В процессе пищеварения аминокислоты

Важная и проверенная информация на тему: "в процессе пищеварения аминокислоты" от профессионалов для спортсменов и новичков.

Инфекции человека

  • Бактериальные инфекции (41)
  • Биохимия (5)
  • Вирусные гепатиты (12)
  • Вирусные инфекции (43)
  • ВИЧ-СПИД (28)
  • Диагностика (30)
  • Зооантропонозные инфекции (19)
  • Иммунитет (16)
  • Инфекционные заболевания кожи (33)
  • Лечение (38)
  • Общие знания об инфекциях (36)
  • Паразитарные заболевания (8)
  • Правильное питание (41)
  • Профилактика (23)
  • Разное (3)
  • Сепсис (7)
  • Стандарты медицинской помощи (26)

Процесс всасывания в пищеварительном тракте

В процессе пищеварения, которое начинается в ротовой полости и заканчивается в тонкой кишке, еда испытывает действия ферментов и готовится к всасыванию (всасывание — проникновение веществ из пищеварительного тракта во внутреннюю среду организма — кровь и лимфу).

Аппарат всасывания.

У детей грудного возраста всасывание происходит в желудке и кишечнике, которые имеют густую сеть кровеносных и лимфатических сосудов. С возрастом всасывание в желудке уменьшается, но у 8-10-летних детей еще хорошо проявляется. У взрослых в желудке хорошо всасывается только алкоголь, меньше вода и минеральные соли. Основным местом всасывания питательных веществ является тонкая кишка, которая имеет особый всасывающий аппарат в виде кишечных ворсинок.

Кишечные ворсинки — это микроскопические выросты слизистой оболочки тонкой кишки, общее количество которых достигает 4 млн. Внешне ворсинка покрыта однослойным эпителием, а полость ее заполнена сеткой кровеносных и лимфатических сосудов. Высота ворсинки 0,2-1 мм. На 1 мм 2 слизистой оболочки тонкой кишки содержится до 40 ворсинок. Вследствие такого строения внутренняя поверхность тонкой кишки достигает 4-5 кв.м, то есть примерно в два раза больше поверхности тела.

Продукты распада питательных веществ, находящихся в полости кишки, отгорожены от крови и лимфы очень тонкой перепонкой. Она состоит из однослойного эпителия ворсинок и слоя клеток стенки капилляров. Большая поверхность тонкой кишки и тонкость перепонки, через которую происходит всасывание, очень облегчают и ускоряют этот процесс.

Механизм всасывания.

Всасывание в пищеварительном тракте — процесс перевода продуктов пищеварения из полости желудочно-кишечного тракта через живые клетки ворсинок, стенки капилляров и стенки лимфатических сосудов в кровь и лимфу. В этом сложном физиологическом процессе действуют в основном два механизма: фильтрация и диффузия. Однако переход продуктов расщепления питательных веществ из кишечника в кровь и лимфу нельзя объяснить одними физическими законами фильтрации и диффузии.

Так, доказано, что эпителий кишечной ворсинки имеет одностороннюю проницаемость, то есть пропускает многие вещества только в одну сторону — из кишечника в кровь. Второй особенностью ворсинок является проницаемость их только для некоторых, а не для всех веществ. Наконец, установлено, что глицерин и жирные кислоты, проходя сквозь стенку ворсинки, синтезируются и образуют жиры. Все это свидетельствует о том, что всасывание — это физиологический процесс, который обусловливается активной деятельностью клеток кишечного эпителия.

Всасыванию способствует также сокращение ворсинок, в стенках которых находятся гладкие мышечные волокна, идущие от основания ворсинки к её вершине. При сокращении этих волокон сокращается и ворсинка, выдавливая из себя лимфу в лимфатические сосуды кишечной стенки. Возврату жидкости в ворсинку препятствуют клапаны лимфатических сосудов.

Поэтому при расслаблении мышечных волокон давление лимфы уменьшается, и это способствует прохождению питательных веществ из полости кишечника в лимфатические сосуды ворсинки. Периодически повторяясь, сокращение и расслабление мышечных волокон ворсинки превращают ее в постоянно действующий всасывающий насос. Таких ворсинчатых насосов очень много; они создают мощную силу, которая способствует поступлению продуктов расщепления в лимфу.

Всасывание углеводов.

Углеводы в процессе пищеварения расщепляются до моносахаридов. Из углеводов остаётся непереваренной только клетчатка (целлюлоза). Углеводы всасываются главным образом в виде глюкозы и частично в виде других моносахаридов (фруктозы, галактозы). Всасывание углеводов стимулируют витамины групп В и С. Всосавшись, углеводы поступают в кровь капилляров ворсинки и вместе с кровью, оттекающей от тонкой кишки, попадают в воротную вену, из которой кровь поступает в печень.

Если в этой крови бывает более 0,12% глюкозы, то в печени задерживается избыток глюкозы и превращается в сложный углевод — гликоген (животный крахмал), который откладывается в клетках печени. Когда же в крови глюкозы менее 0,12%, то отложенный в печени гликоген превращается в глюкозу и выделяется в кровь. Гликоген может откладываться также и в мышцах.

Превращению глюкозы в гликоген способствует инсулин — гормон поджелудочной железы. Обратный процесс превращения гликогена в глюкозу происходит под действием гормона надпочечников — адреналина. Инсулин и адреналин — продукты желез внутренней секреции и поступают в печень с кровью.

