Виды аминокислот входящих в состав белка

Важная и проверенная информация на тему: "виды аминокислот входящих в состав белка" от профессионалов для спортсменов и новичков.

Сайт FitAudit — Ваш помощник в вопросах питания на каждый день.

Правдивая информация о продуктах питания поможет похудеть, набрать мышесную массу, укрепить здоровье, стать активным и жизнерадостным человеком.

Вы найдёте для себя массу новых продуктов, узнаете их истинную пользу, уберёте из своего рациона те продукты, о вреде которых раньше и не догадывались.

Все данные основаны на достоверных научных исследованиях, могут быть использованы как любителями, так и профессиональными диетологами и спортсменами.

Виды аминокислот входящих в состав белка

Глава III. БЕЛКИ

§ 6. АМИНОКИСЛОТЫ КАК СТРУКТУРНЫЕ ЭЛЕМЕНТЫ БЕЛКОВ

Природные аминокислоты

Аминокислоты в живых организмах встречаются преимущественно в составе белков. Белки построены в основном двадцатью стандартными аминокислотами. Они являются a-аминокислотами и отличаются друг от друга строением боковых групп (радикалов), обозначаемых буквой R:

Разнообразие боковых радикалов аминокислот играет ключевую роль при формировании пространственной структуры белков, при функционировании активного центра ферментов.

Структура стандартных аминокислот приведена в конце параграфа в табл.3. Природные аминокислоты имеют тривиальные названия, оперировать которыми при записях структуры белков неудобно. Поэтому для них введены трехбуквенные и однобуквенные обозначения, которые также представлены в табл.3.

Пространственная изомерия

У всех аминокислот, за исключением глицина, a-углеродный атом является хиральным, т.е. для них характерна оптическая изомерия. В табл. 3 хиральный атом углерода обозначен звездочкой. Например, для аланина проекции Фишера обоих изомеров выглядят следующим образом:

Для их обозначения, как и для углеводов, используется D, L-номенклатура. В состав белков входят только L-аминокислоты.

L- и D-изомеры могут взаимно превращаться друг в друга. Этот процесс называется рацемизацией.

Интересно знать! В белке зубов – дентине – L-аспарагиновая кислота самопроизвольно рацемизуется при температуре человеческого тела со скорость 0,10 % в год. В период формирования зубов в дентине содержится только L-аспарагиновая кислота, у взрослого же человека в результате рацемизации образуется D-аспарагиновая кислота. Чем старше человек, тем выше содержание D-изомера. Определив соотношение D- и L-изомеров, можно достаточно точно установить возраст. Так были изобличены жители горных селений Эквадора, приписывавшие себе слишком большой возраст.

Химические свойства

Аминокислоты содержат амино- и карбоксильную группы. В силу этого они проявляют амфотерные свойства, то есть свойства и кислот и оснований.

При растворении аминокислоты в воде, например, глицина, его карбоксильная группа диссоциирует с образованием иона водорода. Далее ион водорода присоединяется за счет неподеленной пары электронов у атома азота к аминогруппе. Образуется ион, в котором одновременно присутствуют положительный и отрицательный заряды, так называемый цвиттер-ион:

Такая форма аминокислоты является преобладающей в нейтральном растворе. В кислой среде аминокислота, присоединяя ион водорода, образует катион:

В щелочной среде образуется анион:

Таким образом, в зависимости от рН среды аминокислота может быть положительно заряженной, отрицательно заряженной и электронейтральной (при равенстве положительных и отрицательных зарядов). Значение рН раствора, при котором суммарный заряд аминокислоты равен нулю, называется изоэлектрической точкой данной аминокислоты. Для многих аминокислот изоэлектрическая точка лежит вблизи рН 6. Например, изоэлектрические точки глицина и аланина имеют значения 5,97 и 6,02 соответственно.

Две аминокислоты могут реагировать друг с другом, в результате чего отщепляется молекула воды и образуется продукт, который называется дипептидом:

Связь, соединяющая две аминокислоты, носит название пептидной связи. Если пользоваться буквенными обозначениями аминокислот, образование дипептида можно схематически представить следующим образом:

Аналогично образуются трипептиды, тетрапептиды и т.д.:

H2N – лиз – ала – гли – СООН – трипептид

H2N – трп – гис – ала – ала – СООН – тетрапептид

H2N – тир – лиз – гли – ала – лей – гли – трп – СООН – гептапептид

Пептиды, состоящие из небольшого числа аминокислотных остатков, имеют общее название олигопептиды.

