Содержание
- 1 Строение аминокислот
- 2 Химические свойства аминокислот: взаимодействие со щелочами, кислотами и друг с другом (реакция поликонденсации).
- 3 Большая Энциклопедия Нефти и Газа
- 4 Аминокислоты — номенклатура, получение, химические свойства. Белки
- 5 Большая Энциклопедия Нефти и Газа
- 6 АМИНОКИСЛОТЫ
- 7 Аминокислоты
- 8 СПОСОБЫ ПОЛУЧЕНИЯ АМИНОКИСЛОТ
Строение аминокислот
Общие сведения о строении аминокислот
В зависимости от взаимного расположения обеих функциональных групп различают α-, β – и γ-аминокислоты:
CH3-CH(NH2)-COOH (α-аминопропионованя кислота);
Аминокислоты представляют собой твердые кристаллические вещества, хорошо растворимые в воде. Они плавятся при высоких температурах с разложением.
Электронное строение аминокислот
В зависимости от строения радикала все аминокислоты можно разделить на алифатические, ароматические (содержат бензольное кольцо) и гетероциклические:
Аланин (2-аминопропановая кислота).
Аспаргиновая кислота (аминобутандиовая кислота).
Цистеин (2-амино-3-меркаптопропановая кислота).
Существует также классификации аминокислот в зависимости от их кислотно-основных свойств:
— нейтральные (равное число амино- и карбоксильных групп);
— кислые (дополнительная карбоксильная группа, как, например в аспаргиновой или глутаминовой кислотах);
— основные (с дополнительной амино-группой, как, наприер в лизине).
В молекулах всех аминокислот, кроме глицина, атом углерода в α-положении содержит четыре различных заместителя, т.е. является асимметрическим. Благодаря центру хиральностиэти аминокислоты могут существовать в виде двух оптически активных энантиомеров. Отнесение аминокислот к D- или L-стереохимическим рядам проводят по стереохимическому стандарту – глицериновому альдегиду (рис. 1): к D-ряду принадлежат соединения, у которых аминогруппа расположена в формуле Фишера справа, и к L-ряду – у которых она слева.
Рис. 1. Проекционные формулы Фишера D- и L-аминокислот.
Типы изомерии аминокислот
Для аминокислот характерно несколько типов изомерии, среди которых:
— изомерия углеродного скелета;
— изомерия положения функциональных групп;
Одной из особенностей аминокислот является возможность взаимодействия их друг с другом. При этом происходит отщепление молекулы воды и образуется продукт, в котором фрагменты молекулы связаны между собой пептидной связью (-CO-NH-). Например,
Полученное соединение называют дипептидом. Вещества, построенные из многих остатков аминокислот, называются полипептидами.
Примеры решения задач
Задание | Назовите области применения аминокислот |
Ответ | Аминокислоты и их производные нашли широкое применение в пищевой, медицинской, микробиологической и химической отраслях промышленности. Аминокислоты входят в состав спортивного питания и комбикорма. |
Задание | Укажите формулу аминокислоты: |
Понравился сайт? Расскажи друзьям! |
![]() |
Видео (кликните для воспроизведения). |
17. Гистидин («тканевый» (греч.), название дано потому, что эта аминокислота была впервые выделена из тканевых белков).
18. Аргинин («серебро» (греч.), название дано потому, что эта аминокислота была впервые выделена в соединении с атомом серебра).
19. Метионин (боковая цепь содержит метильную группу, присоединенную к атому серы.
20. Цистин («пузырь» (греч.), аминокислота была впервые выделена из камня мочевого пузыря).
21. Цистеин (аминокислота, по химическому строению похожая на цистин).
Я буду очень часто использовать эти названия в дальнейшем изложении. Для того чтобы сэкономить место, позвольте мне привести сокращенные наименования для каждой из аминокислот. Эти сокращения предложил в 30-х годах американский биохимик немецкого происхождения Эрвин Бранд. Сокращения эти легко запомнить, так как они состоят из первых трех букв названия каждой аминокислоты.