Всасывание белков.

Белки в тонкой кишке расщепляются до аминокислот, которые в растворённом состоянии легко всасываются ворсинками. Как и углеводы, аминокислоты всасываются в кровь через стенки венозной капиллярной сети ворсинок.

Всасывание жиров.

Жир под влиянием желчи и фермента липазы расщепляется на глицерин и жирные кислоты. Глицерин растворяется и легко всасывается, а жирные кислоты нерастворимы в воде и поэтому не могут всасываться. Желчь доставляет в тонкий кишечник большое количество щёлочи. Жирные кислоты взаимодействуют с щёлочью и образуют мыла (соли жирных кислот), которые растворяются в кислой среде при наличии желчных кислот и легко всасываются.

Но, в отличие от аминокислот и глюкозы, продукты расщепления жиров всасываются не в кровь, а в лимфу, при этом глицерин и мыла при прохождении клеток ворсинки снова соединяются и образуют так называемый нейтральный жир. Поэтому в лимфатические сосуды ворсинки поступают капельки вновь синтезированного жира, а не глицерин и жирные кислоты.

Всасывание воды и солей.

Всасывание воды начинается в желудке, но в основном происходит в тонкой кишке и заканчивается в толстой кишке. Некоторые растворённые в воде минеральные соли всасываются в кровь в неизмененном виде. Соли кальция всасываются в соединении с жирными кислотами. Всасываются соли как в тонкой, так и в толстой кишке.

Читайте так же:  Пути превращения аминокислот в тканях

Защитная (барьерная) функция печени.

В процессе пищеварения в кишечнике образуются ядовитые вещества. Особенно много их образуется в толстой кишке, где под воздействием бактерий происходит гниение непереваренных белков. Образующиеся при этом ядовитые вещества (индол, скатол, фенол и др.) всасываются стенками толстой кишки и поступают в кровь.

Но они не отравляют организм, так как вся кровь, которая оттекает от желудка, кишечника, селезенки и поджелудочной железы собирается в воротную вену и через неё в печень, в которой ядовитые вещества обезвреживаются. В печени воротная вена распадается на сеть капилляров, которые собираются в печеночную вену. Итак, кровь, оттекая от органов брюшной полости, поступает в общее кровяное русло, только пройдя через печень.

Какие химические превращения происходят в процессе пищеварения белков? Как осуществляется защита пищеварительной системы от самопереваривания? Назовите конечные продукты пищеварения белков и пути их дальнейших превращений в организме.

Белки пищи в ротовой полости не расщепляются, так как слюна не содержит гидролитических ферментов. Химическое расщепление белков начинается в желудке под воздействием протеолитических ферментов (пептидгидролаз), которые расщепляют пептидные связи между аминокислотами:

Эти ферменты образуются клетками слизистой оболочки желудка, тонкого кишечника и поджелудочной железы в неактивной форме. Такая форма ферментов предотвращает самопереваривание белков в клетках, где они синтезируются, и стенок желудочно-кишечного тракта.

[2]

В желудке переваривание белков происходит при участии фермента желудочного сока пепсина, который образуется из неактивного пепсиногена под воздействием соляной кислоты. Пепсин проявляет максимальную ферментативную активность в сильно кислой среде при рН 1-2. Кроме того, под воздействием соляной кислоты происходит набухание и частичная денатурация белков, что приводит к увеличению поверхности соприкосновения фермента с белками. Все это облегчает процесс расщепления белков в желудке. Пепсин расщепляет пептидные связи белковых молекул, в результате чего образуются высокомолекулярные пептиды и простетические группы.

В двенадцатиперстной кишке образовавшиеся пептиды подвергаются дальнейшему расщеплению при участии ферментов сока поджелудочной железы и кишечного сока — трипсина и химотрипсина. Поджелудочная железа вырабатывает неактивный фермент трипсиноген, который под действием фермента слизистой оболочки тонкого кишечника — энтерокиназы превращается в активный трипсин. Трипсин воздействует на другой неактивныи фермент поджелудочного сока — химотрипсиноген, превращая его в активный химотрипсин. Трипсин и химотрипсин проявляют максимальную активность в слабощелочной среде при рН 7,8. Они расщепляют белки (пептиды и полипептиды) на более простые соединения — низкомолекулярные пептиды (олигопептиды) и некоторое количество свободных аминокислот.

Окончательное расщепление низкомолекулярных пептидов до аминокислот происходит в тонком кишечнике под действием высокоспецифических ферментов аминопептидаз, карбоксипептидаз и дипептидаз. Превращение белков, как и углеводов, происходит не только в полости кишки, но и на поверхности клеток слизистой оболочки (контактное или пристеночное пищеварение). В полости кишки расщепляются преимущественно белковые молекулы, а на поверхности клеток (между микроворсинками) — относительно небольшие пептиды. Образовавшиеся свободные аминокислоты и некоторые простые пептиды при помощи сложных биохимических процессов всасываются в кровь и доставляются в печень и другие ткани.