Интересно знать! Многие олигопептиды обладают высокой биологической активностью. К ним относится ряд гормонов, например, окситоцин (нанопептид) стимулирует сокращение матки, брадикинин (нанопептид) подавляет воспалительные процессы в тканях. Антибиотик грамицидин С (циклический декапептид) нарушает регуляцию ионной проницаемости в мембранах бактерий и тем самым убивает их. Грибные яды аманитины (октапептиды), блокируя синтез белка, способны вызвать сильное отравление у человека. Широко известен аспартам — метиловый эфир аспартилфенилаланина. Аспартам имеет сладкий вкус и используется для придания сладкого вкуса различным продуктам, напиткам.

Классификация аминокислот

Существует несколько подходов к классификации аминокислот, но наиболее предпочтительной является классификация, основанная на строении их радикалов. Выделяют четыре класса аминокислот, содержащих радикалы следующих типов; 1) неполярные (или гидрофобные); 2) полярные незаряженные; 3) отрицательно заряженные и 4) положительно заряженные:

К неполярным (гидрофобным) относятся аминокислоты с неполярными алифатическими (аланин, валин, лейцин, изолейцин) или ароматическими (фенилаланин и триптофан) R-группами и одна серусодержащая аминокислота – метионин.

Полярные незаряженные аминокислоты в сравнении с неполярными лучше растворяются в воде, более гидрофильны, так как их функциональные группы образуют водородные связи с молекулами воды. К ним относятся аминокислоты, содержащие полярную НО-группу (серин, треонин и тирозин), HS-группу (цистеин), амидную группу (глутамин, аспарагин) и глицин (R-группа глицина, представленная одним атомом водорода, слишком мала, чтобы компенсировать сильную полярность a-аминогруппы и a-карбоксильной группы).

Читайте так же:  Креатин малат или моногидрат

Аспарагиновая и глутаминовая кислоты относятся к отрицательно заряженным аминокислотам. Они содержат по две карбоксильные и по одной аминогруппе, поэтому в ионизированном состоянии их молекулы будут иметь суммарный отрицательный заряд:

К положительно заряженным аминокислотам принадлежат лизин, гистидин и аргинин, в ионизированном виде они имеют суммарный положительный заряд:

[1]

В зависимости от характера радикалов природные аминокислоты также подразделяются на нейтральные, кислые и основные. К нейтральным относятся неполярные и полярные незаряженные, к кислым – отрицательно заряженные, к основным – положительно заряженные.

Десять из 20 аминокислот, входящих в состав белков, могут синтезироваться в человеческом организме. Остальные должны содержаться в нашей пище. К ним относятся аргинин, валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан, фенилаланин и гистидин. Эти аминокислоты называются незаменимыми. Незаменимые аминокислоты входят часто в состав пищевых добавок, используются в качестве лекарственных препаратов.

Интересно знать! Исключительно важную роль играет сбалансированность питания человека по аминокислотам. При недостатке незаменимых аминокислот в пище организм саморазрушается. При этом страдает в первую очередь головной мозг, что приводит к различным заболеваниям центральной нервной системы, психическим расстройствам. Особенно уязвим молодой растущий организм. Так, например, при нарушении синтеза тирозина из фенилаланина у детей развивается тяжелое заболевание финилпировиноградная олигофрения, вызывающее тяжелую умственную отсталость или гибель ребенка.

Аминокислоты, входящие в состав белков, их строение, свойства.

Белки — полимерные молекулы, в которых мономерами служат аминокислоты. В составе белков в организме человека встречают только 20 альфа-аминокислот. Одни и те же аминокислоты присутствуют в различных по структуре и функциям белках. Индивидуальность белковых молекул определяется порядком чередования аминокислот в белке.

Аминокислотами называются органические кислоты, содержащие одну или несколько аминогрупп.

Все α- аминокислоты, кроме аминоуксусной (глицина), имеют асимметрический α-углеродный атом и существуют в виде двух энантиомеров.Практически все белки построены из 20 α -аминокислот, принадлежащих за исключением глицина к L- ряду.

||По физическим и ряду химических свойств аминокислоты резко отличаются от соответствующих кислот и оснований. Они

· лучше растворяются в воде, чем в органических растворителях;

· имеют высокую плотность

· высокие температуры плавления.

Эти свойства указывают на взаимодействие аминных и кислотных групп, вследствие чего аминокислоты в твёрдом состоянии и в растворе (в широком интервале рН) находятся в цвиттер-ионной форме (т.е. как внутренние соли).

