Заменимые и незаменимые аминокислоты

Важная и проверенная информация на тему: "заменимые и незаменимые аминокислоты" от профессионалов для спортсменов и новичков.

Незаменимые аминокислоты

Классификация аминокислот

В природе встречается около 500 аминокислот. Однако всего 22 используется в генетическом коде для синтеза разнообразных белков. В зависимости от возможности синтезироваться внутри организма все эти аминокислоты разделяются на три группы – заменимые, незаменимые, частично заменимые.

Рис. 1. Биологическая классификация аминокислот.

К десяти заменимым аминокислотам, синтезируемым внутри организма, относятся:

  • аланин;
  • аспарагин;
  • глутамин;
  • глутаминовая кислота;
  • глицин;
  • карнитин;
  • орнитин;
  • пролин;
  • серин;
  • таурин.

В таблице более подробно рассмотрим незаменимые и частично заменимые аминокислоты.

Группа

Аминокислота

Формула

Значение

Способствует построению и восстановлению мышечной ткани. Поддерживает иммунитет. Снимает усталость

Изомер лейцина. Участвует в энергетическом обмене

Является источником энергии в мышечных клетках, поддерживает уровень серотонина

Преобразуется в тирозин. Помогает передавать нервные импульсы

Участвует в синтезе коллагена и эластина – мышечных белков. Стимулирует иммунитет, препятствует отложению жира в печени

Участвует в синтезе мышечной ткани

Синтезируется во многие белки и пептиды

Участвует в образовании структурных, иммунных и ферментативных белков

Входит в состав пищеварительных ферментов. Способствует формированию коллагена

Стимулирует рост, восстанавливает ткани. Присутствует в гемоглобине

Стимулирует иммунную систему

Рис. 2. Структурные формулы незаменимых аминокислот.

К списку незаменимых аминокислот детского и подросткового организма относят аргинин, который постоянно вырабатывается только во взрослом возрасте.

Где содержатся

Незаменимые аминокислоты содержатся в растительной и животной пище:

  • лейцин – орехи, рис, рыба, яйца;
  • изолейцин – миндаль, чечевица, рыба;
  • валин – грибы, бобы, мясо, молоко;
  • фенилаланин – говядина, яйца, творог, орехи;
  • триптофан – индейка, йогурт, бобы, кунжут, рыба;
  • треонин – орехи, молоко, яйца;
  • лизин – пшеница, молоко, рыба;
  • метионин – яйца, кунжут, рис, арахис.

Рис. 3. Продукты, содержащие незаменимые аминокислоты.

Организм может функционировать без незаменимых аминокислот. Однако их недостаток приводит к нарушению синтеза белка, что влечёт за собой снижение умственных способностей и иммунитета. Избыток же создаёт нагрузку на печень и почки.

Что мы узнали?

Из 500 существующих аминокислот 22 аминокислоты необходимы живому организму для синтеза белков, выполняющих различные функции. По признаку заменимости аминокислоты классифицируются на заменимые, незаменимые, частично незаменимые. Заменимые синтезируются внутри организма, незаменимые должны поступать вместе с пищей, частично заменимые синтезируются в организме в недостаточном количестве. К незаменимым относится восемь аминокислот, к условно незаменимым – четыре. Аминокислоты содержатся в животной и растительной пище – яйцах, мясе, молоке, бобовых, рисе.

Заменимые и незаменимые аминокислоты. Идеальный белок. Аминокислотный скор. Физиологические свойства незаменимых аминокислот.

Заменимые аминокислоты – это такие аминокислоты, которые могут поступать в наш организм с белковой пищей либо же образовываться в организме из других аминокислот. К заменимым аминокислотам относятся: аргинин, глютаминовая кислота, глицин, аспарагиновая кислота, гистидин, серин, цистеин, тирозин, аланин, пролин.

Незаменимые аминокислоты – это такие аминокислоты, которые наш организм не может самостоятельно вырабатывать, они обязательно должны поступать с белковой пищей. К незаменимым аминокислотам относятся: валин, метионин, лейцин, изолейцин, фенилаланин, лизин, триптофан, треонин.

Таблица заменимых / незаменимых аминокислот

Изолейцин – аминокислота группы BCAA, имеющая разветвленную цепь.
Основное назначение – источник энергии для клеток мышц.
При малом содержании в организме изолейцина появляется сонливость и общая вялость, может понижаться уровень сахара в крови (гипогликемия), а при дефиците – теряется мышечная масса.

Лейцин – аминокислота группы BCAA, имеющая разветвленную цепь.
Основное назначение – строительство и рост мышечной ткани, образование белка в мышцах и печени, препятствует разрушению белковых молекул. Также может быть энергетическим источником. Препятствует понижению уровня серотонина, в результате чего организм меньше подвержен усталости.
Недостаток лейцина – результат плохого питания или нехватки витамина B6 в организме.