Белки, не расщепившиеся в тонком отделе кишечника, подвергаются расщеплению в толстом кишечнике под воздействием пептидаз, которые синтезируются находящейся здесь микрофлорой. Ферменты микрофлоры толстого кишечника способны расщеплять многие аминокислоты пищи с образованием различных токсичных веществ: фенола, крезола, индола, сероводорода, меркаптанов и др. Такое превращение аминокислот в толстом кишечнике называется гниением белков. Токсические вещества всасываются в кровь и доставляются в печень, где подвергаются обезвреживанию. Весь процесс переваривания белков в желудочно-кишечном тракте занимает в среднем 8-12 ч после принятия пищи. Всасывание аминокислот в кишечнике может включать разные механизмы их транспорта через стенку кишечника и капилляров: осмос, диффузию и активный транспорт. Особая роль в процессе всасывания принадлежит ворсинкам слизистой оболочки кишечника, в которых происходит АТФ-зависимый транспорт аминокислот, сопряженный с транспортом ионов натрия (Na+) или водорода (Н+).

Аминокислоты, образовавшиеся при расщеплении белков пищи и поступившие в ткани, используются преимущественно для биосинтеза специфических для организма белков. Ежедневно в организме образуется около 1,3 г белка на 1 кг массы тела, что и определяет суточную норму его потребления. Белки в клетках организма постоянно синтезируются, так как имеют ограниченное время жизни. Так, период полураспада белков печени составляет примерно 9 дней, белков мышц— 120 дней, а все белки организма обновляются приблизительно за 130—150 суток. Процессы биосинтеза белков играют очень важную роль в процессах роста и развития организма в восстановлении и адаптации при спортивной деятельности.

Аминокислоты, не использованные непосредственно для синтеза белка или образовавшиеся при внутриклеточном распаде белков, подвергаются дальнейшим превращениям.

Имеется несколько типов реакций превращения аминокислот, характерных для внутриклеточного обмена. Это реакции дезаминирования, трансаминирования (переаминирования) и декарбоксилирования.

Дезаминирование аминокислот связано с потерей NН2-группы и образованием свободного аммиака и кетокислот. Реакции дезаминирования протекают при участии ферментов дезаминаз или оксидаз. Кроме аммиака, при дезаминировании аминокислот образуются окси- и кетокислоты. Различают несколько видов процесса дезаминирования: восстановительное, гидролитическое, внутримолекулярное и окислительное. У животных и человека преобладают два последних вида дезаминирования.

Окислительное дезаминирование аминокислот интенсивно протекает при увеличении потребления энергии в клетке, так как эта реакция сопровождается извлечением энергии в виде высокоэнергетического Н2 в составе восстановленного НАДН2 или ФАДН2. Наиболее активно окислительному дезаминированию подвергается глутаминовая кислота, что связано с высокой активностью глутаматдегидрогеназы, обнаруженной почти во всех тканях:

Фермент глутаматдегидрогёназа катализирует как реакцию дезаминирования, так и обратимую реакцию — аминирования, что приводит к образованию глутаминовой кислоты из аммиака и а-кетоглутаровой кислоты. Этот процесс называется восстановительным аминированием.

Трансаминирование аминокислот — это реакция переноса аминогруппы с аминокислоты на кетокислоту. Такие реакции обратимы и получили название «переаминирование», или «трансаминирование». В ходе реакций трансаминирования образуются новые амино- и кетокислоты:

В настоящее время изучено более 60 реакций трансаминирования. Они катализируются сложными ферментами аминотрансферазами, коферментом которых является фосфопиридоксаль (витамин В6). Реакциям трансаминирования принадлежит решающая роль в азотистом обмене организма, так как при этом образуются новые кислоты. Эти реакции поставляют в печень почти половину аммиака, который обезвреживается в процессе синтеза мочевины и выводится из организма как конечный продукт азотистого обмена.

Читайте так же:  Спрей эльсев сила аргинина

Декарбоксилирование аминокислот — это также один из путей превращения аминокислот в тканях, связанный с отщеплением карбоксильной группы и выделением углекислого газа (СО2). При декарбоксилировании монокарбоновых аминокислот образуются амины и СО2. Функционально важной реакцией такого типа является декарбоксилирование аминокислоты гистидина, ведущее к образованию тканевого гормона гистамина:

Реакции декарбоксилирования катализируются ферментами — декарбоксилазами аминокислот, коферментом которых является также фосфопиридоксаль (витамин В6). Декарбоксилирование аминокислот — необратимый процесс превращения аминокислот, который приводит к образованию биогенных аминов, отличающихся чрезвычайной биологической активностью.

Многие аминокислоты и продукты их превращения могут вступать в цикл окисления или биосинтеза других классов веществ. Преврашение отлельных аминокислот в углеволы и жиры. Аминокислоты имеют разные углеродные скелеты и свои метаболические пути превращения. В процессе катаболизма они могут превращаться в отдельные метаболиты цикла лимонной кислоты, в пировиноградную кислоту либо в ацетил-КоА (кофермент (коэнзим)А).

В дальнейшем эти метаболиты могу превращаться в глюкозу либо в жирные кислоты и кетоновые тела. Аминокислоты, из которых в процессе глюконеогенеза образуется глюкоза называются глюкогенными, а из которых образуются жирные кислоты и кетоновые тела — кетогенными. Часть аминокислот окисляется до конечных продуктов обмена СО2 и Н2О с накоплением энергии. Однако аминокислоты обеспечивают только 10-15 % энергопотребления организма.

Мочевина — основной конечный продукт распада белков и нуклеиновых кислот. В процессе катаболизма белков и нуклеиновых кислот, в частности при дезаминировании аминокислот, в тканях организма образуется свободный аммиак (NН3), а также кетокислоты и другие вещества.

