белковое голодание неизбежно заканчивается гибелью.

Белки необходимы для организма, прежде всего, как пластический материал, из которого строятся клетки всех тканей, органов и систем. Однако пищевые белки не могут быть использованы без предварительного расщепления в организме, так как они имеют сложную структуру и видовую специфичность.

Расщепление (гидролиз) белков на аминокислоты, которые лишены видовой и тканевой специфичности, происходит в желудочно-кишечном тракте.

Расщепление белков в пищеварительном тракте (ЖКТ).

Переваривание питательных веществ (белков, углеводов, липидов) — это процесс гидролиза соответствующих соединений, входящих в состав продуктов питания, который происходит в пищеварительном тракте и приводит к образованию простых биомолекул. Последние за счет действия специфических механизмов мембранного транспорта всасываются в кровь или лимфу.

Переваривание белков начинается в желудке под действием желудочного сока. В состав желудочного сока входит соляная кислота, которая вырабатывается обкладочными клетками слизистой оболочки желудка. Она денатурирует белок, облегчает его последующее расщепление. В состав желудочного сока входят кислые фосфаты и некоторые органические кислоты. Соляная кислота способствует превращению профермента пепсиногена, который секретируется главными клетками слизистой оболочки желудка, в активный протеолитический фермент пепсин .

Оптимальная концентрация водородных ионов для пепсина составляет 1,5 — 2,5, что соответствует кислотности желудочного сока в процессе пищеварения. При увеличении рН среды до 6,0 (в кишечнике) пепсин теряет свою активность. Пепсин относится к однокомпонентным ферментам, то есть к ферментам-протеинам. За сутки в желудке вырабатывается около 2 г пепсина.

Каталитическая активность пепсина желудка очень высока. Он катализирует расщепление пептидных связей в молекуле белка, образованных аминогруппами ароматических и дикарбоновых аминокислот. В результате действия пепсина образуются полипептиды различной величины и отдельные свободные аминокислоты.

Кроме пепсина, в желудочном соке содержится протеолитический фермент гастриксин , оптимальное значение рН которого находятся в пределах 3,5 — 4,5. Гастриксин вступает в действие на последних этапах переваривания пищи в желудке.

В желудке грудных детей обнаружен сычужный фермент — химозин. Оптимум действия этого фермента рН 3,5 — 4,0. Под влиянием химозина в присутствии солей кальция казеиноген молока в ходе гидролиза превращается в казеин и молоко свёртывается.

Легче других в желудке перевариваются альбумины и глобулины животного и растительного происхождения; плохо расщепляются белки соединительной ткани (коллаген и эластин) и совсем не расщепляются кератин и протамины.

Частично переваренная полужидкая масса питательных соединений, которая образуется в желудке (химус) периодически поступает через пилорический клапан в двенадцатиперстную кишку. В эту часть пищеварительного канала поступают из поджелудочной железы протеолитические ферменты и пептидазы, которые действуют на пептиды, поступающие из желудка. Каталитическое действие этих ферментов происходит в слабощелочной среде (рН 7,5 — 8,0), которая образуется имеющимися в кишечном соке бикарбонатами.

Большинство ферментов протеолитического действия, функционирующих в тонкой кишке, синтезируются в экзокринных клетках поджелудочной железы в виде проферментов, которые активируются после их поступления в двенадцатиперстную кишку (трипсиноген, химотрипсиноген, проэластаза, прокарбоксипептидазы А и Б). Гидролиз белков и пептидов, поступающих из желудка, происходит как в полости тонкой кишки, так и на поверхности энтероцитов — пристеночное или мембранное пищеварение .

Сок поджелудочной железы поступает в двенадцатиперстную кишку и смешивается с кишечным соком. Эта смесь содержит протеолитические ферменты, расщепляющие белки, альбумозы и пептоны до небольших пептидов, а затем до аминокислот. К протеолитическим ферментам относятся трипсин, химотрипсин, карбоксипептидазы, аминопептидазы и большая группа три- и дипептидаз.