Валин – группы BCAA, имеющая разветвленную цепь.
Основное назначение – источник энергии для клеток мышц. Препятствует понижению уровня серотонина, в результате чего организм меньше подвержен усталости.
Недостаток валина – результат плохого питания или нехватки витамина B6 в организме.

Лизин – незаменимая аминокислота, основное вещество для выработки карнитина. Усиливает действие аргинина.
Недостаток лизина замедляет рост мышечной массы.

Метионин – незаменимая аминокислота.
Назначение – предотвращение отложения жира в печени, восстановление тканей печени и почек, ускоряет выработку белка в клетках, ускоряет восстановление после тренировок.
Недостаток метионина замедляет рост и развитие организма.

Фенилаланин – незаменимая аминокислота.
Назначение – ускоряет выработку белка, способствует выводу продуктов метаболизмапеченью и почками. Фенилаланин – гормон щитовидной железы, который контролирует скорость обмена веществ.
Недостаток фенилаланина замедляет рост и развитие организма.

Треонин – незаменимая аминокислота.
Назначение – выработка антител и иммуноглобулинов, которые обеспечивают нормальное функционирование иммунной системы организма.
При малом содержании треонина энергетические запасы организма быстро исчерпываются. А избыток данной аминокислоты способствует накоплению в организме мочевой кислоты.

Триптофан – незаменимая аминокислота.
В результате приема данной аминокислоты поведение человека становится более уравновешенным, а также увеличивается выработка гормона роста в организме.

«идеального» белка, 1 грамм которого содержит:

изолейцина — 40 мг

метионина и цистина — 35 (в сумме, так как организм может получать одну аминокислоту из другой)

Читайте так же:  Креатин для набора массы

фенилаланина и тирозина — 60 мг (в сумме)

триптофана — 10 мг

треонина — 40 мг

Для неполноценных белков принято находить незаменимую аминокислоту, которой не хватает больше других (лимитирующую), и рассчитывать ее скор — процентное содержание по отношению к теоретически необходимому количеству. Иногда скор находят для двух аминокислот.

Скор аминокислотный [англ. score счёт (очков в игре); син. скор белковый] — показатель биологической ценности белка, представляющий собой процентное отношение доли определенной незаменимой аминокислоты в общем содержании таких аминокислот в исследуемом белке к стандартному (рекомендуемому) значению этой доли.

Один из способов расчета аминокислотного скора сводится к вычислению процентного содержания каждой из аминокислот в исследуемом белке по отношению к их содержанию в белке, принимаемом за эталонный, по следующей формуле:

АС = АКХ / АКС ´ 100%,

где АКС – содержание аминокислот в стандартном белке; АКХ – содержание аминокислот в исследуемом белке.

Лимитирующими являются те незаменимые кислоты, скор которых имеет значение менее 100%.»

«Для оценки биологической ценности белков используют величину КРАС:

КРАС = W21;W10; РАС / n,

где W21;W10; РАС – разность аминокислотного скора для каждой незаменимой аминокислоты по сравнению с одной из наиболее дефицитной; n – число незаменимых аминокислот.

3. Ключевые функции и состояния организма, позитивное воздействие на которые позволяет относить продукты к категории функциональных. Классификация функциональных ингредиентов в соответствии с ГОСТ Р 54059-2010.

Ключевые функции и некоторые состояния организма человека, позитивное воздействие на которые позволяет относить продукты к категории продуктов функционального питания:

рост, развитие и дифференциация (адаптивные изменения в организме матери во время беременно­сти и лактации; рост и развитие плода; рост и развитие ребенка в период новорожденности и детст­ва);

защита против соединений, обладающих оксидантной активностью (исследование структуры и функций днк, белков, липопротеинов, полиненасыщенных жирных кислот, клеточных мембран);

сердечно — сосудистая система (гомеостаз липопротеинов; целостность эндотелия и артериол; на­блюдение за факторами, участвующими в коагуляции и фибринолизе; уровень гомоцистеина в плаз­ме крови; контроль за кровяным давлением);

сахарный диабет и ожирение (вес тела,состав и распределени жирового слоя; сохранение энергети­ческого баланса; содержание глюкозы, инсулина и триацилглицеридов в сыворотке крови адаптация к физическим упражнениям);

состояние костной ткани (плотность костной ткани, кинетика ионов кальция, фосфора, магния);

физиология желудочно-кишечного тракта (вес и консистенция фекалий, частота стула, время транзита содержимого пищеварительного тракта, состав и количество газов в выдыхаемом воздухе, количество гастроинтестинальных гормонов (например, холецистокинина);

состояние нормальной микрофлоры (количество и состав микроорганизмов в фекалиях, состояние биопленки, психохимические, морфологические исследования содержимого пищеварительного трак­та, биотипирование выделяемых микроорганизмов, состав микробных метаболитов, нагрузочные пробы с индикаторными микроорганизмами и химическими субстанциями, исследование микроорганизм-ассоциированных характеристик);

состояние иммунной системы (состояние ассоциированной с пищеварительным трактом лимфоидной ткани, активность фагоцитоза, содержание эндотоксина в сыворотке крови, количество имму­ноглобулинов различных классов, т- и в — лимфоцитов, интерлейкинов и медиаторов иммунного от­вета и воспаления, ответ на вакцинацию);

поведенческие реакции и состояние психического здоровья (аппетит, чувство сытости, познавательные способности, настроение и жизнестойкость, способность справляться со стрессом).