Свободный аммиак — токсичное для организма человека вещество, особенно для мозга. Токсичность его связана с возможным локальным изменением рН в отдельных частях клетки или заряда на клеточной мембране. Поэтому в организме существует несколько механизмов связывания и обезвреживания свободного аммиака. Непосредственное связывание аммиака в тканях, где он образуется, осуществляется с участием глутаминовой и аспарагиновой аминокислот, которые превращаются в амиды — глутамин и аспарагин. Реакция связывания требует энергии АТФ и катализируется глутамин- или аспарагинсинтетазами.

Амиды являются временной формой обезвреживания аммиака. Они легко проникают через клеточные мембраны и доставляют аммиак в печень. В печени глутамин легко превращается в глутаминовую кислоту и свободный аммиак. Доставленный в печень аммиак обезвреживается в процессе синтеза мочевины. Часть свободного аммиака в клетках связывается в процессе образования новых аминокислот.

Процесс синтеза мочевины — сложный ферментативный цикл, начинающийся с реакции, в которой участвует аминокислота орнитин, поэтому он называется орнитиновым циклом. Цикл включает 5 основных реакций.

Первой реакцией является взаимодействие молекул свободного аммиака (NН3) и углекислого газа (СО2) с участием АТФ. В ходе этой реакции образуется высокоэнергетический карбамилфосфат , который далее вступает во взаимодействие с аминокислотой орнитин с образованием цитрулина и фосфорной кислоты. Эти реакции протекают в митохондриях. Образовавшийся цитрулин из митохондрий поступает в цитоплазму, где взаимодействует с молекулой аспарагиновой кислоты (аспартат), которая поставляет вторую аминогруппудля синтеза мочевины. В этой реакции используется энергия молекулы АТФ и образуется сложное вещество — аргининоянтарная кислота (аргининосукцинат). Аргининоянтарная кислота ферментативно расщепляется на фумаровую кислоту (фумарат) и аргинин. Аргинин под действием высокоспецифического фермента аргиназы расщепляется на мочевину и орнитин. Образовавшийся орнитин может вступать во взаимодействие с новой молекулой карбамилфосфата, а мочевина выводится из организма. Суммарное уравнение синтеза мочевины имеет вид

Мочевина является основным конечным продуктом обмена белков и других азотсодержащих веществ. С мочевиной выводится около 10-18 г общего азота организма человека, тогда как с аминокислотами — до 1,15 г, амминийными солями — до 1 г, креатином -до 0,8 г, мочевой кислотой — до 0,2 г. Мочевина из печени поступает в кровь, затем в почки и выводится с мочой.

Содержание мочевины в норме в крови взрослых людей индивидуально и составляет 3,5-6,5 ммоль • л (20-30 мг%). По изменению ее содержания в крови диагностируют скорость процесса распада тканевых белков. В практике спорта мочевина широко используется как биохимический показатель процессов восстановления в организме после физических нагрузок.

Инфекции человека

  • Бактериальные инфекции (41)
  • Биохимия (5)
  • Вирусные гепатиты (12)
  • Вирусные инфекции (43)
  • ВИЧ-СПИД (28)
  • Диагностика (30)
  • Зооантропонозные инфекции (19)
  • Иммунитет (16)
  • Инфекционные заболевания кожи (33)
  • Лечение (38)
  • Общие знания об инфекциях (36)
  • Паразитарные заболевания (8)
  • Правильное питание (41)
  • Профилактика (23)
  • Разное (3)
  • Сепсис (7)
  • Стандарты медицинской помощи (26)

Расщепление белков в пищеварительном тракте

«Расщепление белков в желудочно-кишечном тракте» — это первая из четырёх статья из цикла «Обмен белков в организме человека»

В течение всей жизни в организме происходят одновременно разрушения и биосинтез клеток и тканей. Эти противоположные, но тесно связанные между собой процессы — ассимиляция и диссимиляция — составляют основу жизни. Итак, в организм должны постоянно поступать вещества, необходимые для построения новых клеток. Главная роль в этом принадлежит белкам, так как ни углеводы, ни жиры не могут их заменить в образовании основных структурных элементов органов и тканей. Среди различных преобразований, присущих живой материи, основное место занимает белковый обмен .

В связи с тем, что белки являются азотсодержащими веществами, одним из методов, характеризующим состояние белкового обмена в организме, может быть определение баланса азота. У здорового человека при нормальном питании отмечается состояние белкового равновесия, когда поступление азота компенсирует его затраты. При отрицательном азотистом балансе количество выведенного азота превышает его количество, поступающее в составе белков. Такое состояние может наблюдаться при нарушении деятельности пищеварительной системы, белковом голодании и т п.

Положительный азотистый баланс бывает в тех случаях, когда количество выведенного азота меньше того, что поступает в составе белков. Это характерно для растущего организма, при беременности, при повышении активности процессов биосинтеза белка (например, при физических нагрузках).

Для синтеза белков в организме необходимы различные аминокислоты. Некоторые из них, образующиеся в самом организме, называются заменимыми . Аминокислоты, не синтезирующиеся в организме человека, называются незаменимыми . Они должны регулярно поступать с пищей. Белки, в состав которых входят заменимые и незаменимые аминокислоты в соотношениях, приближающихся к таковым в организме, называют полноценными .

Читайте так же:  Когда лучше пить креатин

Среди пищевых продуктов практически нет белков, которые полностью соответствуют этим требованиям. Наиболее близки к полноценному белки материнского молока, куриного яйца. Итак, для полного обеспечения здорового организма полноценными белками в суточный рацион должны быть включены различные пищевые продукты как животного, так и растительного происхождения.