Все аминокислоты отличаются характером радикала, который может быть ациклическим или циклическим. В состав радикала может входить дополнительно вторая карбоксильная группа (такие аминокислоты называются моноаминодикарбоновые МАДК) или две аминные группы (диаминомонокарбоновые ДАМК). В составе отдельных аминокислот могут находиться гидроксильные группы (серин, треонин),сульфгидрильная (цистеин), метильная (метионин).

Таблица 1. Важнейшие аминокислоты.

Большинство аминокислот, участвующих в обменных процессах и входящих в состав белков, могут поступать с пищей или синтезироваться в организме в процессе обмена ( из других аминокислот, поступающих в избытке). Они называются заменимыми. Некоторые аминокислоты не могут синтезироваться в организме и должны поступать с пищей — незаменимые аминокислоты. Таких аминокислот девять(гистидин, триптофан, фенилаланин, лизин, метионин, треонин, изолейцин, лейцин, валин).

4.Молекулярная масса белков. Размеры и форма белковых молекул.

Первичная структура белков в значительной степени определяет вторичную, третичную структуры и особенности четвертичной структуры. В свою очередь, первичная и пространственная структуры белков, их молекулярная масса, форма и размеры обусловливают их физико-химические свойства.

Размер белка может измеряться в числе аминокислотных остатков или в дальтонах (молекулярная масса), но из-за относительно большой величины молекулы масса белка выражается в производных единицах — килодальтонах (кДа). Молекулярная масса белков достаточно большая, поэтому они относятся к высокомолекулярным соединениям. Молекулярная масса белков колеблется от 6 000 до 1 000 000 Дальтон и выше, она зависит от количества аминокислотных остатков в полипептидной цепи, а для олигомерных белков имеющих четвертичную структуру – от количества входящих в них протомеров (субъединиц).

Молекулярная масса некоторых белков составляет:

· гемоглобин – 65 000Д.

Молекулярную массу белка можно определить по скорости седиментации при ультрацентрифугировании, т.е. при ускорении 100000-500000 G . На основании этого определяют коэффициент седиментации, который обозначают S ( в честь шведского ученого СВЕДБЕРГА). Молекулярная масса большинства белков колеблется в пределах 1-20S.Для вычисления молекулярной массы (М), помимо константы седиментации, необходимы дополнительные сведения о плотности растворителяи белка и другие согласно уравнению Сведберга:

Другим методом определения молекулярной массы является метод гельфильтрации (молекулярное просеивание). Используется искусственно созданные гранулы, имеющие поры (гранулы СЕФАДЕКСА). Внутрь гранулы могут проникать только соединения определённого размера: молекулы небольшого размера входят в гранулы, а большие быстрее вымываются. Молекулярная масса рассчитывается ориентировочно. Буфер не задерживается, а белок движется тем медленнее, чем меньше молекулярная масса.

Белки имеют различную форму, но выделяют две основных группы:

· глобулярные (шарообразные) .Более компактны, в этих белках гидрофильные группы расположены преимущественно снаружи, а гидрофобные – внутри, образуя ядро, водорастворимысвёртываются при нагревании, нейтральны, сравнительно трудно осаждаются растворами солей. (Глобулин, Альбумин)

Читайте так же:  Доктор мясников л карнитин

· фибриллярные (веретенообразные). Образуют полимеры, их структура обычно высокорегулярна и поддерживается, в основном, взаимодействиями между разными цепями. Они образуют микрофиламенты, микротрубочки, фибриллы, поддерживают структуру клеток и тканей. (Актин, Миозин)

На основе различий белков в молекулярной массе, размеров и форме их можно разделить с помощью ультрацентрифугирования (по скорости седиментации), методом гель – фильтрации (молекулярного просеивания в сефадексе).

Последнее изменение этой страницы: 2017-01-24; Нарушение авторского права страницы

АМИНОКИСЛОТНЫЙ СОСТАВ БЕЛКОВ

Читайте также:

  1. I. Сущность, состав, характеристика товарооборота.
  2. III. Исходные данные для составления планов по товарообороту.
  3. А. Составление бюджета.
  4. А. Социально-сословный и национальный состав населения России
  5. Автоматизированная система контроля подвижного состава
  6. Активный центр белков и избирательность связывания его с лигандом
  7. Анализ состава и структуры имущества организации
  8. Анализ состава, динамики и структуры основных средств
  9. Анализ состава, структуры и источников формирования имущества предприятий
  10. АНАЛИТИЧЕСКОЕ СОСТАВЛЕНИЕ МАТЕМАТИЧЕСКОГО ОПИСАНИЯ.
  11. Атмосфера и ее состав

БЕЛКИ

Структура РНК

Внутри каждой клетки имеются три основных типа РНК которые носят название в соответствии с их функциями:

мРНК (матричная или информативная РНК) – служит матрицей для синтеза белков и передачи информации о структуре белка, который должен синтезироваться в организме.