Примечание: в скобках приведены некоторые биомаркеры, исследование которых позволяет объективно оценивать эффекты БАД или ПФП на соответствующую функцию или состояние чело­века.

В соответствии, например, с рекомендациями Министерства здравоохранения Китая продукты функционального питания, которые маркируются специальным логотипом небесно голубого цвета, используются при следующих 24 состояниях: для регуляции иммунитета, липидного и углевод­ного обменов, кровяного давления, для предупреждения развития сенильного синдрома, улучшения сна, памяти, роста, развития, сексуальной активности, функций пищеварительного тракта, лактации, зрения, снятия утомляемости, для похудения, улучшения обеспечения организма кислородом, пре­дотвращения и улучшения анемических состояний, связанных с недостатком нутриентов, защиты печени от химических повреждений, защиты от радиации, мутагенного воздействия, с целью повы­шения противоопухолевой защиты, усиления выведения свинца, кальцификации костной ткани и т.д.

4.Основные категории функциональных пищевых ингредиентов, используемых для производства ФПП. Гликозиды. Основные группы гликозидов и их физиологическое воздействие.

Основные категории функциональных нутриентов:

Аминокислоты, пептиды, протеины, нуклеиновые кислоты

Макро — и микробиоэлементы

Полиненасыщенные жирные кислоты и другие антиоксиданты

Растительные энзимы, другие фитосоединения

Они широко используются для обогащения традиционных продуктов (молочные, хлебо булочные, напитки, сухие завтраки, растительные масла и т.д.) с целью придания им функциональных свойств (например, кальций, витамин D и К, изофлавоны для поддержания хорошего состояния костной ткани; витамины В6, В12, А, С, Е, фолиевая кислота, каротиноиды, линолевая, линоленовая кислоты, омега-3 жирные кислоты, фитостеролы, фитостанолы, хитозан, пектины — для снижения риска развития сердечно-сосудистых заболеваний; витамины А, С, Е, цинк, железо, магний, амино­кислоты, L-карнитин, креатин, цистеин-содержащие пептиды для поддержания хорошей физической и спортивной формы; различные пребиотики и пробиотики общей резистентности организма и со­хранения нормальных функций пищеварительного тракта и так далее.
Например, хорошо известно, что первым продуктом функционального назначения, целена­правленно разработанным для сохранения и восстановления здоровья человека являлся лактосодержащий кисломолочный продукт вышедший на рынок Японии в 1955 году под лозунгом «Хорошая микрофлора кишечника обеспечивает здоровый организм».

Пробиотические продукты, содержащие определенные штаммы молочнокислых и бифидо-бактериий, в Японии, Южной Корее, во многих европейских странах и России занимают ведущее место на рынке ФПП. Массовое и регулярное их использование позволяет поддерживать и восста­навливать микробиоценозы человека, прежде всего его пищеварительного тракта, снижать риск воз­никновения многих заболеваний.

Гликозиды

Гликози́ды — органические соединения, молекулы которых состоят из двух частей: углеводного (пиранозидного или фуранозидного) остатка — гликон и неуглеводного фрагмента (т. н. агликона – носитель биологической активности гликозида). Эти части связаны гетероатомом: O, N, S – гликозиды(гликозидная связь). В качестве гликозидов в более общем смысле могут рассматриваться и углеводы, состоящие из двух или более моносахаридных остатков. Преимущественно кристаллические, реже аморфные вещества, хорошо растворимые в воде и спирте.

Читайте так же:  Лучший протеин для набора
Гликозиды представляют собой обширную группу органических веществ, встречающихся в растительном (реже в животном) мире и/или получаемых синтетическим путём. При кислотном, щелочном, ферментативном гидролизе они расщепляются на два или несколько компонентов — агликон и углевод (или несколько углеводов). Многие из гликозидов токсичны или обладают сильным физиологическим действием, например гликозиды наперстянки, строфанта и другие.

Своё название гликозиды получили от греческих слов glykys — сладкий и eidos — вид, поскольку они при гидролизе распадаются на сахаристую и несахаристую компоненты. Если при этом образуется глюкоза – глюкозиды, а если др. сахара- гликозиды. Присоединение гликозильного остатка к агликону – процесс гликозилирования, гидрофильность соединения повышается, метабользм улучшается.Чаще всего гликозиды встречаются в листьях и цветах растений, реже в других органах. В их состав входят углерод, водород, кислород, реже азот (амигдалин) и только некоторые содержат серу (синальбин, мирозин).