Трипсин находится в соке поджелудочной железы в неактивной форме, в виде профермента трипсиногена . Его активация происходит под действием фермента кишечного сока — энтерокиназы. Для процесса активации необходимы ионы Са 2+. Процесс преобразования трипсиногена в трипсин осуществляется путем отщепления небольшого пептида с N-конца пептидной цепи фермента.

Трипсин гидролизует как нерасщепленные в желудке белки, так и высокомолекулярные пептиды, действуя главным образом на пептидные связи между аргинином и лизином. Оптимум рН для трипсина составляет 7,0 — 8,0. Трипсин делает сравнительно неглубокий гидролиз белка, образует полипептиды и небольшое количество свободных аминокислот.

Активность трипсина может снижаться под влиянием ряда ингибиторов. К ним относятся основные пептиды с молекулярной массой 9000 ед. Они обнаружены в поджелудочной железе, крови, легких, в бобах сои. Снижает активность трипсина и мукопротеин, содержащийся в сырых яйцах — авидин .

Химотрипсин — второй протеолитический фермент поджелудочной железы. Он также секретируется в неактивной форме, в виде химотрипсиногена. Под действием трипсина химотрипсиноген переходит в активный фермент — химотрипсин. Действие химотрипсина подобно действию трипсина. Оптимум рН для обоих ферментов примерно одинаковый, химотрипсин действует на белки и полипептиды, содержащие ароматические аминокислоты (тирозин, фенилаланин, триптофан), а также на пептидные связи, которые не подвергаются воздействию трипсина (метионин, лейцин).

Пептиды, которые образуютсяся в результате воздействия на белки пепсина, трипсина и химотрипсина в нижних отделах тонкой кишки, подвергаются дальнейшему расщеплению. Этот процесс осуществляют карбоксипептидазы, аминопептидазы . Эти ферменты относятся к металлоферментам. Они активируются двухвалентными ионами: Mg 2+ , Mn 2+ , Со 2+ , которые играют важную роль в формировании фермент-субстратного комплекса.

Читайте так же:  Как пить глютамин в капсулах

Механизм действия амино- и карбоксипептидаз заключается в отщеплении от пептидов конечных аминокислот, имеющих свободную аминную или карбоксильную группу. Небольшие пептиды, которые остались нерасщепленными и состоят из трех-четырех аминокислотных остатков, подвергаются гидролизу специфическими ди- и триаминопептидазами . В соке поджелудочной железы присутствует фермент эластаза . Эластаза — эндопептидаза, которая также имеет широкую субстратную специфичность, расщепляя пептидные связи, образующиеся остатками аминокислот малого размера — глицина, аланина, серина.

Таким образом, в результате последовательного действия на белки протеолитических ферментов в кишечнике образуются свободные аминокислоты, которые всасываются в кровь через стенку кишечника.

Следующая вторая статья из цикла «Обмен белков в организме человека» — « Обезвреживание продуктов гниения белков в кишечнике ». Третья статья « Обмен аминокислот в тканях »

Расщепление белков до пептидов и аминокислот

«Биология отрицает законы математики: при делении происходит умножение» Валерий Красовский

Пищеварительная система (задания на установление последовательности)

Вопросы проверяют знания строения пищеварительной системы, этапов пищеварения. Приведены типовые задания под редакцией В.С. Рохлова

1. Установите правильную последовательность переваривания белков, начиная с поступления их в ротовую полость с пищей.

1) механическое измельчение и смачивание

2) поступление аминокислот в кровь

3) расщепление на пептиды в кислой среде

4) расщепление пептидов до аминокислот при помощи трипсина

5) поступление пищевого комка в двенадцатиперстную кишку

2. Установите правильную последовательность регуляции концентрации глюкозы в крови, начиная с ее повышения.