тРНК (транспортная) – переносит аминокислоты к пункту синтеза белка – рибосомам.

рРНК (рибосомная) – входит в состав рибосом.

Все эти формы участвуют в биосинтезе белка.

Несмотря на то что первая аминокислота – глицин – была выделена А. Браконно еще в 1820 г. из кислотного гидролизата желатина, полный аминокислотный состав белков был расшифрован только к 30-м годам XX в. Большая заслуга в этом принадлежит работам Н.Н. Любавина, который в 1871 г. установил, что под действием ферментов пищеварительных соков белки расщепляются на аминокислоты.

Были сделаны два важных вывода: 1) в состав белков входят аминокислоты; 2) методами гидролиза может быть изучен химический, в частности амнокислотный, состав белков.

Для изучения аминокислотного состава белков пользуются сочетанием кислотного (НСl), щелочного [Ва(ОН)2] и, реже, ферментативного гидролиза или одним из них. Установлено, что при гидролизе чистого белка, не содержащего примесей, освобождаются 20 различных α-аминокислот. Все другие открытые в тканях животных, растений и микроорганизмов аминокислоты (более 300) существуют в природе в свободном состоянии либо в виде коротких пептидов или комплексов с другими органическими веществами.

α-Аминокислоты представляют собой производные карбоновых кислот, у которых один водородный атом, у α-углерода, замещен на аминогруппу (—NH2), например:

Следует подчеркнуть, что все аминокислоты, входящие в состав природных белков, являются α-аминокислотами, хотя аминогруппа в свободных аминокарбоновых кислотах может находиться, как увидим ниже, в β-, γ-, δ-и ε-положениях.

Классификация аминокислот

Все встречающиеся в природе аминокислоты обладают общим свойством – амфотерностью (от греч. amphoteros – двусторонний), т.е. каждая аминокислота содержит как минимум одну кислотную и одну основную группы. Общий тип строения α-аминокислот может быть представлен в следующем виде:

Как видно из общей формулы, аминокислоты будут отличаться друг от друга химической природой радикала R, представляющего группу атомов в молекуле аминокислоты, связанную с α-углеродным атомом и не участвующую в образовании пептидной связи при синтезе белка. Почти все α-амино- и α-карбоксильные группы участвуют в образовании пептидных связей белковой молекулы, теряя при этом свои специфические для свободных аминокислот кислотно-основные свойства. Поэтому все разнообразие особенностей структуры и функции белковых молекул связано с химической природой и физико-химическими свойствами радикалов аминокислот. Именно благодаря им белки наделены рядом уникальных функций, не свойственных другим биополимерам, и обладают химической индивидуальностью.

Классификация аминокислот разработана на основе химического строения радикалов, хотя были предложены и другие принципы. Различают ароматические и алифатические аминокислоты, а также аминокислоты, содержащие серу или гидроксильные группы. Часто классификация основана на природе заряда аминокислоты. Если радикал нейтральный (такие аминокислоты содержат только одну амино- и одну карбоксильную группы), то они называются нейтральными аминокислотами. Если аминокислота содержит избыток амино- или карбоксильных групп, то она называется соответственно основной или кислой аминокислотой.

Современная рациональная классификация аминокислот основана на полярности радикалов (R-групп), т.е. способности их к взаимодействию с водой при физиологических значениях рН (близких к рН 7,0). Различают 5 классов аминокислот, содержащих следующие радикалы: 1) неполярные (гидрофобные); 2) полярные (гидрофильные); 3) ароматические (большей частью неполярные); 4) отрицательно заряженные и 5) положительно заряженные. В представленной классификации аминокислот (табл. 1.3) приведены наименования, сокращенные английские и русские обозначения и однобуквенные символы аминокислот, принятые в отечественной и иностранной литературе, а также значения изоэлектрической точки (рI) и молекулярной массы (М). Отдельно даются структурные формулы всех 20 аминокислот белковой молекулы.

Полярные, незаряженные R-группы

Отрицательно заряженные R-группы

[2]

Положительно заряженные R-группы

Видео (кликните для воспроизведения).