Классификация гликозидов в зависимости от природы:

сердечные гликозиды, воздействующие на сердечную мышцу, содержатся в наперстянке, ландыше, горицвете и других растениях;содержат в неуглеводном остатке фенантреновую структуру.

сапонины – безазотистые гликозиды растительного происхождения, обладают поверхностно-активными свойствами и широким спектром биологической активности – гормональным, противовоспалительным, общеукрепляющим, седативным, обезболивающим и другими эффектами; широко распространены в природе, содержатся в бобовых , растениях семейства аралиевые, первоцветные, губоцветные, гвоздичные; растворы сапонинов при встряхивании образуют густую,устойчивую пену.

в зависимости от химического состава неуглеводной части, сапонины делятся на:

-стероидные и тритерпеновые

антрагликозиды (3 ароматических кольца, производные антроцена), цветом от желтого до красного,следовательно могут выступать в роли красителей. Оказывают слабительное воздействие, противовоспалительное, используются при кожных и заболеваниях ЖКТ, содержатся в коре крушины, листьях сенны, растения семейства мареновые, бобовые, крушиновые;

горькие гликозиды, горечи или иридоиды нормализуют работу пищеварительной системы, содержатся в полыни, нони , одуванчике, аире и других растениях;

цианогенные гликозиды имеют в составе синильную кислоту(токсичность), оказывают успокаивающее и обезболивающее воздействие, содержатся в косточках растений подсемейства сливовые;

амикдолин: неуглеводная часть- 2 глюкозных остатка,соединенные О.

тиогликозиды, или глюкозинолаты(S- гликозиды)- производные циклических форм сахаров,могут гидролизовыватьсякислотами с образованием меркаптанов(тиолов) и соответствующих моносахаридов. Используются как отвлекающее и раздражающее средство, содержатся в растениях семейства крестоцветные – хрене , редьке, редисе, горчице и семейства луковых. Имеют острый жгучий вкус, что вызывает аппетит.

Флавоноидные гликозиды(все биофлавоноиды)

Заменимые и незаменимые аминокислоты, значение и потребность в них

В настоящее время известно 80 аминокислот, наибольшее значение в питании имеют 30, которые наиболее часто встречаются в продуктах и чаще всего потребляются человеком. К ним относятся следующие.

1. Алифатические аминокислоты:

а) моноаминомонокарбоновые – глицин, аланин, изолейцин, лейцин, валин;

б) оксимоноаминокарбоновые – серин, треонин;

Видео (кликните для воспроизведения).

в) моноаминодикарбоновые – аспаргиновая, глютаминовая;

г) амиды моноаминодикарбоновых кислот – аспарагин, глутамин;

д) диаминомонокарбоновые – аргинин, лизин;

е) серосодержащие – гистин, цистеин, метионин.

[3]

2. Ароматические аминокислоты: фенилаланин, тирозин.

3. Гетероциклические аминокислоты: триптофан, гистидин, пролин, оксипролин.

Наибольшее значение в питании представляют незаменимые аминокислоты, которые не могут синтезироваться в организме и поступают только извне – с продуктами питания. К их числу относят 8 аминокислот: метионин, лизин, триптофан, треонин, фенилаланин, валин, лейцин, изолейцин. В эту группу входят и аминокислоты, которые в детском организме не синтезируются или синтезируются в недостаточном количестве. Прежде всего это гистидин. Предметом дискуссий является также вопрос о незаменимости в детском возрасте глицина, цистина, а у недоношенных детей также глицина и тирозина. Биологическая активность гормонов АКТГ, инсулина, а также коэнзима А и глютатиона определена наличием в их составе SH-групп цистина. У новорожденных детей из-за недостатка цистеназы лимитирован переход метионина в цистин. В организме взрослого человека тирозин легко образуется из фенилаланина, а цистин – из метионина, однако обратной заменяемости нет. Таким образом, можно считать, что число незаменимых аминокислот составляет 11—12.

Поступающий белок считается полноценным, если в нем присутствуют все незаменимые аминокислоты в сбалансированном состоянии. К таким белкам по своему химическому составу приближаются белки молока, мяса, рыбы, яиц, усвояемость которых около 90 %. Белки растительного происхождения (мука, крупа, бобовые) не содержат полного набора незаменимых аминокислот и поэтому относятся к разряду неполноценных. В частности, в них содержится недостаточное количество лизина. Усвоение таких белков составляет, по некоторым данным, 60 %.

Для изучения биологической ценности белков используют две группы методов: биологические и химические. В основе биологических лежит оценка скорости роста и степени утилизации пищевых белков организмом. Данные методы являются трудоемкими и дорогостоящими.

