Сколько аминокислот в гене

Важная и проверенная информация на тему: "сколько аминокислот в гене" от профессионалов для спортсменов и новичков.

Задачи на количество нуклеотидов

Участок одной из двух цепей молекулы ДНК содержит 300 нуклеотидов с аденином (А), 100 нуклеотидов с тимином (Т), 150 нуклеотидов с гуанином (Г) и 200 нуклеотидов с цитозином (Ц). Какое количество нуклеотидов с А, Т, Г и Ц содержится в двуцепочечной молекуле ДНК? Сколько аминокислот должен содержать белок, кодируемый этим участком молекулы ДНК? Ответ поясните.

Если в одной цепи ДНК 300 А, 100 Т, 150 Г и 200 Ц, то в комплементарной ей цепи, соответственно, 300 Т, 100 А, 150 Ц и 200 Г. Следовательно, в двуцепочечной ДНК 400 А, 400 Т, 350 Г и 350 Ц.

Если в одной цепи ДНК 300 + 100 +150 + 200 = 750 нуклеотидов, значит там 750 / 3 = 250 триплетов. Следовательно, этот участок ДНК кодирует 250 аминокислот.

В одной молекуле ДНК нуклеодиды с тимином (Т) составляют 24% от общего числа нуклеотидов. Определите количество (в %) нуклеотидов с гуанином (Г), аденином (А), цитозином (Ц) в молекуле ДНК и объясните полученные результаты.

Если 24% Т, значит, по принципу комплементарности 24% А. В сумме на А и Т приходится 48%, следовательно, на Г и Ц в сумме приходится 100%-48%=52%. Количество Г равно количеству Ц, 52% / 2 = 26%.

В процессе трансляции участвовало 30 молекул тРНК. Определите число аминокислот, входящих в состав синтезируемого белка, а также число триплетов и нуклеотидов в гене, который кодирует этот белок.

Если было 30 тРНК (каждая несла по одной аминокислоте) значит, белок содержит 30 аминокислот. Каждая аминокислота кодируется одним триплетом, следовательно, в гене 30 триплетов. Каждый триплет состоит из 3 нуклеотидов, следовательно, в гене 30х3=90 нуклеотидов.

Белок состоит из 100 аминокислот. Установите, во сколько раз молекулярная масса участка гена, кодирующего данный белок, превышает молекулярную массу белка, если средняя молекулярная масса аминокислоты – 110, а нуклеотида – 300. Ответ поясните.

Молекулярная масса белка из 100 аминокислот 100 х 110 = 11 000. Сто аминокислот кодируется трехстами нуклеотидами, молекулярная масса гена 300 х 300 = 90 000. Следовательно, молекулярная масса гена больше в 90/11= 8,18 раз.

Участок молекулы ДНК содержит 50 нуклеотидов с гуанином (Г). Определите, сколько нуклеотидов с цитозином (Ц) содержится на этом участке, а также их число в каждой из дочерних молекул ДНК, образующихся в процессе репликации. Поясните каждый полученный результат.

Напротив гуанина в двойной цепи ДНК стоит цитозин, следовательно, в исходной молекуле 50 нуклеотидов с цитозином. В результате репликации получаются молекулы ДНК, полностью идентичные материнской, следовательно, в каждой из них тоже будет по 50 молекул цитозина и 50 молекул гуанина.

Что такое генетический код

Генетический, или биологический, код является одним из универсальных свойств живой природы, доказывающим единство ее происхождения. Генетический кодэто способ кодирования последовательности аминокислот полипептида с помощью последовательности нуклеотидов нуклеиновой кислоты ( информационной РНК или комплиментарного ей участка ДНК, на котором синтезируется иРНК).

Встречаются другие определения. Генетический код — это соответствие каждой аминокислоте (входящей в состав белков живого) определенной последовательности трех нуклеотидов. Генетический код — это зависимость между основаниями нуклеиновых кислот и аминокислотами белка.

В научной литературе под генетическим кодом не понимают последовательность нуклеотидов в ДНК у какого-либо организма, определяющую его индивидуальность. Неверно считать, что у одного организма или вида код один, а у другого — другой. Генетический код — это то, как кодируются аминокислоты нуклеотидами (т. е. принцип, механизм); он универсален для всего живого, одинаков для всех организмов. Поэтому некорректно говорить, например, «Генетический код человека» или «Генетический код организма», что нередко используется в околонаучной литературе и фильмах. В данных случаях обычно имеется в виду геном человека, организма и др.

Разнообразие живых организмов и особенностей их жизнедеятельности обусловлено в первую очередь разнообразием белков. Специфическое строение белка определяется порядком и количеством различных аминокислот, входящих в его состав. Последовательность аминокислот пептида зашифрована в ДНК с помощью биологического кода. С точки зрения разнообразия набора мономеров, ДНК более примитивная молекула, чем пептид. ДНК представляет собой различные варианты чередования всего четырех нуклеотидов. Это долгое время мешало исследователям рассматривать ДНК как материал наследственности.