Глицин | gly |
Алании | ala |
Валин | val |
Лейцин | leu |
Аспарагин | asp-NH2 |
Аспарагиновая кислота | asp |
Глютамин | glu-NH2 |
Глютамиповая кислота | glu |
Изолейцин | ileu |
Пролип | pro |
Фенилаланин | phe |
Тирозин | tyr |
Триптофан | try |
Серии | ser |
Треонин | thr |
Лизин | lys |
Гистидин | his |
Аргинин | arg |
Метионин | met |
Цистин | cy-S- |
Цистеин | cy-S-H |
Совершенно ясно, почему сокращения ileu, aspNH2, gluNH, содержат больше трех букв. Сокращения для цистина и цистеина выглядят куда более загадочными и заслуживают разъяснения, тем более что немного позже вам станет ясна их важность.
Цистин — это, если можно так выразиться, двойная аминокислота. Представьте себе два центральных углеродных атома, каждый из которых соединен с карбоксильной и аминогруппой. Боковая цепь, присоединенная к одному из центральных атомов углерода, направляется к боковой цепи другого центрального углеродного атома и срастается с ней. В месте этого сращения встречаются два атома серы. В химических символах мы можем изобразить цистин так: cy-S-S-cy. Два атома серы образуют между собой ковалентную связь, которая и удерживает вместе две части этой двойной аминокислоты.
Каждая половина цистина может участвовать в создании отдельной аминокислотной цепи. Для наглядности представьте себе сиамских близнецов, из которых каждый, взявшись за руки с другими людьми, образует свою цепь. Обе эти цепи оказываются связанными между собой тканью, которая связывает сиамских близнецов.
Подобным же образом две аминокислотные цепи, каждая из которых содержит половину цистина, удерживаются вместе его S-S связями (которые называются дисульфидными мостиками). Поскольку химиков часто интересует строение единичной аминокислотной цепи, они могут сконцентрировать свое внимание на половинке молекулы цистина, которая представлена в цепи. При рассмотрении структуры того или иного белка чаще всего принимают в расчет именно половину цистина, которую в этом случае обозначают символом cy-S-.
Для того чтобы разделить соединенные дисульфидными мостиками аминокислотные цени, надо разорвать S-S связи, присоединив к атомам серы по атому водорода. После такого соединения связь между атомами серы разрывается. Из S-S получается -S-H и H-S-. Таким образом, одна молекула цистина превращается в две молекулы цистеина (названия этих аминокислот очень похожи, но для того, чтобы произнести название половинки, надо напрячься и тщательно артикулировать средний слог — «цис-те-ин»). Для демонстрации разницы между цистином и цистеином последний обозначают символом cy-SH.
Не нашли то, что искали? Воспользуйтесь поиском:
Аминокислоты
Аминокислотами называются соединения, в молекуле которых содержатся одновременно аминные и карбоксильные группы. Аминокислоты можно рассматривать как производные карбоновых кислот, в углеводородном радикале которых атомы водорода замещены на одну или более аминогрупп. Аминокислоты, которые не синтезируются в организме животных, называются незаменимыми. Аминокислоты важны тем, что из них синтезируют белок, в которых они связаны пептидной связью.
b CH3– | a CH–COOH a- аминопропионовая кислота I NH2 |
b CH2– I NH2 | a CH2–COOH b- аминопропионовая кислота |
Чаще всего термин «аминокислота» применяют для обозначения карбоновых кислот, аминогруппа которых находится в α- положении, т.е. для α — аминокислот. В зависимости от природы радикала (R) – аминокислоты делятся на алифатические, ароматические и гетероциклические.