Химический метод колоночной хроматографии позволяет быстро и объективно определить содержание аминокислот в пищевых белках. На основании этих данных биологическую ценность белков определяют путем сравнения аминокислотного состава изучаемого белка со справочной шкалой аминокислот гипотетического идеального белка или аминограмм высококачественных стандартных белков. Этот методический прием получил название аминокислотного СКОРА = отношению количества АК в мг в 1 г исследуемого белка к количеству АК в мг в 1 г идеального белка, умноженного на 100 %.

Читайте так же:  Протеин содержится в продуктах

Белки животного происхождения имеют наибольшую биологическую ценность, растительные – лимитированы по ряду незаменимых аминокислот, прежде всего по лизину, а в пшенице и рисе – также и по треонину. Белки коровьего молока отличаются от белков грудного дефицитом серосодержащих аминокислот (метионина, цистина). К «идеальному белку» по данным ВОЗ приближается белок грудного молока и яиц.

Важным показателем качества пищевого белка служит также степень его усвояемости. По степени переваривания протеолитическими ферментами пищевые белки располагаются следующим образом:

1) белки рыбы и молока;

3) белки хлеба и круп.

Белки рыбы лучше усваиваются из-за отсутствия в их составе белка соединительной ткани. Белковая полноценность мяса оценивается по соотношению между триптофаном и оксипролином. Для мяса высокого качества это соотношение составляет 5,8.

Каждая аминокислота из группы эссенциальных играет определенную роль. Их недостаток или избыток ведет к каким-либо изменениям в организме.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Студент — человек, постоянно откладывающий неизбежность. 10546 —

| 7320 — или читать все.

185.189.13.12 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Аминокислоты и их виды: незаменимые, полузаменимые, заменимые

Аминокислоты — это строительные кирпичики, из которых строятся белки, которые составляют основу наших тканей. Вследствие, если наблюдается недостаток аминокислот в крови, то мышцы не будут расти и несмогут восстанавливаться. Особенно в период активного занятия спортом, когда мышцы особо активно восстанавливаются после нагрузки, и образуется так называемое «протеиновое окно».

Следует знать, что также как и спортивное питание, аминокислоты условно можно разделить на три группы: незаменимые, полузаменимые и заменимые.

Незаменимые аминокислоты

Должны поступать в организм вместе с пищей, так как самостоятельно человек их вырабатывать не способен.

    Валин — это один из главных составляющих роста. Также он понижает чувствительность к факторам окружающей среды, таким как холод и жара, а также улучшает мышечную координацию.

Лейцин поддерживает нашу иммунную систему.

Изолейцин, важнейший компонент мышечной ткани, который также выступает в организме в качестве альтернативного источника энергии.

Фенилаланин участвует в синтезе норэпинерфина, вещества, передающего сигналы от нервных клеток к головному мозгу.

Лизин для переработки кислорода, а также для образования каротина.

Метионин важен для почек и печени.

Треонин принимает участие в детоксикации печени, является одним из элементов коллагена.

Триптофан способствует синтезу серотонина, управляет сном, аппетитом и другими потребностями.

Полузаменимые аминокислоты

Вырабатываются организмом только тогда, когда он получает некое количество этих аминокислот вместе с пищей. При этом все аминокислоты важны для организма, потому что каждая из них имеет особую функцию, в которой ее нельзя заменить.

    Аргинин очищает печень и способствует росту мышечных волокон. Способствует большей секреции гормона роста.

Гистидин участвует в синтезе красных и белых кровяных телец, также важен для роста мышц.

Тирозин может частично заменить фенилаланин для синтеза белка. Отличное противострессовое вещество.

Цистин укрепляет соединительные ткани Роль заменимых аминокислот в жизни организма.

Заменимые аминокислоты

Человеческий организм способен их вырабатывать самостоятельно, без дополнительных усилий.

    Аланин участвует в регуляции сахара в крови, важен для мышечной массы.

Аспарагин одно из составляющих иммунной системы.

Аспарагиновая кислота помогает выделять вредный аммиак и организма. Помогает в сопротивлении организма к усталости.

Глютамин используется для получения энергии при длительных нагрузках. Способствует укреплению памяти.

Глицин составление креатина, синтез красных кровяных телец. Если существует недостаток этих аминокислот, человек чувствует упадок сил.

Пролин формирует соединительные ткани. Может использоваться как альтернативный источник энергии.

Серин участвует в выработке клеточной энергии.

Цитруллин создает детоксикацию аммиака, являющегося побочным продуктом метаболизма.

Таурин необходим для адекватной работы мозга.

Цистеин участвует в росте волос.

Орнитин не участвует в образовании белков, но необходим для активизации обмена веществ.

В спортивном питании аминокислоты используются как в отдельном виде (к примеру аргинин), так и в комплексном (протеины, BCAA и т.д.).

Частично заменимые аминокислоты: аргинин и гистидин.