Как кодируются аминокислоты нуклеотидами

1) Нуклеиновые кислоты (ДНК и РНК) — это полимеры, состоящие из нуклеотидов. В каждый нуклеотид может входить одно из четырех азотистых оснований: аденин (А, еn: A), гуанин (Г, G), цитозин (Ц, en: C), тимин (T, en: Т). В случае РНК тимин заменяется на урацил (У, U).

При рассмотрении генетического кода принимают во внимание только азотистые основания. Тогда цепочку ДНК можно представить в виде их линейной последовательности. Например:

Комплиментарный данному коду участок иРНК будет таким:

2) Белки (полипептиды) — это полимеры, состоящие из аминокислот. В живых организмах для построения полипептидов используется 20 аминокислот (еще несколько очень редко). Для их обозначения тоже можно использовать одну букву (хотя чаще используют три — сокращение от названия аминокислоты).

Аминокислоты в полипептиде соединены между собой пептидной связью также линейно. Например, пусть имеется участок белка со следующей последовательностью аминокислот (каждая аминокислота обозначается одной буквой):

3) Если стоит задача закодировать каждую аминокислоту с помощью нуклеотидов, то она сводится к тому, как с помощью 4 букв закодировать 20 букв. Это можно сделать, сопоставляя буквам 20-ти буквенного алфавита слова, составленные из нескольких букв 4-х буквенного алфавита.

Если одну аминокислоту кодировать одним нуклеотидом, то можно закодировать только четыре аминокислоты.

Читайте так же:  Протеин для набора мышечной массы

Если каждой аминокислоте сопоставлять два подряд идущих в цепи РНК нуклеотида, то можно закодировать шестнадцать аминокислот. Действительно, если имеется четыре буквы (A, U, G, C), то количество их разных парных комбинаций будет 16: (AU, UA), (AG, GA), (AC, CA), (UG, GU), (UC, CU), (GC, CG), (AA, UU, GG, CC). [Скобки используются для удобства восприятия.] Это значит, что таким кодом (двухбуквенным словом) можно закодировать только 16 разных аминокислот: каждой будет соответствовать свое слово (два подряд идущих нуклеотида).

Из математики формула, позволяющая определить количество комбинаций, выглядит так: a b = n. Здесь n — количество разных комбинаций, a — количество букв алфавита (или основание системы счисления), b — количество букв в слове (или разрядов в числе). Если подставить в эту формулу 4-х буквенный алфавит и слова, состоящие из двух букв, то получим 4 2 = 16.

Если в качестве кодового слова каждой аминокислоты использовать три подряд идущих нуклеотида, то можно закодировать 4 3 = 64 разных аминокислот, так как 64 разных комбинации можно составить из четырех букв, взятых по три (например, AUG, GAA, CAU, GGU и т. д.). Это уже больше, чем достаточно для кодирования 20 аминокислот.

Именно трехбуквенный код используется в генетическом коде. Три подряд идущих нуклеотида, кодирующих одну аминокислоту, называются триплетом (или кодоном ).

Каждой аминокислоте сопоставляется определенный триплет нуклеотидов. Кроме того, поскольку комбинаций триплетов с избытком перекрывают количество аминокислот, то многие аминокислоты кодируются несколькими триплетами.

Три триплета не кодируют ни одну из аминокислот (UAA, UAG, UGA). Они обозначают конец трансляции и называются стоп-кодонами (или нонсенс-кодонами).

Триплет AUG кодирует не только аминокислоту метионин, но и инициирует трансляцию (играет роль старт-кодона).

Ниже приведены таблицы соответствия аминокислот триплетам нуклеоитидов. По первой таблице удобно определять по заданному триплету соответствующую ему аминокислоту. По второй — по заданной аминокислоте соответствующие ей триплеты.

Рассмотрим пример реализации генетического кода. Пусть имеется иРНК со следующим содержанием:

Разобьем последовательность нуклеотидов на триплеты:

Сопоставим каждому триплету кодируемую им аминокислоту полипептида:

Метионин — Аспаргиновая кислота — Серин — Треонин — Триптофан — Лейцин — Лейцин — Лизин — Аспарагин — Глутамин

Последний триплет является стоп-кодоном.

Свойства генетического кода

Свойства генетического кода во многом являются следствием способа кодирования аминокислот.

Первое и очевидное свойство — это триплетность. Под ним понимают тот факт, что единицей кода является последовательность из трех нуклеотидов.

Важным свойством генетического кода является его неперекрываемость. Нуклеотид, входящий в один триплет, не может входить в другой. То есть последовательность AGUGAA можно прочитать только как AGU-GAA, но нельзя, например, так: AGU-GUG-GAA. Т. е. если пара GU входит в один триплет, она не может уже быть составной частью другого.

Под однозначностью генетического кода понимают то, что каждому триплету соответствует только одна аминокислота. Например, триплет AGU кодирует аминокислоту серин и больше никакую другую. Данному триплету однозначно соответствует только одна аминокислота.

