Значение аминокислот в природе

Важная и проверенная информация на тему: "значение аминокислот в природе" от профессионалов для спортсменов и новичков.

Аминокислоты, заменимые и незаменимые, химическая природа, биологическое значение, иминокислоты.

Таблица 1.4. Химическая природа аминокислот, название и сокращенное обозначение

В состав белков человека входят 19 аминокислот и одна циклическая иминокислота- пролин, имеющая имнногруппу- NH-. По физиологическому значению аминокислоты подразде­ляются на заменимые, условно заменимые и незаменимые. Незаменимые аминокислоты (три, фен, лиз, вал, тре, мет, лей, иле) не синтезируются в животном организме, поэтому они обязательно должны поступать с пищей. Условно заме­нимые (арг, гис) образуются в организме в недостаточ­ном количестве и их дефицит должен частично покрываться за счет поступления с пищей. К условно заменимым можно отнести и такие аминокислоты как тир и цис, их синтез напрямую зависит от наличия соответственно фенилаланина и метионина, незаменимых аминокислот. Заменимые аминокислоты синтезируются в организме.

3. Биологические функции белков (структурная, транспортная, сократительная, защитная, ферментативная, регуляторная, электротранс-формирующая, участие в передаче генетической информации, дыхательная).

[3]

Структурная (опорная, пластическая) — белки определя­ют структуру тела растений, микроорганизмов, животных, входят в состав клеточных и субклеточных мембран. Широко известны такие структурные белки как коллаген и эластин соединительной ткани, оссеин костей, кератин волос и ногтей, обеспечивающие прочность и структуру тканей.

Каталитическая — все биологические катализаторы — ферменты, определяющие скорость метаболи­ческих процессов в организме, являются белками. Выделено примерно 4000 ферментов.

Питательная— первичный синтез аминокислот возможен только в растениях, поэтому необходимо, чтобы в организм животного поступали все незаменимые аминокислоты, кото­рые не синтезируются в организме. Белки являются источни­ками питания развивающегося плода (белки яйца, икры, молока и т. п.).

Транспортная— белки переносят с током крови вещества, нерастворимые в воде — липиды, стероиды, жирораствори­мые витамины, металлы и т. д., доставляя их к органам-мише­ням и способствуя транспорту этих веществ через мембраны клеток. Транспортную функцию обеспечивает и гемоглобин, осуществляющий перенос газов.

Защитная— эту функцию в основном выполняет иммунная система, которая обеспечивает синтез специфических белков — антител и иммуноглобулинов, вырабатывающихся в ответ на введение в организм бактерий и других чужеродных субстанций. К защитной функции белков крови относится и участие фибриногена в процессе свертывания крови, предохраняющего организм от потери крови, и связывание белками крови различных токсических веществ.

Сократительная — способность к передвижению в пространстве, работа сердца, дыхание, перистальтика кишечника, сужение и расширение сосудов обеспечиваются благодаря сократительным белкам мышечной ткани. Сократительная функция присуща и белкам цитоскелета, благодаря которым обеспечиваются важнейшие процессы жизнедеятельности клеток.

Регуляторная— метаболизм регулируется не только ферментами, но и гормонами, многие из которых являются белками, пептидами или производными аминокислот. Рецепторы клеток, воспринимающие регуляторные сигналы, тоже являются белками. Белки участвуют в поддержании гомеостаза организма, регулируя КОС, рН — среды, онкотическое давление белков.

Электротрансформирующая функция заключается в превращении электрической и осмотической энергии в энергию макроэргов.

Белки участвуют в процессе передачи генетической информации.

4. Элементарный состав и молекулярная масса белков.

Несмотря на широкое распространение белков в природе, разнообразие их форм и функций, для всех представителей этого класса существует ряд признаков и свойств, позволяю­щих отнести их к белкам и отличить от соединений других классов.

Близкий элементарный состав.Содержание основных эле­ментов, входящих в состав молекулы белка, одинаково: С-53%, 0-22%, N-16%, Н-7%, S-2%. Содержание азо­та в белках наcтолько постоянно, что был рассчитан белко­вый коэффициент, отражающий количество белка, соответст­вующее 1 г азота: белковый коэффициент =

= 6,25.Можно, определив содержание азота и умножив его на 6,25, рассчитать количество белка в объекте.

Высокая молекулярная масса.Молекулярная масса бел­ков колеблется от 6000 дальтон (Д) до десятков млн. (белок фагов), что в значительной степени определяется склон­ностью белков к агрегации. Основными методами определе­ния молекулярной массы являются гравиметрия, осмометрия, ультрацентрифугирование, гель-электрофорез, гель-фильтрация, гель хроматография.

Не нашли то, что искали? Воспользуйтесь поиском:

Биологическая роль аминокислот (стр. 1 из 2)

Биологическая роль аминокислот

[2]

Это третья разветвленная аминокислота, Один из главных компонентов в росте и синтезе тканей тела .Используется для лечения депрессии, так как действует в качестве несильного стимулирующего соединения. Помогает предотвратить неврологические заболевания и лечить множественный склероз, так как защищает миелиновую оболочку, окружающую нервные волокна в головном и спинном мозге.Вместе с лейцином и изолейцином служит источником энергии в мышечных клетках, а также препятствует снижению уровня серотонина. Понижает чувствительность организма к боли, холоду и жаре .Недостаток может вызываться дефицитом витаминов группы В, или полноценных (богатых всеми незаменимыми аминокислотаим) белков.

Основной источник — животные продукты:

– Молоко
– Яйца
– Мясо
– Овес
– Рис
– Лесные орехи.