АМИНОКИСЛОТЫ

Белок организм напрямую не использует. Сначала белок расщепляется (гидролизуется) до аминокислот и аминокислотных групп (пептидов) и только затем эти «кирпичики» используются для восстановления/синтеза мышечных белков.

Аминокислоты — строительные блоки, из которых строятся мышечные волокна.Организм использует их для собственного роста, восстановления, укрепления и выработки различных гормонов, антител и ферментов.

Заменимые аминокислоты.

Большинство аминокислот синтезируются в теле человека и животных из обычных безазотистых продуктов обмена веществ и усвояемого азота – этот так называемые «заменимые» аминокислислоты.

Заменимые аминокислоты: аланин, аргинин, аспарагин, аспарагиновая кислота, глицин (гликокол), глутамин, глутаминовая кислота, пролин, серин, тирозин, цистеин (цистин), цитруллин, гамма-аминомасляную кислоту, орнитин, таурин.

Частично заменимые аминокислоты: аргинин и гистидин.

Отличаются они от остальных тем, что организм может использовать их вместо, соответственно, метионина и фенилаланина для производства белка.
Существуют также аминокислоты, которые не синтезируются в организме человека, но необходимы для нормальной жизнедеятельности. Это — «незаменимые» аминокислоты.

Незаменимые аминокислоты: валин, лейцин, изолейцин, треонин, метионин, фенилаланин, триптофан, лизин Они должны поступать в организм с пищей.

Процесс синтеза белков постоянно идет в организме. В случае, когда хоть одна незаменимая аминокислота отсутствует, образование белков приостанавливается. Отсутствие или недостаток незаменимых аминокислот приводит к остановке роста, падению массы, нарушениям обмена веществ

Читайте так же:  Чем отличается периндоприла аргинин от периндоприла

Аминокислоты в свободной форме — это те аминокислоты, вы чаще всего видите на прилавках магазинов спортивного питания. Это аминокислоты, которые уже изначально переварены или расщеплены синтетическим путем. Однако вопреки заявлениям некоторых экспертов, потребление аминокислот в свободной форме — не лучший вариант получения протеина, необходимого для строительства новой мышечной ткани и поддержания тела в здоровом состоянии.

Тем не менее, в некоторых обстоятельствах эти аминокислоты могут быть полезны, скажем, для достижения так называемых “специфических эффектов”. К примеру, некоторые аминокислоты, такие как триптофан и тирозин, оказывают прямое воздействие на нейротрансмиттеры. Потребление таких аминокислот в свободной форме, как глютамин и аргинин, способствуют повышению выработки гормона роста

Вам нужно понимать, что существует три вида аминокислотных добавок. BCAA, Комплексные и отдельные аминокислоты

ВСАА

Аббревиатура ВСАА означает Branched Chain Amino Acid, то есть, аминокислота с разветвленной боковой цепочкой. Эти аминокислоты являются самым важным компонентом белков мышц. Именно они препятствуют распаду мышечной ткани, вызванному интенсивным тренингом. ВСАА, а это три аминокислоты – изолейцин, лейцин и валин – являются незаменимыми аминокислотами, то есть, наш организм не способен их синтезировать, они могут поступать только извне. ВСАА могут использоваться мышцами и в качестве энергии, но такое их использование является крайне нецелесообразным. Именно поэтому совместно с приемом ВСАА нужно принимать достаточное количество простых углеводов.
Комплексные аминокислоты.

Это продукты, содержащие в себе полный сбаллансированный набор аминокислот для построения мышечных белковых молекул. Подобные продукты включают в себя как заменимые, так и незаменимые аминокислоты в разных количествах.
Отдельные аминокислоты.

Не так распространены, как комплексные по причине своей более узкой специализации. Каждая отдельная аминокислота обладает определенным набором свойств. Давайте их рассмотрим.

Вернуться на главную страницу. или ЗАКАЗАТЬ РАБОТУ

185.189.13.12 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

Аминокислоты, заменимые и незаменимые, химическая природа, биологическое значение, иминокислоты.

Таблица 1.4. Химическая природа аминокислот, название и сокращенное обозначение

В состав белков человека входят 19 аминокислот и одна циклическая иминокислота- пролин, имеющая имнногруппу- NH-. По физиологическому значению аминокислоты подразде­ляются на заменимые, условно заменимые и незаменимые. Незаменимые аминокислоты (три, фен, лиз, вал, тре, мет, лей, иле) не синтезируются в животном организме, поэтому они обязательно должны поступать с пищей. Условно заме­нимые (арг, гис) образуются в организме в недостаточ­ном количестве и их дефицит должен частично покрываться за счет поступления с пищей. К условно заменимым можно отнести и такие аминокислоты как тир и цис, их синтез напрямую зависит от наличия соответственно фенилаланина и метионина, незаменимых аминокислот. Заменимые аминокислоты синтезируются в организме.

3. Биологические функции белков (структурная, транспортная, сократительная, защитная, ферментативная, регуляторная, электротранс-формирующая, участие в передаче генетической информации, дыхательная).