Видео (кликните для воспроизведения).

Для нормальной жизнедеятельности человека необходимо поступление такого количества полноценного белка, которое будет покрывать все потребности организма. Оно зависит от пола, возраста, интенсивности труда и т.д. С учетом этих факторов разработаны нормы белкового питания. Недостаточное потребление белков приводит к нарушению процессов жизнедеятельности, ухудшению здоровья, а длительное белковое голодание неизбежно заканчивается гибелью.

Белки необходимы для организма, прежде всего, как пластический материал, из которого строятся клетки всех тканей, органов и систем. Однако пищевые белки не могут быть использованы без предварительного расщепления в организме, так как они имеют сложную структуру и видовую специфичность.

Расщепление (гидролиз) белков на аминокислоты, которые лишены видовой и тканевой специфичности, происходит в желудочно-кишечном тракте.

Расщепление белков в пищеварительном тракте (ЖКТ).

Переваривание питательных веществ (белков, углеводов, липидов) — это процесс гидролиза соответствующих соединений, входящих в состав продуктов питания, который происходит в пищеварительном тракте и приводит к образованию простых биомолекул. Последние за счет действия специфических механизмов мембранного транспорта всасываются в кровь или лимфу.

Переваривание белков начинается в желудке под действием желудочного сока. В состав желудочного сока входит соляная кислота, которая вырабатывается обкладочными клетками слизистой оболочки желудка. Она денатурирует белок, облегчает его последующее расщепление. В состав желудочного сока входят кислые фосфаты и некоторые органические кислоты. Соляная кислота способствует превращению профермента пепсиногена, который секретируется главными клетками слизистой оболочки желудка, в активный протеолитический фермент пепсин .

Оптимальная концентрация водородных ионов для пепсина составляет 1,5 — 2,5, что соответствует кислотности желудочного сока в процессе пищеварения. При увеличении рН среды до 6,0 (в кишечнике) пепсин теряет свою активность. Пепсин относится к однокомпонентным ферментам, то есть к ферментам-протеинам. За сутки в желудке вырабатывается около 2 г пепсина.

Каталитическая активность пепсина желудка очень высока. Он катализирует расщепление пептидных связей в молекуле белка, образованных аминогруппами ароматических и дикарбоновых аминокислот. В результате действия пепсина образуются полипептиды различной величины и отдельные свободные аминокислоты.

Кроме пепсина, в желудочном соке содержится протеолитический фермент гастриксин , оптимальное значение рН которого находятся в пределах 3,5 — 4,5. Гастриксин вступает в действие на последних этапах переваривания пищи в желудке.

В желудке грудных детей обнаружен сычужный фермент — химозин. Оптимум действия этого фермента рН 3,5 — 4,0. Под влиянием химозина в присутствии солей кальция казеиноген молока в ходе гидролиза превращается в казеин и молоко свёртывается.

Легче других в желудке перевариваются альбумины и глобулины животного и растительного происхождения; плохо расщепляются белки соединительной ткани (коллаген и эластин) и совсем не расщепляются кератин и протамины.

[3]

Частично переваренная полужидкая масса питательных соединений, которая образуется в желудке (химус) периодически поступает через пилорический клапан в двенадцатиперстную кишку. В эту часть пищеварительного канала поступают из поджелудочной железы протеолитические ферменты и пептидазы, которые действуют на пептиды, поступающие из желудка. Каталитическое действие этих ферментов происходит в слабощелочной среде (рН 7,5 — 8,0), которая образуется имеющимися в кишечном соке бикарбонатами.

Большинство ферментов протеолитического действия, функционирующих в тонкой кишке, синтезируются в экзокринных клетках поджелудочной железы в виде проферментов, которые активируются после их поступления в двенадцатиперстную кишку (трипсиноген, химотрипсиноген, проэластаза, прокарбоксипептидазы А и Б). Гидролиз белков и пептидов, поступающих из желудка, происходит как в полости тонкой кишки, так и на поверхности энтероцитов — пристеночное или мембранное пищеварение .

Сок поджелудочной железы поступает в двенадцатиперстную кишку и смешивается с кишечным соком. Эта смесь содержит протеолитические ферменты, расщепляющие белки, альбумозы и пептоны до небольших пептидов, а затем до аминокислот. К протеолитическим ферментам относятся трипсин, химотрипсин, карбоксипептидазы, аминопептидазы и большая группа три- и дипептидаз.

Трипсин находится в соке поджелудочной железы в неактивной форме, в виде профермента трипсиногена . Его активация происходит под действием фермента кишечного сока — энтерокиназы. Для процесса активации необходимы ионы Са 2+. Процесс преобразования трипсиногена в трипсин осуществляется путем отщепления небольшого пептида с N-конца пептидной цепи фермента.

Трипсин гидролизует как нерасщепленные в желудке белки, так и высокомолекулярные пептиды, действуя главным образом на пептидные связи между аргинином и лизином. Оптимум рН для трипсина составляет 7,0 — 8,0. Трипсин делает сравнительно неглубокий гидролиз белка, образует полипептиды и небольшое количество свободных аминокислот.

Активность трипсина может снижаться под влиянием ряда ингибиторов. К ним относятся основные пептиды с молекулярной массой 9000 ед. Они обнаружены в поджелудочной железе, крови, легких, в бобах сои. Снижает активность трипсина и мукопротеин, содержащийся в сырых яйцах — авидин .