С другой стороны, одной аминокислоте может соответствовать несколько триплетов. Например, тому же серину, кроме AGU, соответствует кодон AGC. Данное свойство называется вырожденностью генетического кода. Вырожденность позволяет оставлять многие мутации безвредными, так как часто замена одного нуклеотида в ДНК не приводит к изменению значения триплета. Если внимательно посмотреть на таблицу соответствия аминокислот триплетам, то можно увидеть, что, если аминокислота кодируется несколькими триплетами, то они зачастую различаются последним нуклеотидом, т. е. он может быть любым.

Также отмечают некоторые другие свойства генетического кода (непрерывность, помехоустойчивость, универсальность и др.).

Генетический код: описание, характеристики, история исследования

Каждый живой организм обладает особым набором белков. Определенные соединения нуклеотидов и их последовательность в молекуле ДНК образуют генетический код. Он передает информацию о строении белка. В генетике была принята определенная концепция. Согласно ей, одному гену соответствовал один фермент (полипептид). Следует сказать, что исследования о нуклеиновых кислотах и белках проводились в течение достаточно продолжительного периода. Далее в статье подробнее рассмотрим генетический код и его свойства. Будет также приведена краткая хронология исследований.

Терминология

Генетический код – это способ зашифровки последовательности белков аминокислот с участием нуклеотидной последовательности. Этот метод формирования сведений характерен для всех живых организмов. Белки – природные органические вещества с высокой молекулярностью. Эти соединения также присутствуют в живых организмах. Они состоят из 20 видов аминокислот, которые называются каноническими. Аминокислоты выстроены в цепочку и соединены в строго установленной последовательности. Она определяет структуру белка и его биологические свойства. Встречается также несколько цепочек аминокислот в белке.

Дезоксирибонуклеиновая кислота – это макромолекула. Она отвечает за передачу, хранение и реализацию наследственной информации. ДНК использует четыре азотистых основания. К ним относятся аденин, гуанин, цитозин, тимин. РНК состоит из тех же нуклеотидов, кроме того из них, в составе которого находится тимин. Вместо него присутствует нуклеотид, содержащий урацил (U). Молекулы РНК и ДНК представляют собой нуклеотидные цепочки. Благодаря такой структуре образовываются последовательности – «генетический алфавит».

Реализация информации

Синтез белка, который кодируется геном, реализовывается при помощи объединения мРНК на матрице ДНК (транскрипции). Также происходит передача генетического кода в последовательность аминокислот. То есть имеет место синтез полипептидной цепи на мРНК. Для зашифровки всех аминокислот и сигнала окончания белковой последовательности достаточно 3-х нуклеотидов. Эта цепь называется триплетом.

История исследования

Изучение белка и нуклеиновых кислот проводилось длительное время. В середине 20 века, наконец, появились первые идеи о том, какую природу имеет генетический код. В 1953 году выяснили, что некоторые белки состоят из последовательностей аминокислот. Правда, тогда еще не могли определить их точное количество, и по этому поводу велись многочисленные споры. В 1953 году авторами Уотсоном и Криком было опубликовано две работы. Первая заявляла о вторичной структуре ДНК, вторая говорила о ее допустимом копировании при помощи матричного синтеза. Кроме того, был сделан акцент на то, что конкретная последовательность оснований – это код, несущий наследственную информацию. Американский и советский физик Георгий Гамов допустил гипотезу кодирования и нашел метод ее проверки. В 1954 году была опубликована его работа, в ходе которой он выдвинул предложение установить соответствия между боковыми аминокислотными цепями и «дырами», имеющими ромбообразную форму, и использовать это как механизм кодирования. Потом его назвали ромбическим. Разъясняя свою работу, Гамов допустил, что генетический код может являться триплетным. Труд физика стал одним из первых среди тех, которые считались близкими к истине.

Читайте так же:  Л карнитин в аптеках таблетки

Классификация

По истечении нескольких лет предлагались различные модели генетических кодов, представляющие собой два вида: перекрывающиеся и неперекрывающиеся. В основе первой было вхождение одного нуклеотида в состав нескольких кодонов. К ней принадлежит треугольный, последовательный и мажорно-минорный генетический код. Вторая модель предполагает два вида. К неперекрывающимся относятся комбинационный и «код без запятых». В основе первого варианта лежит кодировка аминокислоты триплетами нуклеотидов, и главным является его состав. Согласно «коду без запятых», определенные триплеты соответствуют аминокислотам, а остальные нет. В этом случае считалось, что при расположении любых значащих триплетов последовательно другие, находящиеся в иной рамке считывания, получатся ненужными. Ученые полагали, что существует возможность подбора нуклеотидной последовательности, которая будет удовлетворять этим требованиям, и что триплетов ровно 20.