Структурная (опорная, пластическая) — белки определя­ют структуру тела растений, микроорганизмов, животных, входят в состав клеточных и субклеточных мембран. Широко известны такие структурные белки как коллаген и эластин соединительной ткани, оссеин костей, кератин волос и ногтей, обеспечивающие прочность и структуру тканей.

Каталитическая — все биологические катализаторы — ферменты, определяющие скорость метаболи­ческих процессов в организме, являются белками. Выделено примерно 4000 ферментов.

Питательная— первичный синтез аминокислот возможен только в растениях, поэтому необходимо, чтобы в организм животного поступали все незаменимые аминокислоты, кото­рые не синтезируются в организме. Белки являются источни­ками питания развивающегося плода (белки яйца, икры, молока и т. п.).

Транспортная— белки переносят с током крови вещества, нерастворимые в воде — липиды, стероиды, жирораствори­мые витамины, металлы и т. д., доставляя их к органам-мише­ням и способствуя транспорту этих веществ через мембраны клеток. Транспортную функцию обеспечивает и гемоглобин, осуществляющий перенос газов.

Защитная— эту функцию в основном выполняет иммунная система, которая обеспечивает синтез специфических белков — антител и иммуноглобулинов, вырабатывающихся в ответ на введение в организм бактерий и других чужеродных субстанций. К защитной функции белков крови относится и участие фибриногена в процессе свертывания крови, предохраняющего организм от потери крови, и связывание белками крови различных токсических веществ.

Сократительная — способность к передвижению в пространстве, работа сердца, дыхание, перистальтика кишечника, сужение и расширение сосудов обеспечиваются благодаря сократительным белкам мышечной ткани. Сократительная функция присуща и белкам цитоскелета, благодаря которым обеспечиваются важнейшие процессы жизнедеятельности клеток.

Регуляторная— метаболизм регулируется не только ферментами, но и гормонами, многие из которых являются белками, пептидами или производными аминокислот. Рецепторы клеток, воспринимающие регуляторные сигналы, тоже являются белками. Белки участвуют в поддержании гомеостаза организма, регулируя КОС, рН — среды, онкотическое давление белков.

Электротрансформирующая функция заключается в превращении электрической и осмотической энергии в энергию макроэргов.

Белки участвуют в процессе передачи генетической информации.

4. Элементарный состав и молекулярная масса белков.

Несмотря на широкое распространение белков в природе, разнообразие их форм и функций, для всех представителей этого класса существует ряд признаков и свойств, позволяю­щих отнести их к белкам и отличить от соединений других классов.

Близкий элементарный состав.Содержание основных эле­ментов, входящих в состав молекулы белка, одинаково: С-53%, 0-22%, N-16%, Н-7%, S-2%. Содержание азо­та в белках наcтолько постоянно, что был рассчитан белко­вый коэффициент, отражающий количество белка, соответст­вующее 1 г азота: белковый коэффициент =

Читайте так же:  Какой креатин лучше в капсулах или порошок
= 6,25.Можно, определив содержание азота и умножив его на 6,25, рассчитать количество белка в объекте.

Высокая молекулярная масса.Молекулярная масса бел­ков колеблется от 6000 дальтон (Д) до десятков млн. (белок фагов), что в значительной степени определяется склон­ностью белков к агрегации. Основными методами определе­ния молекулярной массы являются гравиметрия, осмометрия, ультрацентрифугирование, гель-электрофорез, гель-фильтрация, гель хроматография.

Не нашли то, что искали? Воспользуйтесь поиском:

Заменимые и незаменимые аминокислоты

Незаменимые аминокислоты и вегетарианство

К незаменимым аминокислотам

[2]

относятся те аминокислоты, которые тело спортсмена не способно самостоятельно воспроизводить, эти аминокислоты приходят в организм лишь с белковой едой. Многие из вас возможно задавались вопросом, что лучше: Протеин или Аминокислоты? Перечислим, какие к незаменимым аминокислотам относятся.

  • Валин. Эта аминокислота минует фильтрующий барьер в печени и применяется в работе каждого мышечного волокна в теле.
  • Гистидин. Эта аминокислота впитывает ультрафиолетовые лучи. Она крайне важна для крови, принимает участие в создании красных и белых кровяных телец. Определенные дозы этой аминокислоты способны вылечить анемию, аллергию, артириты язвы желудочно-кишечного тракта.
  • Изолейцин. Наполняет мышцы силой. Способствует более быстрому восстановлению, а также созданию гемоглобина.
  • Лейцин. Замедляет разрушение мышечного волокна, помогает быстро заживлять раны, кости и сухожилия.
  • Лизин. Способствует поддержанию баланса кислорода в организме, росту костей, хрящей, созданию коллагена.
  • Метионин. Помогает повысить уровень антиоксидантов(глютатиона) и понизить уровень холестерина. Способствует утилизации токсинов.
  • Треонин. Выводит токсины. Уменьшает жир в печени.
  • Триптофан. Помогает в синтезе тестостерона.
  • Фенилаланин. Помогает в умственном труде, улучшает память, улучшает настроение. Лечит депрессию, уменьшает аппетит.