1. Важнейший источник аминокислот – природные белки, при гидролизе которых образуются смеси α-аминокислот. Разделение этой смеси – довольно сложная задача, однако по обыкновению одна или две аминокислоты образуются в значительно больших количествах, чем все другие, и их удается выделить достаточно просто.
2. Синтез аминокислот из галогенозамещенных кислот действием аммиака.
1. Некоторые свойства аминокислот, в частности высокая температура плавления, объясняется своеобразным их строением. Кислотная (–COOH) и основная (–NH2) группы в молекуле аминокислоты взаимодействуют друг с другом, образуя внутренние соли (биполярные ионы). Например, для глицина
H2N-CH2-COOH « H3N + -CH2-COO — |
2. Вследствие наличия в молекулах аминокислот функциональных групп кислотного и основного характера α-аминокислоты являются амфотерными соединениями, т.е. они образуют соли как с кислотами, так и со щелочами.
H2N– | CH–COOH + HCl ® [H3N + – I R | CH–COOH]Cl — (хлористоводородная соль a-аминокислоты) I R |
H2N– | CH–COOH + NaOH ® H2N– I R | CH–COO — Na + (натриевая соль a-аминокислоты) + H2O I R |
3. В реакции со спиртами образуются сложные эфиры.
Этиловый эфир аланина
4. a- Аминокислоты можно ацилировать, в частности, ацетилировать, действуя уксусным ангидридом или хлористым ацетилом. В результате образуются N- ацильные производные a- аминокислот (символ «N» означает, что ацил связан с атомом азота).
N – ацетилаланин
5. a- Аминокислоты вступают друг с другом в реакцию поликонденсации, приводя к амидам кислот. Продукты такой конденсации называются пептидами. При взаимодействии двух аминокислот образуется дипептид:
H2N– | H I CH– | O II C–OH + H–NH– | CH3 I CH– | O II C–OH ® |
глицин | аланин | |||
® H2N– | H I CH– | O II C–NH– | CH3 I CH– | O II C–OH + H2O |
глицилаланин |
При конденсации трех аминокислот образуется трипептид и т.д.
Связь – | O II C–NH – называется пептидной связью. |
6. При действии азотистой кислоты на аминокислоты реакция протекает так же, как и в случае аминов. Из первичных аминов образуются спирты, из аминокислот — оксикислоты.
Особую группу составляют реакции, связанные с наличием и взаимными влиянием амино- и карбоксильных групп. Это отношение аминокислот к нагреванию. a-Аминокислоты при нагревании, отщепляя воду, образуют циклические соединения – дикетопиперазины. b-Аминокислоты при нагревании выделяют аммиак и превращаются в непредельные кислоты. g- и d-Аминокислоты легко отщепляют воду и циклизуются, образуя циклические амиды – лактамы.
a-Аминокислоты при взаимодействии с гидроксидом меди (II) образуют комплексные соли:
Не нашли то, что искали? Воспользуйтесь поиском:
Лучшие изречения: Для студентов недели бывают четные, нечетные и зачетные. 9448 —
185.189.13.12 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.
Отключите adBlock!
и обновите страницу (F5)
очень нужно
СПОСОБЫ ПОЛУЧЕНИЯ АМИНОКИСЛОТ
1) Восстановление нитрозамещенных карбоновых кислот (применяется обычно для получения ароматических аминокислот):
O2N-C6H4 -COOH + 3H2 → H2N-C6H4 -COOH + 2H2O
2) Гидролизом белков можно получить около 25 аминокислот, но полученную смесь трудно разделить. Обычно одна или две кислоты получаются в значительно больших количествах, чем остальные, и эти кислоты удается выделить довольно легко — с помощью ионообменных смол.
Химические свойства аминокислот как амфотерных органических соединений.
Аминокислоты — амфотерные вещества, которые могут существовать в виде катионов или анионов. Это свойство объясняется наличием как кислотной (-СООН), так и основной (-NH2) группы в одной и той же молекуле. В очень кислых растворах NH2-группа кислоты протонируется и кислота становится катионом. В сильнощелочных растворах карбоксильная группа аминокислоты депротонируется и кислота превращается в анион.