Отличительные особенности

К свойствам генетического кода относятся:

  1. Триплетность. Последовательность трех нуклеотидов является значащей единицей кода.
  2. Непрерывность. Триплеты не имеют знаков препинания, наблюдается непрерывное считывание информации.
  3. Неперекрываемость. Нуклеотид входит в состав только одного триплета. У некоторых генов вирусов, бактерий и митохондрий кодируется несколько белков, и происходит считывание со сдвигом рамки.
  4. Однозначность. Конкретный кодон соответствует не больше чем одной аминокислоте. Правда, UGA у Euplotescrassus может кодировать цистеин и силеноцистеин.
  5. Вырожденность. Конкретной аминокислоте соответствует несколько кодонов.
  6. Универсальность. Генетический код действует по одному принципу в организмах различной сложности. В этом заключается суть генной инженерии. Однако существуют некоторые исключения.
  7. Помехоустойчивость. Мутационные замены нуклеотидов бывают консервативными и радикальными. Первые не приводят к смене класса кодируемой аминокислоты. Радикальные мутации изменяют класс кодируемой аминокислоты.

Впервые отклонение генетического кода от стандартного было обнаружено в 1979 году во время изучения генов митохондрий в организме человека. Далее выявили еще подобные варианты, в том числе множество альтернативных митохондриальных кодов. К ним относятся расшифровка стоп-кодона УГА, используемого в качестве определения триптофана у микоплазм. ГУГ и УУГ у архей и бактерий нередко применяются в роли стартовых вариантов. Иногда гены кодируют белок со старт-кодона, отличающийся от стандартно используемого этим видом. Кроме того, в некоторых белках селеноцистеин и пирролизин, которые являются нестандартными аминокислотами, вставляются рибосомой. Она прочитывает стоп-кодон. Это зависит от последовательностей, находящихся в мРНК. В настоящее время селеноцистеин считается 21-ой, пирролизан – 22-ой аминокислотой, присутствующей в составе белков.

Общие черты генетического кода

Однако все исключения являются редкостью. У живых организмов в основном генетический код имеет ряд общих признаков. К ним относятся состав кодона, в который входят три нуклеотида (два первых принадлежат к определяющим), передача кодонов тРНК и рибосомами в аминокислотную последовательность.

—>Сайт учителя биологии Комягиной Т.В. —>

—> —>Форма входа —>

—>

« Ноябрь 2019 »
Пн Вт Ср Чт Пт Сб Вс
1 2 3
4 5 6 7 8 9 10
11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30

—>

—> —>Архив записей —>

—> —>Статистика —>

Общая биология

  1. Какие химические элементы входят в состав клетки?
  2. Какие неорганические вещества входят в состав клетки?
  3. Каково значение воды для жизнедеятельности клетки?
  4. Какие соли входят в состав клетки?
  5. Каково значение для клетки солей азота, фосфора, калия, натрия?
  6. В чем разница между органическими и неорганическими веществами?
  7. Какие органические вещества входят в состав клетки?
  8. Что такое мономеры и полимеры?
  9. Почему белковую молекулу называют полимером?
  10. Чем характеризуется первичная, вторичная, третичная и четвертичная структуры белка?
  11. Что такое денатурация белка?
  12. Какие функции белков вам известны?
  13. Сколько видов аминокислот входит в состав белков?
  14. Чем обусловлено многообразие белков?
  15. Каковы функции жиров в клетке и в организме?
  16. Где в клетке расщепляются жиры?
  17. Каковы последовательные этапы расщепления жиров до конечных продуктов?
  18. Почему жиры являются наиболее эффективным источником энергии в клетке?
  19. У каких организмов и в каких органеллах синтезируются углеводы?
  20. Какие запасные углеводы имеются в растительных и животных клетках?
  21. Какие функции выполняют углеводы в клетке и в организме?
  22. Где синтезируется АТФ в клетке?
  23. При каком процессе освобождается энергия?
  24. Каково строение АМФ, АДФ, АТФ?
  25. Каково значение АТФ в жизнедеятельности клетки?

Сравнительная таблица ДНК и РНК:

химическая основа хромосомного генетического материала (генов);
матрица для синтеза ДНК;
матрица для синтеза РНК;
информация о структуре белка

иРНК передает код наследственной информации о первичной структуре белка;
рРНК входит в состав рибосом;
тРНК переносит аминокислоты к рибосомам;
митохондриальная и пластидная ДНК входят в состав этих органоидов

Местонахождение в клетке

ядро, митохондрии, пластиды

ядро, цитоплазма, рибосомы, митохондрии, пластиды

двойная спираль: две комплементарные полинуклеотидные цепи

одинарная полинуклеотидная цепь

азотистое основание (аденин, гуанин, тимин, цитозин), дезоксирибоза и остаток фосфорной кислоты

азотистое основание (аденин, гуанин, урацил, цитозин), рибоза и остаток фосфорной кислоты

адениловый (А), гуаниловый (Г), тимидиловый (Т), цитидиловый (Ц)

адениловый (А), гуаниловый (Г), уридиловый (У), цитидиловый (Ц)

способна к репликации (самоудвоению), стабильна

не способна к репликации, лабильна

Таблица генетического кода (из уч. Сивоглазова В.И. Общая биология. Базовый уровень)

Читайте так же:  Белки и аминокислоты простые

Теория:

Ген – участок молекулы ДНК несущий информацию о структуре одного белка.