1) забор глюкозы органами и тканями

2) выброс инсулина в кровь

3) повышение концентрации глюкозы в крови

4) поступление сигнала к поджелудочной железе

5) понижение уровня глюкозы в крови

3. Установите правильную последовательность иерархического соподчинения элементов пищеварительной системы, начиная с наименьшего уровня.

3) гладкомышечная клетка

4) пищеварительная система

5) мышечная ткань

4. Установите последовательность переваривания нуклеиновых кислот, начиная с поступления их в ротовую полость с пищей.

1) незначительный гидролиз под воздействием кислоты

2) механическое измельчение и смачивание пищи

3) поступление азотистых оснований в кровь

4) поступление полинуклеотидов в двенадцатиперстную кишку

5) расщепление нуклеиновых кислот на нуклеотиды

5. Установите правильную последовательность движения аминокислоты с кровью после ее всасывания в кишечнике.

1) поступление аминокислоты в капилляры тонкого кишечника

2) поступление аминокислоты в печеночную вену

3) поступление аминокислоты в воротную вену печени

4) движение аминокислоты к клеткам и тканям организма

5) движение аминокислоты через синусы печени

6. Установите последовательность регуляции количества воды во вторичной моче при обезвоживании.

1) секреция антидиуретического гормона гипофизом

2) регистрация повышения вязкости крови гипоталамусом

3) поступление воды в кровь из канальца нефрона в результате осмоса

4) уменьшение количества воды во вторичной моче

5) усиление активного транспорта ионов солей обратно в кровь в канальце нефрона

7. Установите последовательность процессов, происходящих при обмене углеводов в организме человека.

1) расщепление крахмала под действием ферментов слюны

2) полное окисление до углекислого газа и воды

3) расщепление углеводов под действием ферментов поджелудочного сока

4) анаэробное расщепление глюкозы

5) всасывание глюкозы в кровь и транспорт к клеткам тела

8. Установите последовательность изменений, происходящих с пищей в организме человека по мере прохождения ее по пищеварительному каналу.

1) расщепление белков под действием пепсина

2) всасывание воды и образование каловых масс

3) обработка пищевого комка желчью

4) всасывание продуктов расщепления в кровь

5) расщепление крахмала амилазой слюны

9. Установите последовательность этапов процесса пищеварения в организме человека.

1) расщепление белков до пептидов и аминокислот

2) удаление непереваренных остатков пищи из организма

3) поступление мономеров в кровь и жиров в лимфу

4) расщепление клетчатки до глюкозы

5) расщепление крахмала до простых углеводов

10. Установите последовательность этапов жирового обмена у человека.

1) эмульгация жиров под действием желчи

2) поглощение глицерина и жирных кислот клетками эпителия кишечной ворсинки

3) поступление человеческого жира в лимфатический капилляр, а затем в жировое депо

4) поступление жиров с пищей

5) синтез человеческого жира в клетках эпителия

6) расщепление жиров до глицерина и жирных кислот

[3]

Этапы метаболизма азотистых соединений в рубце

Расщепление кормового белка до пептидов и аминокислот

Оптимизация аминокислотного состава

  • * Катаболизм аминокислот:
  • декарбоксилированиеаминокислот: осуществляется в клетках микроорганизмов специфичной для каждой аминокислоты декарбоксилазой, при этом в качестве Ко используется пиридоксальфосфат. В результате образуются амины и СО2.
  • дезаминирование аминокислот: отщепление аминогруппы (NH2) от аминокислоты с образованием в качестве конечных продуктов в виде аммиака (NH3) и кетокислоты.