Подобно аминам, они реагируют с кислотами с образованием солей аммония:
H2N–CH2 –COOH + HCl → Cl- [H3N–CH2 –COOH]+
При взаимодействии с щелочами аминокислоты реагируют по карбоксильной группе.
Как карбоновые кислоты они образуют функциональные производные:
а) соли : H2N–CH2 –COOH + NaOH → H2N–CH2 –COO- Na+ + H2O
б) сложные эфиры(реакция этерификации):
NH2 —CH2 —COOH + CH3OH → H2O + NH2 —CH2COOCH3 (метиловый эфир глицина)
При взаимодействии друг с другом аминокислоты образуют пептидную связь (существует в белке):
HOOC —CH2 —NH —H + HOOC —CH2 —NH2→ HOOC —CH2 —NH —CO —CH2NH2 + H2O
При взаимодействии двух a-аминокислот образуется дипептид. Фрагменты молекул аминокислот, образующие пептидную цепь, называются аминокислотными остатками, а связь CO–NH — пептидной связью.
Применение аминокислот.
Аминокислоты широко используются в современной фармакологии. Являясь не только структурными элементами белков и других эндогенных соединений, они имеют большое функциональное значение. Некоторые из них выступают в качестве нейромедиаторных веществ. Некоторые аминокислоты нашли самостоятельное применение в качестве лекарственных средств.
Белки. Получение белков реакцией поликонденсации аминокислот.
Аминокислоты способны к поликонденсации, в результате которой образуется полиамид. Полиамиды, состоящие из -аминокислот, называются пептидами или полипептидами. Амидная связь в таких полимерах называется пептидной связью. Полипептиды с молекулярной массой не меньше 5000 называют белками.
Первичная, вторичная и третичная структуры белков.
Уникальная последовательность аминокислотных остатков в цепи, присущая данному белку, называется первичной структурой белка.
Фрагмент полипептидной цепи:
… — N – CH – C – N – CH – C – N – CH –C – N – CH – C — …
Один из первых белков, первичная структура которого была установлена в 1954 г., — гормон инсулин (регулирует содержание сахара в крови), его молекула состоит из двух полипептидных цепей, которые связаны друг с другом (в одной цепи 21 аминокислотный остаток, в другой – 30), Mr (инсулина)=5700. Другой белок – фермент рибонуклеаза – состоит из 124 аминокислотных остатков и имеет Mr=15000.
Белок крови – гемоглобин имеет Mr = 68000. Белки некоторыхвирусов имеют Mr до 50 млн. Относительная молекулярная масса белков изменяется в широких пределах: от 5 тыс. до десятков миллионов.
Особенности скручивания цепей белковых молекул (взаимное расположение фрагментов в пространстве) называются вторичной структурой белков.
Полипептидные цепи белков могут соединяться между собой с образованием амидных, дисульфидных, водородных и иных связей за счет боковых цепей аминокислот. В результате этого происходит закручивание спирали в клубок. Эта особенность строения называется третичной структурой белка. Для проявления биологической активности некоторые белки должны сначала образовать макрокомплекс (олигопротеин), состоящий из нескольких полноценных белковых субъединиц. Четвертичная структураопределяет степень ассоциации таких мономеров в биологически активном материале.
Белки делятся на две большие группы — фибриллярные (отношение длины молекулы к ширине больше 10) и глобулярные(отношение меньше 10). К фибриллярным белкам относится коллаген, наиболее распространенный белок позвоночных; на его долю приходится почти 50% сухого веса хрящей и около 30% твердого вещества кости. В большинстве регуляторных систем растений и животных катализ осуществляется глобулярными белками, которые носят название ферментов.