Кодон – три рядом стоящих нуклеотида и-РНК, шифрующие определённую аминокислоту.

Генетический код, или код ДНК – сочетание трех нуклеотидов ДНК, кодирующие определённую аминокислоту.

Антикодон – три нуклеотида т-РНК, которые комплементарны одному из кодонов и-РНК, шифрующие именно ту аминокислоту, которую данная т-РНК транспортирует к рибосоме, где осуществляется сборка белка.

Транскрипция — процесс синтеза иРНК на ДНК.

Трансляция — процесс синтеза полипептидной цепи (белка) на рибосоме

Молекулярная масса одной аминокислоты в среднем 100.

Расстояние между нуклеотидами 0,34нм.

Молекулярная масса одного нуклеотида 345.

Правило Чаргаффа: количество аденина = количеству тимина, количество гуанина = количеству цитозина.

Свойства генетического кода:

Видео (кликните для воспроизведения).

1. Код триплетен.

2. Код избыточен.

3. Код однозначен.

4. Между генами имеются «знаки препинания» — старт- и стоп-кодоны.

5. Внутри гена нет «знаков препинания».

6. Код универсален.

Совокупность всех процессов биологического синтеза, протекающих в живых организмах, называют пластическим обменом или ассимилляцией

Решение задач:

Задача № 1. Пользуясь таблицей генетического кода ДНК, определите, какие аминокислоты кодируются триплетами: ЦАТ, ТТТ, ГAT.

Задача №2. Используя таблицу генетического кода, нарисуйте участок ДНК, в котором закодирована информация о следующей последовательности аминокислот в белке: — аланин — аргинин — валин -глицин — лизин.

Задача № 4 Используя таблицу генетического кода, нарисуйте участок молекулы ДНК, в котором закодирована информация о следующей последовательности аминокислот в белке: — фенилаланин — лейцин — валин — изолейцин — серии — фенилаланин — валин — ; определите массу и длину полученного участка ДНК.

Задача №5. В одной молекуле ДНК Т составляет 16% от общего количества нуклеотидов. Определите количество (в %) Каждого из остальных видов нуклеотидов.

Задача № 6. Участок молекулы ДНК, кодирующий часть полипептида, имеет следующее строение: -А-Ц-Ц-А-Т-А-Г-Т-Ц-Ц-А-А-Г-Г-А-. Определите последовательность аминокислот в полипептиде.

Задача № 7. Сколько нуклеотидов содержит ген (обе цепи ДНК), в котором запрограммирован белок инсулин из 51 аминокислоты?

Задача № 8. Известны молекулярные массы четырех белков: а) 3000; б) 4600; в) 78 000; г) 3500. Определите длины соответствующих генов.

Задача № 9. Какова молекулярная масса гена (двух цепей ДНК), если в одной его цепи запрограммирован белок с молекулярной массой 1500?

Задача № 10. Полипептид состоит из следующих аминокислот: валин -аланин — глицин — лизин — триптофан — валин — серии. Определите структуру участка ДНК, кодирующего эту полипептидную цепь, его массу и длину.

Задача № 11. Фрагмент молекулы ДНК содержит 2348 нуклеотидов. На долю адениновых приходится 420. Сколько содержится других нуклеотидов? Найдите массу и длину фрагмента ДНК.

Задача № 12. Полипептид состоит из следующих аминокислот: аланин -глицин — лейцин — пролин — серии — цистеин. Какие т-РНК (с какими антикодонами) участвуют в синтезе белка? Найдите массу и длину РНК.

Жизнь и смерть в 21 веке. Болезни будущего.avi
Можете представить себе, что из четырех детей только один доживает до взрослого возраста? Сейчас это кажется невероятным. А ведь еще век назад это было обыденностью даже в развитых странах. Вирусы и бактерии были настоящей проблемой.

Глава 3. Теория Чарлза Дарвина о происхождении видов путем етественного отбора

Глава 6.Биологические последствия адаптации. Макроэволюция

Презентация Главные направления эволюции

Раздел 5. Взаимоотношения организма и среды. Основы экологии.

Сколько аминокислот в гене

Первый пример отклонения от стандартного генетического кода был открыт в 1979 году при исследовании генов митохондрий человека. С того времени было найдено несколько подобных вариантов [3] , включая многообразные альтернативные митохондриальные коды, [4] например, прочитывание стоп-кодона УГА в качестве кодона, определяющего триптофан у микоплазм. У бактерий и архей ГУГ и УУГ часто используются как стартовые кодоны. В некоторых случаях гены начинают кодировать белок со старт-кодона, который отличается от обычно используемого данным видом [3] .

В некоторых белках нестандартные аминокислоты, такие как селеноцистеин и пирролизин, вставляются рибосомой, прочитывающей стоп-кодон, что зависит от последовательностей в мРНК. Селеноцистеин сейчас рассматривается в качестве 21-й, а пирролизин 22-й аминокислот, входящих в состав белков.