Химотрипсин — второй протеолитический фермент поджелудочной железы. Он также секретируется в неактивной форме, в виде химотрипсиногена. Под действием трипсина химотрипсиноген переходит в активный фермент — химотрипсин. Действие химотрипсина подобно действию трипсина. Оптимум рН для обоих ферментов примерно одинаковый, химотрипсин действует на белки и полипептиды, содержащие ароматические аминокислоты (тирозин, фенилаланин, триптофан), а также на пептидные связи, которые не подвергаются воздействию трипсина (метионин, лейцин).

Пептиды, которые образуютсяся в результате воздействия на белки пепсина, трипсина и химотрипсина в нижних отделах тонкой кишки, подвергаются дальнейшему расщеплению. Этот процесс осуществляют карбоксипептидазы, аминопептидазы . Эти ферменты относятся к металлоферментам. Они активируются двухвалентными ионами: Mg 2+ , Mn 2+ , Со 2+ , которые играют важную роль в формировании фермент-субстратного комплекса.

Механизм действия амино- и карбоксипептидаз заключается в отщеплении от пептидов конечных аминокислот, имеющих свободную аминную или карбоксильную группу. Небольшие пептиды, которые остались нерасщепленными и состоят из трех-четырех аминокислотных остатков, подвергаются гидролизу специфическими ди- и триаминопептидазами . В соке поджелудочной железы присутствует фермент эластаза . Эластаза — эндопептидаза, которая также имеет широкую субстратную специфичность, расщепляя пептидные связи, образующиеся остатками аминокислот малого размера — глицина, аланина, серина.

Читайте так же:  Участок днк кодирующий аминокислоты

Таким образом, в результате последовательного действия на белки протеолитических ферментов в кишечнике образуются свободные аминокислоты, которые всасываются в кровь через стенку кишечника.

Следующая вторая статья из цикла «Обмен белков в организме человека» — « Обезвреживание продуктов гниения белков в кишечнике ». Третья статья « Обмен аминокислот в тканях »

В процессе пищеварения аминокислоты

Биохимия пищеварения
(всасывание питательных веществ)

В кишечнике происходит всасывание продуктов переваривания питательных веществ (табл. 25).

Таблица 25. Продукты переваривания пищи и их всасывание
Компонент пищи Конечные продукты гидролиза Вещества, всасывающиеся в кишечнике
Белки и пептиды Аминокислоты Аминокислоты, дипептиды (?), белки и пептиды(?)
Полинуклеотиды Азотистые основания, пентозы, Н3РO4 Азотистые основания, пентозы, Н3РO4, нуклеозиды
Углеводы (полисахариды и олигосахариды) Моносахариды Моносахариды
Липиды
а) триацилглицерины Жирные кислоты, глицерин, 2-моноацилглицерин Триацилглицерины, жирные кислоты, глицерин, 2-моноацилглицерин, холин и другие спирты фосфоглицеридов, Н3РO4, сфингозин, фосфатидилхолин, холестерин
б) фосфолипиды Глицерин, жирные кислоты, фосфохолин, холин (и другие спирты), фосфатидилхолин (или другие фосфатидилспирты), Н3РO4, сфингозин
в) эфиры холестерина Холестерин, жирные кислоты

Всасывание питательных веществ

Всасывание продуктов гидролиза белков

Основным продуктом гидролиза белков являются аминокислоты. Их всасывание в кишечнике, так же как и транспорт через другие клеточные мембраны, осуществляется с помощью специальных транспортных систем для аминокислот. Транспорт аминокислот является активным и требует необходимого градиента ионов Na + , создаваемого Na + , К + -АТФазой мембраны эпителия кишечника. Аминокислоты всасываются в кишечнике посредством вторичного активного транспорта. Это доказывается тем, что гликозид уабаин — ингибитор Na + , К + -АТФазы — тормозит и транспорт аминокислот.

Существует не менее пяти специальных систем переносчиков для аминокислот:
  1. нейтральных алифатических;
  2. циклических;
  3. основных;
  4. кислых;
  5. пролина.
Аминокислоты этих групп конкурируют за участки связывания с переносчиком соответствующей транспортной системы. При транспорте аминокислот через мембрану кишечного эпителия ион Na + входит вместе с ними внутрь клетки, т. е. имеет место симпорт аминокислот и ионов Na + специальной системой переносчиков. Натрий вновь «откачивается» из клетки Na + ,К + -АТФазой, а аминокислоты остаются внутри клетки.

Основной механизм транспорта аминокислот через клеточную мембрану кишечного эпителия и других клеток — γ-глутамильный цикл, который функционирует в почках, поджелудочной железе, печени и селезенке; в мозге и других тканях он содержится в очень небольших количествах. В этом процессе участвует шесть ферментов (один из них мембранно-связанный, остальные находятся в цитозоле) и трипептид глутатион (γ-глутамилцистеинилглицин). Ключевой фермент процесса — γ-глутамилтрансфераза. Этот фермент катализирует перенос глутамильного остатка глутатиона на транспортируемую аминокислоту и последующий перенос комплекса в клетку.

Свободная аминокислота, которая участвует в этой реакции, поступает с наружной поверхности клетки, глутатион находится внутри. На первом этапе фермент осуществляет перенос γ-глутамильного остатка глутатиона на транспортируемую аминокислоту:

Аминокислота (АК) + Глутаминилцистеинилглицин (глутатион) ->
-> γ-Глутамил-АК (дипептид) + Цистеинилглицин

После реакции дипептид γ-глутаминил-АК переходит внутрь клетки и оказывается там вместе с цистеинилглицином.