Перечисленные аминокислоты присутствуют в разных количественных соотношениях и последовательностях в тысячах белков, хотя отдельные индивидуальные белки не содержат полного набора всех этих аминокислот. Помимо наличия в большинстве природных белков 20 аминокислот, в некоторых белках обнаружены производные аминокислот : оксипролин, оксилизин, дийодтирозин, фосфосерин и фосфотреонин (последние две аминокислоты представлены в главе 2):

Читайте так же:  Спортпит что для чего нужно

Первые две аминокислоты содержатся в белке соединительной ткани – коллагене, а дийодтирозин является основой структуры гормонов щитовидной железы. В мышечном белке миозине обнаружен также ε-N-метиллизин; в состав протромбина (белок свертывания крови) входит γ-карбоксиглутаминовая кислота, а в глутатионпероксидазе открыт селеноцистеин, в котором ОН-группа серина заменена на селен (Se):

Помимо указанных, ряд α-аминокислот выполняет важные функции в обмене веществ, хотя и не входит в состав белков, в частности орнитин, цитруллин, гомосерин, гомоцистеин, цистеинсульфиновая кислота, диоксифенилаланин и др.

Дата добавления: 2014-01-04 ; Просмотров: 2363 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Сколько аминокислот входит в состав белков живых организмов?

В настоящее время в различных объектах живой природы обнаружено до 200 различных аминокислот. В организме человека их, например, около 60. Однако в состав белков входят только 20 аминокислот, называемых иногда природными.

Принято делить все аминокислоты на две группы — заменимые и незаменимые. Незаменимыми называются те аминокислоты, которые наш организм не может изготовить сам и должен получать с пищей. К ним относятся: триптофан, лизин, лейцин, изолейцин, валин, треонин, метионин и фенилаланин. Еще две — цистеин и тирозин — могут в случае большой нужды синтезироваться организмом, за что их в англоязычной литературе обзывают «полузаменимыми» (semi-essential). Иногда к незаменимым причисляют гистидин. Остальные аминокислоты — аланин, аргинин, аспарагин, аспарагиновая кислота, глутамин, глутаминовая кислота, глицин, пролин и серин — заменимые.

Кроме того, есть несколько аминокислот, которые не входят в состав белка, но выполняют в организме важные функции. К ним относятся гамма-аминомасляная кислота (ГАМК) и диоксифенилаланин (ДОФА) — важнейшие компоненты нервной системы, участвующие в передаче нервных импульсов.

Особенно важны для организма лейцин, изолейцин и валин. Они являются как бы основой, вокруг которой строится весь метаболизм белков.
если что-то не то, извини

Аминокислотный состав белков

Белки — непериодические полимеры, мономерами которых являются α-аминокислоты. Обычно в качестве мономеров белков называют 20 видов α-аминокислот, хотя в клетках и тканях их обнаружено свыше 170.

В зависимости от того, могут ли аминокислоты синтезироваться в организме человека и других животных, различают: заменимые аминокислоты — могут синтезироваться; незаменимые аминокислоты — не могут синтезироваться. Незаменимые аминокислоты должны поступать в организм вместе с пищей. Растения синтезируют все виды аминокислот.

В зависимости от аминокислотного состава, белки бывают: полноценными — содержат весь набор аминокислот; неполноценными — какие-то аминокислоты в их составе отсутствуют. Если белки состоят только из аминокислот, их называют простыми. Если белки содержат помимо аминокислот еще и неаминокислотный компонент (простетическую группу), их называютсложными. Простетическая группа может быть представлена металлами (металлопротеины), углеводами (гликопротеины), липидами (липопротеины), нуклеиновыми кислотами (нуклеопротеины).

Все аминокислоты содержат: 1) карбоксильную группу (–СООН), 2) аминогруппу (–NH2), 3) радикал или R-группу (остальная часть молекулы). Строение радикала у разных видов аминокислот — различное. В зависимости от количества аминогрупп и карбоксильных групп, входящих в состав аминокислот, различают:нейтральные аминокислоты, имеющие одну карбоксильную группу и одну аминогруппу; основные аминокислоты, имеющие более одной аминогруппы; кислые аминокислоты, имеющие более одной карбоксильной группы.

Аминокислоты являются амфотерными соединениями, так как в растворе они могут выступать как в роли кислот, так и оснований. В водных растворах аминокислоты существуют в разных ионных формах.

Примеры незаменимых кислот : валин, лейцин, изолейцин, триптофан.

3)Пищевая ценность белков, аминокислотный скор.

Пищевая ценность белков.