Несмотря на эти исключения, у всех живых организмов генетический код имеет общие черты: кодон состоят из трёх нуклеотидов, где два первых являются определяющими, кодоны транслируются тРНК и рибосомами в последовательность аминокислот.

Отклонения от стандартного генетического кода [3] [5] .
Пример Кодон Обычное значение Читается как:
Некоторые виды дрожжей рода Candida CUG Лейцин Серин
Митохондрии, в частности у Saccharomyces cerevisiae CU(U, C, A, G) Лейцин Серин
Митохондрии высших растений CGG Аргинин Триптофан
Митохондрии (у всех без исключения исследованных организмов) UGA Стоп Триптофан
Митохондирии млекопитающих, дрозофилы, S. cerevisiae и многих простейших AUA Изолейцин Метионин = Старт
Прокариоты GUG Валин Старт
Эукариоты (редко) CUG Лейцин Старт
Эукариоты (редко) GUG Валин Старт
Прокариоты (редко) UUG Лейцин Старт
Эукариоты (редко) ACG Треонин Старт
Митохондрии млекопитающих AGC, AGU Серин Стоп
Митохондрии дрозофилы AGA Аргинин Стоп
Митохондрии млекопитающих AG(A, G) Аргинин Стоп

История представлений о генетическом коде

Знания о белках и нуклеиновых кислотах накапливались в течение длительного времени. К середине XX века их стало достаточно для того, чтобы выдвинуть первые идеи о природе генетического кода. К 1953 году было известно, что отдельные белки имеют уникальные аминокислотные последовательности и что, по-видимому, не существует никаких ограничений на порядок аминокислот в полипептиде [6] . Имелись данные о том, что белки состоят примерно из 20—23 различных аминокислот, однако списки различались у разных авторов. В генетике была сформирована концепция «один ген — один фермент» (более точно «один ген — один полипептид»), также было установлено, что гены это ДНК, а не белки [7] .

Читайте так же:  Обмен безазотистого остатка аминокислот

В 1953 году Уотсон и Крик опубликовали две работы: в первой говорилось о вторичной структуре ДНК [8] , а во второй — о возможном механизме копирования ДНК путём матричного синтеза [9] . В последней работе, они указали на то, что определённая последовательность оснований является кодом, который несёт генетическую информацию. Теперь предстояло решить вопрос о том, как эта последовательность оснований определяет последовательность аминокислот в белках.

Хотя некоторые предположения о механизме кодирования высказывались и раньше [10] , первым кто предложил абстрактную гипотезу кодирования, а также способ её проверки, был советский и американский физик-теоретик Георгий (Джордж) Гамов. В 1954 году Гамов опубликовал свою работу, в которой предложил в качестве механизма кодирования установление соответствия между боковыми цепями аминокислот и ромбовидными «дырами», образованными четырьмя нуклеотидами ДНК [11] . Позднее этот код был назван ромбическим или бубновым. Исходя из своей модели Гамов предположил, что код может быть триплетным. Несмотря на все очевидные недочёты этой гипотезы (например, идея о том, что структура белка напрямую кодируется ДНК) она стала первой среди многих более и менее абстрактных гипотез о природе кода. Гамов был первым, кто представил проблему кодирования не как биохимическую, а просто как задачу перевода их четырёхзначной системы в двадцатизначную.

Тем не менее в начале 60-х годов XX века новые данные обнаружили несостоятельность гипотезы «кода без запятых». Тогда эксперименты показали, что кодоны, считавшиеся Криком бессмысленными, могут провоцировать белковый синтез в пробирке, и к 1965 году был установлен смысл всех 64 триплетов. Оказалось, что некоторые кодоны просто-напросто избыточны, то есть целый ряд аминокислот кодируется двумя, четырьмя или даже шестью триплетами.

Сколько аминокислот в гене

В процессе транскрипции была синтезирована молекула иРНК, состоящая из 120 нуклеотидов. Определите, сколько нуклеотидов содержится в гене, который контролирует синтез белка, сколько аминокислот содержит синтезируемый белок, а также число транспортных РНК, участвующих в биосинтезе?

[1]

Схема решения задачи включает:

1) Число нуклеотидов иРНК равно числу нуклеотидов в гене, т.е. 120.

2) Число аминокислот в белке 120 : 3 = 40.

3) Число тРНК равно числу аминокислот 40.

73% выпускников не работают по специальности, потому что.

— Выбрали профессию, опираясь только на опыт друзей и родителей
— Не учли свои личностные особенности, способности и интересы
— Выбрали вуз, опираясь только на баллы ЕГЭ

[3]

Биосинтез белка. Генетический код

Наследственная информация – это информация о строении белка (информация о том, какие аминокислоты в каком порядке соединять при синтезе первичной структуры белка).

Информация о строении белков закодирована в ДНК, которая у эукариот входит в состав хромосом и находится в ядре. Участок ДНК (хромосомы), в котором закодирована информация об одном белке, называется ген.