Условно незаменимые аминокислоты — это аминокислоты, которые при конкретном возрасте и виде обмена веществ у конкретного человека не создаются в нужном объеме. Перечислим условно незаменимые аминокислоты.

  • Аргинин. Способствует выработке инсулина, глюкагона и тестостерона. Участвует в заживлении ран, помогает улучшить состояние иммунитета. Имеет тесный контакт с выработкой тестостерона.
  • Тирозин. Улучшает настроение, помогает в выработке многих элементов.
  • Цистеин. Уничтожает многие токсичные. Улучшает иммунитет.

К счастью для людей, не употребляющих в пищу мясо, птицу и рыбу, можно найти все незаменимые аминокислоты в растительной пище. Подобное питание будет иметь для организма положительный эффект, но здоровым и сбалансированным его можно будет назвать при хорошем разнообразии этих растительных продуктов. Вот список растительных продуктов, полностью заменяющих мясные продукты, по незаменимым аминокислотам: зерновые продукты, семейство бобовых (фасоль, соя, чечевица, горох, бобы), грибы, орехи (арахис, грецкие, кешью, миндаль, фундук, кедровые), семечки (тыквенные, пшеничные, льняные, кунжут), нут, яйца, рожь, бурый рис, чечевица, молочные продукты (молоко, сыр, сметана, кефир, йогурт, творог), бананы, финики.

Незаменимые аминокислоты в мясе для людей, в рационе которых присутствует мясо: мясо говядина, мясо свинина, мясо баранина, печень говяжья, мясо куриное, мясо индейки, горбуша, карп, лосось атлантический, сельдь, треска, филе креветки, филе кальмаров. Как видите абсолютно все незаменимые аминокислоты имеют свои аналоги, в зависимости от ваших предпочтений в пище. И при этом не обязательно ограничиваться лишь мясной пищей и верить слухам, что растительная пища не сможет дать необходимого объема и количества незаменимых аминокислот для организма.

Недостаток незаменимых аминокислот – это конечно же то, что они не способны вырабатываться в организме самостоятельно и их объемы в организме человек должен ежедневно полонять с приемом пищи. Недостаток некоторых незаменимых аминокислот в организме способен нанести вред человеку, в некоторых случаях. И так, главное отличие заменимых аминокислот, от незаменимых: незаменимые аминокислоты не синтезируются в человеческом организме, заменимые – синтезируются.

Биосинтез заменимых аминокислот

Современные научные исследования говорят нам о том, что люди в процессе своего развития потеряли возможность вырабатывать все аминокислоты. Заменимые аминокислоты (аланин, аспарагиновая и глутаминовая кислоты и их амиды, аспарагин и глутамин) получаются в результате трансаминирования из промежуточных метаболитов — 2-кетокислот. Пролин вырабатывается в нужном объеме из глутамата, а серин, глицин и цистеин сами по себе природные метаболиты организма человека.

Видео (кликните для воспроизведения).

Биологическая роль незаменимых кислот – это быть незаменимым материалом в строительстве всех мышечных волокон, отдельных клеток костей, хрящей и волос. Без аминокислот жизнь человека кажется невозможной. Невозможно нормально жить, расти и развиваться. Наличие огромного разнообразия аминокислот в питании спортсмена и большие объемы употребления помогут организму нормально функционировать. Протеин, содержащий в себе аминокислоты является основой основ рациона любого человека. Незаменимые аминокислоты обеспечивают структуру и каталитические функции ферментов и гормонов.

Источники


  1. Уфимцев, Вадим Методы скрытой тренировки. Из опыта спецслужб мира / Вадим Уфимцев. — М.: Современная школа, 2010. — 224 c.

  2. Моэс-Оскрагелло, К. Природная пища человека. Питание и здоровье. Выпуск 5 / К. Моэс-Оскрагелло. — М.: Осознание, Самотека, 2015. — 128 c.

  3. Клейнер, Сьюзан Спортивное питание победителей. Здоровье. Фитнес. Спорт / Сьюзан Клейнер. — М.: Эксмо, 2016. — 448 c.
  4. Лоранский, Д.Н. Азбука здоровья: Книга для молодежи / Д.Н. Лоранский, В.С. Лукьянов. — М.: Профиздат, 1990. — 176 c.
  5. Ачкасов, Евгений Евгеньевич Мониторинг сердечной деятельности в управлении тренировочным процессом в физической культуре и спорте / Ачкасов Евгений Евгеньевич. — М.: Триада-Х, 2011. — 113 c.
Заменимые и незаменимые аминокислоты
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here