Аминокислоты в разной степени подвергаются дезаминиованию:

  • наиболее быстро и полно: серин, цистеин, аргинин, треонин, аспарагиновая кислота;
  • умеренно: лизин, фенилаланин, цистин, глутаминовая кислота;
  • медленно: аланин, метионин, валин, изолейцин, глицин, гистидин, орнитин, пролин, гидроксипролин, аминовалериановая кислота.
  • • * Анаболизм аминокислотпроцессы аминирования: образование аминокислот, в том числе незаменимых (!), недостающих для синтеза микробиологического белка, осуществляется путем присоединения аминогруппы к какой-либо из кетокислот.
  • • Различают легко — и трудносинтезируемые аминокислоты
  • Легкосинтезируемые: аланин, глицин, цистин, серин, треонин, фенилаланин, лейцин, изолейцин, аспирагиновая и глутаминовая кислоты;
  • Трудносинтезируемые: гистидин, валин, треонин, метионин.

Расщепление белков до пептидов и аминокислот

В пищевых продуктах содержание свободных аминокислот очень мало. Подавляющее их количество входит в состав белков, которые гидролизуются в ЖКТ под действием ферментов протеаз (пептидгидролаз). Субстратная специфичность этих ферментов заключается в том, что каждый из них с наибольшей скоростью расщепляет пептидные связи, образованные определёнными аминокислотами. Протеазы, гидролизующие пептидные связи внутри белковой молекулы, относят к группе эндопептидаз. Ферменты, относящиеся к группе экзопептидаз, гидролизуют пептидную связь, образованную концевыми аминокислотами. Под действием всех протеаз ЖКТ белки пищи распадаются на отдельные аминокислоты, которые затем поступают в клетки тканей.

Читайте так же:  Сколько л карнитина принимать в день

А. Переваривание белков в желудке

Желудочный сок — продукт нескольких типов клеток. Обкладочные (париетальные) клетки стенок желудка образуют соляную кислоту, главные клетки секретируют пепсиноген. Добавочные и другие клетки эпителия желудка выделяют муцинсодержащую слизь. Париетальные клетки секретируют в полость желудка также гликопротеин, который называют «внутренним фактором» (фактором Касла). Этот белок связывает «внешний фактор» — витамин В12, предотвращает его разрушение и способствует всасыванию.

1. Образование и роль соляной кислоты

Основная пищеварительная функция желудка заключается в том, что в нём начинается переваривание белка. Существенную роль в этом процессе играет соляная кислота. Белки, поступающие в желудок, стимулируют выделение гистамина и группы белковых гормонов — гастринов (см. раздел 11), которые, в свою очередь, вызывают секрецию НСl и профермента — пепсиногена. НСl образуется в обкладочных клетках желудочных желёз в ходе реакций, представленных на рис. 9-2.

Рис. 9-2. Секреция соляной кислоты в желудке. 1 — карбоангидраза; 2 — Н + /К + — АТФ-аза; 3 — белки-переносчики анионов; 4 — хлоридный канал.

Источником Н+ является Н2СO3, которая образуется в обкладочных клетках желудка из СО2, диффундирующего из крови, и Н2O под действием фермента карбоангидразы (карбонатдегидратазы):

Диссоциация Н2СO3 приводит к образованию бикарбоната, который с участием специальных белков выделяется в плазму в обмен на Сl — , и ионов Н + , которые поступают в просвет желудка путём активного транспорта, катализируемого мембранной Н + /К + -АТФ-азой. При этом концентрация протонов в просвете желудка увеличивается в 10 6 раз. Ионы Сl — поступают в просвет желудка через хлоридный канал.

Концентрация НСl в желудочном соке может достигать 0,16 М, за счёт чего значение pH снижается до 1,0 — 2,0. Приём белковой пищи часто сопровождается выделением щелочной мочи за счёт секреции большого количества бикарбоната в процессе образования НСl.

Под действием HCl происходит денатурация белков пищи, не подвергшихся термической обработке, что увеличивает доступность пептидных связей для протеаз. НСl обладает бактерицидным действием и препятствует попаданию патогенных бактерий в кишечник. Кроме того, соляная кислота активирует пепсиноген и создаёт оптимум pH для действия пепсина.