Транскрипция – это переписывание информации с ДНК на иРНК (информационную РНК). иРНК переносит информацию из ядра в цитоплазму, к месту синтеза белка (к рибосоме).

Трансляция – это процесс биосинтеза белка. Внутри рибосомы к кодонам иРНК по принципу комплементарности присоединяются антикодоны тРНК. Рибосома пептидной связью соединяет между собой аминокислоты, принесенные тРНК, получается белок.

Реакции транскрипции, трансляции, а так же репликации (удвоения ДНК) являются реакциями матричного синтеза. ДНК служит матрицей для синтеза иРНК, иРНК служит матрицей для синтеза белка.

Генетический код – это способ, с помощью которого информация о строении белка записана в ДНК.

Свойства генкода

1) Триплетность: одна аминокислота кодируется тремя нуклеотидами. Эти 3 нуклеотида в ДНК называются триплет, в иРНК – кодон, в тРНК – антикодон (но в ЕГЭ может быть и «кодовый триплет» и т.п.)

2) Избыточность (вырожденность): аминокислот всего 20, а триплетов, кодирующих аминокислоты – 61, поэтому каждая аминокислота кодируется несколькими триплетами.

3) Однозначность: каждый триплет (кодон) кодирует только одну аминокислоту.

4) Универсальность: генетический код одинаков для всех живых организмов на Земле.

Задачи на количество нуклеотидов/аминокислот
3 нуклеотида = 1 триплет = 1 аминокислота = 1 тРНК

Задачи на АТГЦ
ДНК иРНК тРНК
А У А
Т А У
Г Ц Г
Ц Г Ц

Сколько аминокислот в гене

Генетический код – это способ, с помощью которого информация о строении белка записана в ДНК. Свойства генкода:

  • Триплетность: одна аминокислота кодируется тремя нуклеотидами. Эти 3 нуклеотида в ДНК называются триплет, в иРНК – кодон, в тРНК – антикодон.
  • Избыточность (вырожденность): аминокислот всего 20, а триплетов, кодирующих аминокислоты – 61, поэтому каждая аминокислота кодируется несколькими триплетами.
  • Однозначность: каждый триплет (кодон) кодирует только одну аминокислоту.
  • Универсальность: генетический код одинаков для всех живых организмов на Земле.

Этапы синтеза белка

Транскрипция (переписывание информации с ДНК на иРНК). В определенном участке ДНК разрываются водородные связи, получается две одинарных цепочки. На одной из них по принципу комплементарности строится иРНК. Затем она отсоединяется и уходит в цитоплазму, а цепочки ДНК снова соединяются между собой.

Трансляция (синтез белка). Внутри рибосомы к кодонам иРНК по принципу комплементарности присоединяются антикодоны тРНК. Рибосома соединяет между собой аминокислоты, принесенные тРНК, получается белок.

1. Сколько аминокислот кодирует 900 нуклеотидов
А) 100
Б) 200
В) 300
Г) 400

2. Какой антикодон транспортной РНК соответствует триплету ТГА в молекуле ДНК
А) АЦУ
Б) ЦУГ
В) УГА
Г) АГА

3. Сборка белковых молекул в клетке происходит на
А) мембранах эндоплазматической сети
Б) мембранах аппарат Гольджи
В) митохондриях
Г) рибосомах

4. С помощью молекул иРНК осуществляется передача наследственной информации
А) из ядра к митохондрии
Б) из одной клетки в другую
В) из ядра к рибосоме
Г) от родителей потомству

5. Антикодону ААУ на транспортной РНК соответствует триплет на ДНК
А) ТТА
Б) ААТ
В) ААА
Г) ТТТ

Читайте так же:  Креатин за сколько до тренировки

6. иРНК является копией
А) одного гена или группы генов
Б) цепи молекулы белка
В) одной молекулы белка
Г) части плазматической мембраны

7. Сколько нуклеотидов в гене кодируют последовательность 60 аминокислот в молекуле белка
А) 60
Б) 120
В) 180
Г) 240

8. Белок состоит из 100 аминокислот. Определите число нуклеотидов в молекуле ДНК, кодирующей данный белок
А) 200
Б) 300
В) 400
Г) 600

9. Какое число нуклеотидов в гене кодирует первичную структуру белка, состоящего из 300 аминокислот
А) 150
Б) 300
В) 600
Г) 900

10. Генетический код определяет принцип записи информации о
А) последовательности аминокислот в молекуле белка
Б) транспорте иРНК в клетке
В) расположении глюкозы в молекуле крахмала
Г) числе рибосом на эндоплазматической сети

11. Рибонуклеиновая кислота в клетках участвует в
А) хранении наследственной информации
Б) биосинтезе белков
В) биосинтезе углеводов
Г) регуляции обмена жиров

12. Каждая аминокислота в клетке кодируется
А) одной молекулой ДНК
Б) несколькими триплетами
В) несколькими генами
Г) одним нуклеотидом

13. Определенной последовательностью трех нуклеотидов зашифрована в клетке каждая молекула
А) аминокислоты
Б) глюкозы
В) крахмала
Г) глицерина