Химические свойства
Денатурация
– разрушение вторичной, третичной структуры белка под действием различных факторов: температура, действие кислот, солей тяжёлых металлов, спиртов и т.д.
При денатурации под влиянием внешних факторов (температуры, механического воздействия, действия химических агентов и других факторов) происходит изменение вторичной, третичной и четвертичной структур белковой макромолекулы.
Первичная структура, а, следовательно, и химический состав белка не меняются. Изменяются физические свойства: снижается растворимость, способность к гидратации, теряется биологическая активность. Меняется форма белковой макромолекулы, происходит агрегирование. В то же время увеличивается активность некоторых групп, облегчается воздействие на белки протеолитических ферментов, а, следовательно, он легче гидролизуется.
В пищевой технологии особое практическое значение имеет тепловая денатурация белков, степень которой зависит от температуры, продолжительности нагрева и влажности. Это необходимо помнить при разработке режимов термообработке пищевого сырья, полуфабрикатов, а иногда и готовых продуктов. Особую роль процессы тепловой денатурации играют при бланшировании растительного сырья, сушке зерна, выпечке хлеба, получении макаронных изделий. Денатурация белков может вызываться и механическим воздействием (давлением, растиранием, встряхиванием, ультразвуком). К денатурации белков приводит действие химических реагентов (кислот, щелочей, спирта, ацетона). Все эти приемы широко используют в пищевой и биотехнологии.
Качественные реакции на белки
:
а) При горении белка – запах палёных перьев.
б) ксантопротеиновая реакция (на остатки аминокислот, содержащих бензольные кольца):
Белок +HNO3 → жёлтая окраска
в) биуретовая реакция, (на пептидные связи)
Раствор белка +NaOH + CuSO4 → фиолетовая окраска
Гидролиз
Белок + Н2О → смесь аминокислот
г) ) цистеиновая реакция (на остатки аминокислот, содержащих серу):
белок + NaOH + Pb (CH3COO)2 → чёрное окрашивание.
Гидратация
Процесс гидратации означает связывание белками воды, при этом они проявляют гидрофильные свойства: набухают, их масса и объем увеличивается.
Биохимические функции белков. Функции белков в природе:
· структурные (кератин шерсти, фиброин шелка, коллаген);
· двигательные (актин, миозин);
· запасные (казеин, яичный альбумин);
· защитные (иммуноглобулины) и т.д.
Существуют белки, выполняющие специфические функции, например рецепторные, — обеспечивают передачу импульсов между нервными клетками и др.
Белки – необходимая составная часть пищи человека, отсутствие или недостаток их в пище может вызвать серьёзные заболевания.
Генетическая связь между органическими соединениями.
Генетическая связь ( от греч. «генезис» — происхождение).
Генетические связи — это связи между классами соединений, основанные на получении одного класса веществ с другого.
Генетическая связь отражает возможность взаимных превращений.
Правило генетических связей:
1) количество стрелок в схеме соответствует количеству уравнений химических реакций, которые необходимо сложить;
2) соединения, записанные перед стрелочкой обязательно должны вступить в химическую реакцию;
3) соединения, записанные после стрелочки должны образоваться в результате реакции.
Имея правила генетических связей давайте вместе совершим такое преобразование: С→СО2 → Н2СО3→СаСО3
Поэтому для неметаллов схема будет иметь такой вид:
Неметалл→ Кислотный оксид→ Кислота→Соль.
Изучая углеводороды, мы убедились в их разнообразии, которая обусловлена способностью атомов Углерода образовывать молекулы линейного, разветвленного, циклического строения; сочетаться между собой с помощью простых и кратных связей. А еще — образовывать гомологические ряды и изомеры.