Далее с помощью еще пяти внутриклеточных ферментов γ-глутамильного транспортного цикла происходит освобождение из дипептида (γ-глутамиламинокислота) свободной аминокислоты, которая в итоге оказывается в цитозоле:

γ-глутаминил-АК -> аминокислота + 5-оксопролин.

Одновременно происходит гидролиз цистеинилглицина на цистеин и глицин и ресинтез затраченной на транспорт молекулы глутатиона в ходе трех последовательных превращений: 5-оксопролин -> глутамат -> глутамилцистеин — глутамилцистеинилглицин (глутатион). Первую реакцию катализирует оксопролиназа, вторую — глутамилцистеинсинтаза и третью — глутатион-синтетаза. В реакциях синтеза используются три молекулы АТФ.

В кишечнике возможно всасывание небольших количеств дипептидов и негидролизованных белков. Всасываются они путем пиноцитоза и внутри клетки гидролизуются протеиназами лизосом.

У новорожденных низкая активность протеолитических ферментов и высокая проницаемость слизистой кишечника могут привести к всасыванию нативных белков пищи и вызвать повышенную чувствительность к ним организма. Очевидно, это является причиной пищевой аллергии, т. е. извращенной реакции организма на вещества, что ведет к непереносимости определенных продуктов (молока или яиц). Обычно же всасываемые аминокислоты поступают в портальную вену, затем в печень и разносятся кровью в растворенном виде по тканям и органам. Освобождается кровь от свободных аминокислот очень быстро — уже через 5 мин 85-100% их оказывается в тканях. Наиболее активно потребляют аминокислоты печень и почки. Существует избирательность транспорта для отдельных аминокислот, особенно в клетках нервной системы. Ткань мозга избирательно быстро поглощает метионин, гистидин, глицин, аргинин, глутамин и тирозин, а лейцин, лизин и пролин поглощаются этой тканью медленно. У новорожденных и детей раннего возраста клеточные барьеры более проходимы, поэтому даже в головной мозг аминокислоты проходят очень быстро.

В тканях из аминокислот синтезируются специфические белки, свойственные данному организму.

Всасывание продуктов гидролиза полинуклеотидов происходит путем пассивного или облегченного транспорта. Наряду с азотистыми основаниями через мембраны хорошо проникают и нуклеозиды. Поэтому в виде нуклеозидов всасывается часть продуктов переваривания нуклеиновых кислот.

Всасывание продуктов гидролиза липидов

Всасывание продуктов переваривания липидов имеет свои особенности. Так, всасывание жирных кислот зависит от длины углеводородной цепи. Короткоцепочечные жирные кислоты (до 10-12 углеродных атомов) транспортируются простой диффузией внутрь кишечного эпителия. Длинноцепочечные жирные кислоты (более 14 углеродных атомов) образуют транспортные комплексы с желчными кислотами. Эти комплексы называют холеиновыми кислотами. В таком виде жирные кислоты проходят через мембрану кишечного эпителия. Можно считать, что это облегченный транспорт, где роль переносчика выполняют желчные кислоты. Внутри стенки кишечника холеиновый комплекс распадается, и желчные кислоты уходят в кровь портальной вены и в печень. Из печени они вновь возвращаются с желчью в кишечник. Этот кругооборот называют кишечно-печеночной циркуляцией желчных кислот.

Частично липиды всасываются в виде триацилглицеринов (около 3-6%) путем пиноцитоза и значительная часть (до 50%) — в виде 2-моноацилглицеринов. Последние переходят мембранный барьер простой диффузией.

Кроме того, легко всасываются глицерин, фосфаты в виде натриевых и калиевых солей, холин и другие спирты, сфингозин и холестерин. Часть продуктов неполного гидролиза фосфолипидов, например фосфатидилхолин, тоже всасываются в кишечнике. Особенности транспорта их еще неясны, хотя частично они всасываются путем пассивного транспорта, а для некоторых из них обнаружены переносчики.

Читайте так же:  Углеводы состоят из аминокислот

Продукты переваривания липидов, поступившие в слизистую кишечника в результате всасывания, транспортируются в кровь и лимфу. Такие продукты гидролиза липидов, как короткоцепочечные жирные кислоты, глицерин, фосфаты, холин и другие спирты глицерофосфатидов, хорошо растворимы и поступают из слизистой кишечника в кровь воротной вены и далее в печень. Некоторая часть продуктов неполного гидролиза фосфолипидов (глицерофосфохолин, глицеролфосфат), всосавшихся из кишечника, также обнаруживается в крови воротной вены.

Длинноцепочечные жирные кислоты, холестерин, некоторая доля всосавшихся триацилглицеринов, моноацилглицерины и большая часть переваренных фосфолипидов обнаруживаются в лимфе. Однако прежде чем поступить в лимфу, в кишечной стенке липиды подвергаются ресинтезу.

В эпителии кишечника наблюдается ресинтез триацилглицеринов, фосфолипидов и эфиров холестерина.

Биологическая роль ресинтеза липидов состоит в том, что в стенке кишечника образуются липиды, более свойственные организму человека, а не пищевому жиру, который может резко отличаться по физико-химическим показателям от липидов человека.