14. Функциональная единица генетического кода
А) нуклеотид
Б) триплет
В) аминокислота
Г) тРНК

15. Синтез белка происходит в
А) аппарате Гольджи
Б) рибосомах
В) гладкой эндоплазматической сети
Г) лизосомах

16. Какой триплет в тРНК комплементарен кодону ГЦУ на иРНК
А) ЦГТ
Б) АГЦ
В) ГЦТ
Г) ЦГА

17. Генетический код является универсальным, так как
А) каждая аминокислота кодируется тройкой нуклеотидов
Б) место аминокислоты в молекуле белка определяют разные триплеты
В) он един для всех живущих на Земле существ
Г) несколько триплетов кодируют одну аминокислоту

18. Число нуклеотидов, кодирующих в клетке каждую аминокислоту,
А) один
Б) два
В) три
Г) четыре

19. Какой триплет в молекуле информационной РНК соответствует кодовому триплету ААТ в молекуле ДНК
А) УУА
Б) ТТА
В) ГГЦ
Г) ЦЦА

20. Принцип записи информации о расположении аминокислот в молекуле белка в виде последовательности триплетов ДНК
А) ген
Б) кодон
В) антикодон
Г) генетический код

21. Триплетность, специфичность, универсальность, неперекрываемость — это свойства
А) генотипа
Б) генома
В) генетического кода
Г) генофонда популяции

22. Белок состоит из 240 аминокислотных остатков. Сколько нуклеотидов в гене, в котором закодирована первичная структура этого белка?
А) 120
Б) 360
В) 480
Г) 720

23. Информация о последовательности расположения аминокислот в молекуле белка переписывается в ядре с молекулы ДНК на молекулу
А) АТФ
Б) рРНК
В) тРНК
Г) иРНК

24. Участок ДНК, содержащий информацию об одной полипептидной цепи, называют
А) хромосомой
Б) триплетом
В) геном
Г) кодом

25. Белок состоит из 180 аминокислотных остатков. Сколько нуклеотидов в гене, в котором закодирована последовательность аминокислот в этом белке
А) 90
Б) 180
В) 360
Г) 540

26. Первичная структура молекулы белка, заданная последовательностью нуклеотидов иРНК, формируется в процессе
А) трансляции
Б) транскрипции
В) редупликации
Г) денатурации

27. Какая последовательность правильно отражает путь реализации генетической информации
А) ген —> иРНК —> белок —> признак
Б) признак —> белок —> иРНК —> ген —> ДНК
В) иРНК —> ген —> белок —> признак
Г) ген —> ДНК —> признак —> белок

[2]

28. Три рядом расположенных нуклеотида в молекуле ДНК называют
А) триплетом
Б) генетическим кодом
В) геном
Г) генотипом

29. Выберите правильную последовательность передачи информации в процессе синтеза белка в клетке
А) ДНК —> информационная РНК —> белок
Б) ДНК —> транспортная РНК —> белок
В) рибосомальная РНК —> транспортная РНК —> белок
Г) рибосомальная РНК —> ДНК —> транспортная РНК —> белок

30. Однозначность генетического кода проявляется в кодировании триплетом одной молекулы
А) аминокислоты
Б) полипептида
В) АТФ
Г) нуклеотида

31. Единство генетического кода всех живых существ на Земле проявляется в его
А) триплетности
Б) однозначности
В) специфичности
Г) универсальности

32. Какой триплет на ДНК соответствует кодону УГЦ на и-РНК?
А) ТГЦ
Б) АГЦ
В) ТЦГ
Г) АЦГ

33. Трансляция — это процесс, при котором
А) удваивается количество нитей ДНК
Б) на матрице ДНК синтезируется иРНК
В) на матрице иРНК в рибосоме синтезируются белки
Г) разрываются водородные связи между молекулами ДНК

34. Молекулы какого вещества являются посредниками в передаче информации о первичной структуре белка из ядра к рибосоме?
А) иРНК
Б) АТФ
В) тРНК
Г) ДНК

35. Одной и той же аминокислоте соответствует антикодон УЦА на транспортной РНК и триплет в гене на ДНК
А) ГТА
Б) АЦА
В) ТГТ
Г) ТЦА

36. Синтез гемоглобина в клетке контролирует определенный отрезок молекулы ДНК, который называют
А) кодоном
Б) триплетом
В) генетическим кодом
Г) геном

Видео (кликните для воспроизведения).

37. Последовательность триплетов в иРНК определяет
А) образование вторичной структуры молекулы белка
Б) порядок соединения аминокислот в белке
В) синтез тРНК на ДНК
Г) скорость синтеза полипептидной цепи

Источники


  1. Синельникова, А. Диетическое питание: кулинарные рецепты для вашего здоровья / А. Синельникова. — М.: Вектор, 2013. — 895 c.

  2. Еда, которая лечит диабет. — М.: Клуб семейного досуга, 2011. — 608 c.

  3. Диетология. — М.: Питер, 2014. — 492 c.
Сколько аминокислот в гене
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here