Белки относятся к жизненно необходимым веществам, без которых невозможны жизнь, рост и развитие организма. В процессе жизнедеятельности происходят распад и обновление белковых компонентов клеток. Для поддержания этих процессов организму необходимо ежедневно поступление полноценного белка с пищей. Белок входит в состав ядра и цитоплазмы клеток.

Белки выполняют целый ряд важнейших функций в организме.

* Пластическая функция. Белки (протеины) необходимы каждой клетке организма. Белки – структурная основа всех тканей организма. Это основной материал для построения растущих и воспроизводства разрушающихся тканей – от мышц и костей, до волос и ногтей. Такие структурные белки, как коллаген и кератин, служат главными компонентами костной ткани, волос и ногтей. Сократительные белки мышц обладают способностью изменять свою длину, используя химическую энергию для выполнения механической работы.

*Гормональная функция. Гормоны, регулирующие физиологические процессы, тоже являются белками. Одним из наиболее известных белков-гормонов является инсулин. Этот простой белок состоит только из аминокислот. Функциональная роль инсулина многопланова. Он снижает содержание сахара в крови, способствует синтезу гликогена в печени и мышцах, увеличивает образование жиров из углеводов, влияет на обмен фосфора, обогащает клетки калием. Регуляторной функцией обладают белковые гормоны гипофиза — железы внутренней секреции, связанной с одним из отделов головного мозга. Он выделяет гормон роста, при отсутствии которого развивается карликовость. Этот гормон представляет собой белок с молекулярной массой от 27000 до 46000.Также одним из важных и интересных в химическом отношении гормонов является вазопрессин. Он подавляет мочеобразование и повышает кровяное давление.

[3]

*Ферментативная функция. Белки в виде ферментов, катализирующих химические реакции, участвуют в регуляции многих обменных процессов и совершенно необходимы для нормального обмена самих белков и других пищевых веществ, в частности, углеводов, жиров, минералов, витаминов. Витамины, например, при недостатке белков не усваиваются организмом. Белковая пища помогает усвоению кальция, в то время как снижение уровня белка в пище ухудшает всасываемость этого элемента слизистой кишечника. Усвоение питательных веществ в организме возможно только в присутствии определенных ферментов. А ферменты – это белковые структуры, и соответственно недостаток белка приведет к серьезным нарушениям в питании организма.

Читайте так же:  Взаимодействие аминокислот с щелочами

*Защитная функция. К белкам относятся антитела, которые связывают, нейтрализуют и способствуют выведению токсичных веществ из организма. Дефицит белка в питании уменьшает устойчивость организма к инфекциям, так как снижается уровень образования антител. Нарушается синтез и других защитных факторов — лизоцима, иммуноглобулина, из-за чего обостряется течение воспалительных процессов. Белковыми веществами являются все факторы свертывающей и противосвертывающей системы.

*Транспортная функция. Белки участвуют в транспорте кровью липидов, углеводов, некоторых витаминов, гормонов, лекарственных веществ. Это прежде всего гемоглобин, переносящий кислород из легких к клеткам. В мышцах эту функцию берет на себя еще один транспортный белок — миоглобин. Многие белки, расположенные внутри клетки и на клеточной мембране, выполняют регуляторную, транспортную функцию распределения некоторых веществ, минеральных солей и витаминов между клеткой и межклеточным пространством. Поддержание водного баланса в тканях. Белки участвуют в распределении жидкости между внутри– и внеклеточной средой в организме. При дефиците белка вода не удерживается в клетках и переходит в межклеточную жидкость.

*Энергетическая функция. Хотя белки и не служат главным источником энергии, тем не менее они при определенных условиях могут выполнять эту функцию. Это происходит тогда, когда использование двух других источников энергии – углеводов и жиров затруднено, как, например, при голодании или на несбалансированных диетах. Однако, в качестве энергетической субстанции белки очень не выгодны и требуют большое количество энергии на свое усвоение и синтез, а также на вывод азота, входящего в их состав. Некоторые белки, способные реагировать на внешние воздействия (свет, запах) и служат в органах чувств рецепторами, воспринимающими раздражение. Белки входит в состав хромосом, обеспечивая нормальную работу ДНК – носителя наследственности. С другой стороны, в генах – участках ДНК – закодированы не просто наследственные признаки сами по себе, а состав белков, которые синтезируются организмом.

Недостаток белков в питании вызывает серьезные нарушения в организме: у детей замедляются рост и развитие, у взрослых возникают глубокие изменения в печени (жировая инфильтрация), а при длительной недостаточности — даже цирроз, нарушение деятельности желез внутренней секрецию (щитовидная, половые, поджелудочная), изменяется белковый состав крови, снижается устойчивость организма к инфекционным заболеваниям, страдает умственная деятельность человека — снижается память, нарушается работоспособность.