Сравнив общие формулы алканов, алкенов и алкинов, можно заметить, что они отличаются количеством атомов Водорода в молекулах. Итак, реакциями гидрирования и дегидрирования можно переходить от одного класса углеводородов к другому. Существует также связь между насыщенными, ненасыщенными углеводородами и бензолом. Так, из метана реакцией дегидрирования можно получить ацетилен. А с него реакцией тримеризации добыть бензол:
Итак, при всем разнообразии углеводородов между ними существует взаимосвязь, что отражается во взаимных превращениях веществ. Это открывает огромные возможности для химического синтеза.
Вещественный мир природы чрезвычайно разнообразен, и вместе с тем все вещества взаимосвязаны. Генетическая связь между органическими и неорганическими веществами заключается, прежде всего, в том, что органические вещества можно добыть из неорганических. Например, при нагревании
неорганического вещества цианата аммония образуются органическое вещество мочевина (NH2)2CO:

Ярким доказательством существования генетической связи между органическими и неорганическими веществами являются также круговорот биогенных элементов в природе. Следовательно, все вещества генетически связаны между собой. Генетическая связь заключается в том, что каждое вещество может химически взаимодействовать с веществами других классов. Органические вещества могут взаимодействовать с неорганическими. Их можно синтезировать из неорганических и превращать в неорганические.
В органической химии также следует различать более общее понятие — генетическая связь и более частное понятие генетический ряд. Если основу генетического ряда в неорганической химии составляют вещества, образованные одним химическим элементом, то основу генетического ряда в органической химии (химии углеродных соединений) составляют вещества с одикиконым числом атомов углерода в молекуле. Рассмотрим генетический ряд органических веществ, в который включим наибольшее число классов соединений:

Каждой цифре над стрелкой соответствует определенное уравнение реакции (уравнение обратной реакции обозначено цифрой со штрихом):
Контроль знаний:
1.Дать определение амидной связи.
2. Дать характеристику структурам белка, составу аминокислот.
3.Какие элементы входят состав белка?
4.Опишите физические и химические свойства белков.
5.Какие вещества образуются при гидролизе белков?
6.Укажите число возможных изомерных аминов, имеющих молекулярную формулу СзН9N: а) два; б) три; в) четыре; г) пять.
ДОМАШНЕЕ ЗАДАНИЕ:
Проработать: Л1. Стр.169-173, Л1. Стр.174-177,178-183,пересказ конспекта лекции №14.
Лекция № 16.
Полимеры. Пластмассы:
термопласты и реактопласты, их представители и применение. Волокна: природные (растительные и животные) и химические (искусственные и синтетические). Искусственные полимеры. Получение искусственных полимеров, как продуктов химической модификации природного полимерного сырья. Искусственные волокна (ацетатный шелк, вискоза), их свойства и применение
Основные понятия и термины по теме: полимеры и их классификация, искусственные и синтетические полимеры, волокна: ацетатный шёлк, вискоза, лавсан, нитрон, капрон, полипропилен, поливинилхлорид.
План изучения темы
(перечень вопросов, обязательных к изучению):
1. Полимеры и их классификация. Пластмассы и волокна: их характеристика.
2. Искусственные полимеры. Их характеристика.Искусственные волокна (ацетатный шелк, вискоза), их свойства и применение.
![]() |
Видео (кликните для воспроизведения). |
3. Каучуки. Натуральные и синтетические. Их характеристика.
Источники
Лаптев, А. П. Гигиена массового спорта / А.П. Лаптев. — М.: Физкультура и спорт, 1984. — 144 c.
Маршак, М.С. Диетическое питание / М.С. Маршак. — М.: Медицина, 1990. — 484 c.
Линдеман Аутогенная тренировка: Путь к восстановлению здоровья и работоспособности / Линдеман, Ханнес. — М.: Физкультура и спорт; Издание 2-е, 1985. — 134 c.

Спортивный диетолог с 12 летним стажем.
Образование: Российский государственный университет физической культуры, спорта, молодёжи и туризма (ГЦОЛИФК) (РГУФКСМиТ).
Место работы: Частный фитнес клуб г. Москва.