2. Механизм активации пепсина

Под действием гастринов в главных клетках желудочных желёз стимулируются синтез и секреция пепсиногена — неактивной формы пепсина. Пепсиноген — белок, состоящий из одной полипептидной цепи с молекулярной массой 40 кД. Под действием НСl он превращается в активный пепсин (молекулярная масса 32,7 кД) с оптимумом pH 1,0 — 2,5. В процессе активации в результате частичного протеолиза от N-конца молекулы пепсиногена отщепляются 42 аминокислотных остатка, которые содержат почти все положительно заряженные аминокислоты, имеющиеся в пепсиногене. Таким образом, в активном пепсине преобладающими оказываются отрицательно заряженные аминокислоты, которые участвуют в конформационных перестройках молекулы и формировании активного центра. Образовавшиеся под действием НСl активные молекулы пепсина быстро активируют остальные молекулы пепсиногена (аутокатализ). Пепсин в первую очередь гидролизует пептидные связи в белках, образованные ароматическими аминокислотами (фенилаланин, триптофан, тирозин) и несколько медленнее — образованные лейцином и дикарбоновыми аминокислотами. Пепсин — эндопептидаза, поэтому в результате его действия в желудке образуются более короткие пептиды, но не свободные аминокислоты.

3. Возрастные особенности переваривания белков в желудке

У детей грудного возраста в желудке находится фермент реннин (химозин), вызывающий свёртывание молока. Основной белок молока — казеин, представляющий смесь нескольких белков, различающихся по аминокислотному составу и электрофоретической подвижности. Реннин катализирует отщепление от казеина гликопептида, в результате чего образуется параказеин. Параказеин присоединяет ионы Са 2+ , образуя нерастворимый сгусток, чем предотвращает быстрый выход молока из желудка. Белки успевают расщепиться под действием пепсина. В желудке взрослых людей реннина нет, молоко у них створаживается под действием НСl и пепсина.

В слизистой оболочке желудка человека найдена ещё одна протеаза — гастриксин. Все 3 фермента (пепсин, реннин и гастриксин) сходны по первичной структуре, что указывает на их происхождение от общего гена-предшественника.

4. Нарушения переваривания белков в желудке

При различных заболеваниях ЖКТ в желудке нарушается выделение НСl и пепсиногена, при этом переваривание белков заметно снижается. Наиболее часто встречаются патологические изменения кислотности желудочного сока. Нарушение образования пепсина отмечают реже и выявляют при более значительных поражениях желудка.

Определение кислотности желудочного сока используют для диагностики различных заболеваний желудка (табл. 9-2). Повышенная кислотность желудочного сока обычно сопровождается изжогой, диареей и может быть симптомом язвы желудка и двенадцатиперстной кишки, а также гиперацидного гастрита. Пониженная кислотность бывает при некоторых видах гастритов. Полное отсутствие НСl и пепсина (желудочная ахилия) наблюдается при атрофических гастритах и часто сопровождается пернициозной анемией вследствие недостаточности выработки фактора Касла и нарушения всасывания витамина В12 (см. раздел 3). Анацидность (pH желудочного сока >6,0) свидетельствует о значительной потере слизистой оболочкой желудка обкладочных клеток, секретирующих соляную кислоту, что часто вызывает рак желудка.

Видео (кликните для воспроизведения).

Таблица 9-2. Компоненты желудочного сока в норме и при патологических состояниях

Источники


  1. Влияние пониженного барометрического давления на процессы пищеварения. — М.: Академия медицинских наук СССР, 1984. — 168 c.

  2. Цыпленкова, О. Гимнастика для детей от 2 до 5 лет (+ CD-ROM) / О. Цыпленкова. — М.: Робинс, 2012. — 648 c.

  3. Лечебная физическая культура. Справочник. — М.: Медицина, 2016. — 528 c.
Расщепление белков до пептидов и аминокислот
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here