Источником ресинтеза триацилглицеринов служат глицерин, моноацил-глицерин, поступившие в клетку в ходе всасывания, и жирные кислоты. Поскольку все отличия в составе триацилглицеринов определяются составом жирных кислот, то при ресинтезе липидов используются собственные жирные кислоты с длинной цепью, образовавшиеся в самом кишечном эпителии из предшественников. Лишь часть всосавшихся жирных кислот пригодна для ресинтеза и тоже используется в этом процессе.

То же самое происходит при ресинтезе фосфолипидов и эфиров холестерина. На их сборку тоже идут жирные кислоты, свойственные данному виду организма. Примерно 70% свободного холестерина, поступившего при всасывании, расходуется на образование эфиров холестерина.

[1]

Транспорт ресинтезированных в кишечнике липидов происходит следующим образом. Некоторая часть фосфолипидов, образовавшихся при ресинтезе, поступает в кровь воротной вены благодаря их гидрофильности. Остальные фосфолипиды, все триацилглицерины, эфиры холестерина и свободный холестерин переносятся с лимфой. Ввиду их нерастворимости перенос осуществляется с помощью транспортных форм липидов .

Ресинтезированные в кишечнике липиды транспортируются в составе хиломикронов. Белковая часть их — аполипопротеид — образуется в эпителии кишечника. Формируются хиломикроны из аполипопротеида, придающего им растворимость, и ресинтезированных липидов, основную долю которых, около 90%, составляют триацилглицерины. Кроме того, в них входят фосфолипиды, эфиры холестерина и свободный холестерин. Негидролизованные триацилглицерины, которые попадают в кишечник, также входят в хиломикроны вместе с ресинтезированными триацилглицеринами.

Хиломикроны переходят из эпителия кишечника в грудной лимфатический проток при приеме большого количества жирной пищи лимфа приобретает молочнообразный вид от взвешенных хиломикронов. Из грудного лимфатического протока хиломикроны поступают в кровь, которая становится мутной, резко опалесцирующей (такая плазма крови называется липемической). В крови хиломикроны, а точнее, входящие в них триацилглицерины, расщепляются липопротеидлипазой. Этот фермент образуется в печени, жировой ткани, легких, эндотелии сосудов и т. д. в неактивном виде. Активируется он кофактором — гепарином. В ответ на поступление хиломикронов в кровь из тучных клеток соединительной ткани туда поступает гепарин, активирующий липопротеидлипазу. Последняя гидролизует триацилглицерины в составе хиломикронов на глицерин и жирные кислоты. В результате этого хиломикроны распадаются и плазма крови просветляется.

Жирные кислоты тут же акцептируются альбуминами плазмы и доставляются к тканям и органам. Глицерин находится в растворимом виде и тоже с током крови поступает к органам. Основная часть жирных кислот и глицерина потребляется жировой тканью где происходит депонирование их в виде триацилглицеринов, а также сердцем, печенью и другими органами, в которых они окисляются для энергетических целей.

Всасывание углеводов

Всасывание моносахаридов как продуктов переваривания углеводов происходит путем облегченной диффузии при участии специальных транслоказ. Глюкоза и галактоза всасываются еще и путем активного транспорта за счет градиента концентрации ионов натрия, создаваемого Na + -К + -АТФазой. Это обеспечивает их всасывание даже при низкой концентрации в кишечнике.

Скорость всасывания отдельных моносахаридов — гексоз, пентоз, неодинакова. Наиболее быстро всасывается галактоза, затем глюкоза. Всосавшиеся моносахариды поступают из кишечной стенки в портальную вену (и в печень), где частично задерживаются клетками печени, а частично поступают в общий кровоток, извлекаются клетками других органов и тканей, и окисляются с образованием энергии. Продукты распада — углекислый газ и вода — удаляются из организма.

Главными потребителями глюкозы помимо печени являются головной мозг и скелетные мышцы, где в качестве легко окисляемого источника энергии используется глюкоза. В жировой ткани глюкоза используется для синтеза нейтрального жира. Обычно около 65% глюкозы, поступившей при всасывании из кишечника, расходуется на окисление в клетках (для образования энергии), на синтез жира около 30% и 5% на синтез гликогена. Эти пропорции меняются в зависимости от физиологического состояния организма, возраста и ряда других причин.

Видео (кликните для воспроизведения).

Уровень глюкозы в крови относительно постоянен и составляет 0,11 %. Избыток глюкозы, поступающей с пищей, откладывается в клетках печени и мышцах в виде гликогена (животного крахмала). Гликоген интенсивно расходуется во время физической работы, когда возрастает потребность в энергии. При недостаточном поступлении углеводов с пищей они могут образовываться из белков и жиров, а при избыточном — превращаться в жиры.

Источники


  1. Стройкова, А. С. Диабет. Жить на инсулине и быть здоровым / А.С. Стройкова. — М.: АСТ, Сова, ВКТ, 2008. — 224 c.

  2. Филлипс Чарльз Интеллектуальная Олимпиада. Лучшие задачи для тренировки мозга; Эксмо — Москва, 2013. — 192 c.

  3. Е.М. Алексеев Основы учета и калькуляции в предприятиях общественного питания / Е.М. Алексеев, Н.М. Мифтахудинова. — М.: Экономика, 2008. — 128 c.
  4. Пушкин, В. Гимнастика за рулем / В. Пушкин. — М.: Эксмо, 2011. — 764 c.
В процессе пищеварения аминокислоты
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here