Наряду с этим установлено, что избыточное поступление белков неблагоприятно отражается на функции многих органов и систем организма, в частности при этом перегружаются ферментные системы и в крови накапливаются продукты неполного метаболизма, повышается количество мочевины, свободных аминокислот и т. д.

Аминокислотный скор – это показатель отношения определенной незаменимой аминокислоты в каком-то продукте к такой же аминокислоте в искусственном идеальном белке. (Идеальный белок представляет собой такое соотношение незаменимых аминокислот, которое позволяет организму без проблем обновлять те или иные внутренние структуры.)
Рассчитывается аминокислотный скор путем деления количества определенной незаменимой аминокислоты в продукте на количество такой же аминокислоты в идеальном белке. Полученные данные затем умножают на 100 и получают аминокислотный скор исследуемой аминокислоты.

4)Первичная структура молекулы белка. Образование пептидной связи.

Первичная структура – цепочка из аминокислот, связанных пептидной связью (сильной, ковалентной). Чередуя 20 аминокислот в разном порядке, можно получать миллионы разных белков. Если поменять в цепочке хотя бы одну аминокислоту, строение и функции белка изменятся, поэтому первичная структура считается самой главной в белке.

Пептидная связь — вид амидной связи, возникающей при образовании белков и пептидов в результате взаимодействия α-аминогруппы (—NH2) одной аминокислоты с α-карбоксильной группой (—СООН) другой аминокислоты.

Из двух аминокислот (1) и (2) образуется дипептид (цепочка из двух аминокислот) и молекула воды. По этой же схемерибосома генерирует и более длинные цепочки из аминокислот: полипептиды и белки. Разные аминокислоты, которые являются «строительными блоками» для белка, отличаются радикалом R.

Виды аминокислот входящих в состав белка

Аминокислоты классифицируют по следующим структурным признакам.

I. Классификация по взаимному положения функциональных групп

В зависимости от взаимного расположения амино- и карбоксильной групп аминокислоты подразделяют на α- , b- , g- , d- , e- и т. д.

Греческая буква при атоме углерода обозначает его удаленность от карбоксильной группы.

II. Классификация по строению бокового радикала (функциональным группам)

Алифатические аминокислоты

Оксимоноаминокарбоновые кислоты (содержат-ОН-группу): серин, треонин.

Моноаминодикарбоновые кислоты (содержат СООН-группу): аспартат, глутамат (за счёт второй карбоксильной группы несут в растворе отрицательный заряд).

Амиды моноаминодикарбоновых кислоты (содержат NH2СО-группу): аспарагин, глутамин.

Диаминомонокарбоновые кислоты (содержат NH2-группу): лизин, аргинин (за счёт второй аминогруппы несут в растворе положительный заряд).

Читайте так же:  Л карнитин для похудения действие

Ароматические аминокислоты: фенилаланин, тирозин, триптофан.

Гетероциклические аминокислоты: триптофан, гистидин, пролин.

Иминокислоты аминокислоты: пролин.

III. Классификация по полярности бокового радикала (по Ленинджеру)

Выделяют четыре класса аминокислот, содержащих радикалы следующих типов.

Гидрофобные аминокислоты располагаются внутри молекулы белка, тогда как гидрофильные – на внешней поверхности, что делает гидрофильными и хорошо растворимыми в воде молекулы белка.

Благодаря этому свойству белки хорошо связывают воду, удерживая жидкость в крови, в межклеточном пространстве и внутри клеток.

1. Неполярные (гидрофобные)

К неполярным (гидрофобным) относятся аминокислоты с неполярными R-группами и одна серусодержащая аминокислота:

— алифатические: аланин, валин, лейцин, изолейцин

— ароматические: фенилаланин, триптофан.

2. Полярные незаряженные

Полярные незаряженные аминокислоты по сравнению с неполярными лучше растворяются в воде, более гидрофильны, так как их функциональные группы образуют водородные связи с молекулами воды.

К ним относятся аминокислоты, содержащие:

— полярную ОН-группу (оксиаминокислоты): серин, треонин и тирозин

— амидную группу: глутамин, аспарагин

— и глицин (R-группа глицина, представленная одним атомом водорода, слишком мала, чтобы компенсировать сильную полярность a-аминогруппы и a-карбоксильной группы).

3. Заряженные отрицательно при рН-7 (кислые)

Аспарагиновая и глутаминовая кислоты относятся к отрицательно заряженным аминокислотам.

Они содержат по две карбоксильные и по одной аминогруппе, поэтому в ионизированном состоянии их молекулы будут иметь суммарный отрицательный заряд:

4. Заряженные положительно при рН-7 (основные)

К положительно заряженным аминокислотам принадлежат лизин, гистидин и аргинин.

В ионизированном виде они имеют суммарный положительный заряд:

В зависимости от характера радикалов природные аминокислоты также подразделяются на нейтральные, кислые и основные. К нейтральным относятся неполярные и полярные незаряженные, к кислым – отрицательно заряженные, к основным – положительно заряженные.

IV. Классификация по кислотно-основным свойствам

В зависимости от количества функциональных групп различают кислые, нейтральные и основные аминокислоты.

Основные

Аминокислоты, в которых число аминогрупп превышает число карбоксильных групп, называют основными аминокислотами: лизин, аргинин, гистидин:

Кислые

Если в аминокислотах имеется избыток кислотных групп, их называют кислыми аминокислотами: аспарагиновая и глутаминовая кислоты:

Все остальные аминокислоты относятся к нейтральным.

V. По числу функциональных групп

Аминокислоты по числу функциональных групп можно разделить моноаминомонокарбоновые, моноаминодикарбоновые, диаминомонокарбоновые:

VI.Биологическая классификация (по способности синтезироваться в организме человека и животных)

Заменимые аминокислоты – десять из 20 аминокислот, входящих в состав белков, могут синтезироваться в организме человека. К ним относятся: глицин (гликокол), аланин, серин, цистеин, тирозин, аспарагиновая и глутаминовая кислоты, аспарагин, глутамин, пролин.

Незаменимые аминокислоты (8 аминокислот) – не могут синтезироваться в организме человека и животных и должны поступать в организм в составе белковой пищи.

Абсолютно незаменимых аминокислот восемь: валин, изолейцин, лейцин, треонин, метионин, лизин, фенилаланин, триптофан.

Незаменимые аминокислоты входят часто в состав пищевых добавок, используются в качестве лекарственных препаратов.

Условно незаменимые (2 аминокислоты) — синтезируются в организме, но в недостаточном количестве, поэтому частично должны поступать с пищей. Такими аминокислотами являются гистидин, аргинин.

Для детей также незаменимыми являются гистидин и аргинин.

Для человека одинаково важны оба типа аминокислот: и заменимые, и незаменимые. Большая часть аминокислот идет на построение собственных белков организма, но без незаменимых аминокислот организм существовать не сможет.

При недостатке каких-либо аминокислот в организме человека в течение непродолжительного времени могут разрушаться белки соединительной ткани, крови, печени и мышц, а полученный из них «строительный материал» — аминокислоты идут на поддержание нормальной работы наиболее важных органов — сердца и мозга.

Дефицит аминокислот приводит к ухудшению аппетита, задержке роста и развития, жировой дистрофии печени и другим тяжелым нарушениям.

При этом наблюдается снижение аппетита, ухудшение состояния кожи, выпадение волос, мышечная слабость, быстрая утомляемость, снижение иммунитета, анемия.

Избыток аминокислот может вызвать развитие тяжелых заболеваний, особенно у детей и в юношеском возрасте. Наиболее токсичными являются метионин (провоцирует риск развития инфаркта и инсульта), тирозин (может спровоцировать развитие артериальной гипертонии, привести к нарушению работы щитовидной железы) и гистидин (может способствовать возникновению дефицита меди в организме и привести к заболеваниям суставов, ранней седине, тяжелым анемиям).

Видео (кликните для воспроизведения).

В условиях нормального функционирования организма, когда присутствует достаточное количество витаминов (В6, В12, фолиевой кислоты) и антиоксидантов (витамины А, Е, С и селен), избыток аминокислот не наносит вред организму.

Источники


  1. Дальке, Рудигер Едим правильно. Дорога к здоровому питанию / Рудигер Дальке. — М.: ИГ «Весь», 2009. — 240 c.

  2. Фадеева, Анастасия Диабет. Профилактика, лечение, питание / Анастасия Фадеева. — М.: Питер, 2011. — 176 c.

  3. Салова, О. В. Диеты астронавтов: проверенные на практике и рекомендованные лучшими диетологами / О.В. Салова. — М.: АСТ, Харвест, 2005. — 196 c.
  4. Гурвич, М. М. Диетология для всех / М.М. Гурвич. — М.: Медицина, 1992. — 160 c.
Виды аминокислот входящих в состав белка
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here