Гистидин, в противоположность прочим аминокислотам, почти на 60 процентов всасывается через кишечник.

Он играет важную роль в метаболизме белков, в синтезе гемоглобина, красных и белых кровяных телец, является одним из важнейших регуляторов свертывания крови. В большом количестве содержится в гемоглобине; используется при лечении ревматоидных артритов, аллергий, язв и анемии; способствует росту и восстановлению тканей. Недостаток гистидина может вызвать ослабление слуха. Гистидин легче других аминокислот выделяется с мочой. Поскольку он связывает цинк, большие дозы его могут привести к дефициту этого металла .

Природные источники гистидина:
– Бананы
– Рыба
– Говядина

Одна из трех так называемых разветвленных аминокислот (англ. Branched Chain Amino Acids, BCAA’s). Эти аминокислоты играют важную роль в формирования мышечной ткани. Дефицит изолейцина выражается в потере мышечной массы.

. Поскольку он играет значительную роль в получении энергии за счет расщепления гликогена мышц, недостаток изолейцина также приводит к проявлению гипогликемии (понижения уровня сахара в крови), выражающейся в вялости и сонливости. Низкие уровни изолейцина наблюдаются у пациентов с отсутствием аппетита на нервной почве (анорексией).

Читайте так же:  Жиросжигатели для похудения для девушек

Поставляется всеми продуктами, содержащими полноценый белок :

– Молоко
– Мясо
– Яйца
– Лесной орех

Лейцин также является разветвленной аминокислотой, необходимой для построения и развития мышечной ткани, синтеза протеина организмом, для укрепления иммунной системы . Понижает содержание сахара в крови и способствует быстрейшему заживлению ран и костей. Установлено, что его нет у алкоголиков и наркоманов. Лейцин, как и изолейцин, может служить источником энергии на клеточном уровне. Он также предотвращает перепроизводство серотонина и наступление усталости, связанное с этим процессом. Недостаток этой аминокислоты может быть обусловлен либо неудовлетворительным питанием, либо нехваткой витамина В6 .

Природные источники лейцина:
– Овес
– Кукуруза
– Просо
– Яйца
– Молоко
– Лесной орех .

Природные источники лизина:
– Картофель
– Молоко
– Мясо
– Яйца
– Соя
– Пшеница
– Чечевица .

Является основным поставщиком сульфура, который предотвращает расстройства в формировании волос, кожи и ногтей; способствует понижению уровня холестерина, усиливая выработку лецитина печенью; понижает уровень жиров в печени, защищает почки; участвует в выводе тяжелых металлов из организма; регулирует образование аммиака и очищает от него мочу, что понижает нагрузку на мочевой пузырь; воздействует на луковицы волос и поддерживает рост волос . Так же важное пищевое соединение, действующее против старения, так как оно участвует в образовании нуклеиновой кислоты — регенерирующей составной части белков коллагена. Цистин и таурин (аминокислота, в больших количествах встречающаяся в мускулатуре сердца и скелетных мышцах, а также в центральной нервной системе) синтезируются из метионина. Черезмерное потребление метионина приводит к ускоренной потере кальция.

Природные источники метионина:
– Яйца
– Рыба – Бразильский орех
– Печень – Кукуруза
– Овес

Треонин, как и метионин, обладает липотрофными свойствами. Он необходим для синтеза иммуноглобулинов и антител. Важная составляющая коллагена, эластина и протеина эмали; участвует в борьбе с отложением жира в печени; поддерживает более ровную работу пищеварительного и кишечного трактов; принимает общее участие в процессах метаболизма и усвоения. Важная составляющая в синтезе пуринов, которые, в свою очередь, разлагают мочевину, побочный продукт синтеза белка. Регулирует передачу нервных импульсов нейромедиаторами в мозгу и помогаег бороться с депрессией. Исследования показали, что он может снизить непереносимость глютена пшеницы.

Известно, что глицин и серин синтезируются в организме из треонина В плазме крови младенцев находится в больших количествах, чтобы защищать иммунную систему.

Природные источники треонина:
– Молоко
– Яйца
– Горох
– Пшеница
– Говядина .

Является первичным по отношению к ниацину (витамину В) и серотонину, который, участвуя в мозговых процессах управляет аппетитом, сном, настроением и болевым порогом. Естественный релаксант, помогает бороться с бессонницей, вызывая нормальный сон; помогает бороться с состоянием беспокойства и депрессии; помогает при лечении головных болей при мигренях; укрепляет иммунную систему; уменьшает риск спазмов артерий и сердечной мышцы; вместе с Лизином борется за понижение уровня холестерина .Триптофан распадается до серотонина — нейромедиатора, который погружает нас в сон.

О лекарствах с триптофаном нужно забыть из-за дискредитации препарата, вследствие ошибки в технологии его производства японской корпорацией

Природные источники триптофана:
– Орехи кешью
– Молоко
– Яйца .

Фенилаланин

Используется организмом для производства тирозина и трех важных гормонов — эпинэрфина, норэпинэрфина и тироксина. Используется головным мозгом для производства Норэпинэрфина, вещества, которое передает сигналы от нервных клеток к головному мозгу; поддерживает нас в в состоянии бодрствования и восприимчивости; уменьшает чувство голода; работает как антидепрессант и помогает улучшить работу памяти. Подавляет аппетит и снимает боль.

[1]

Регулирует работу щитовидной железы и способствует регуляции природного цвета кожи путем образования пигмента меланина.

Эта аминокислота играет важную роль в синтезе таких белков, как инсулин, папаин и меланин, а также способствует выведению почками и печенью продуктов метаболизма. Повышенное потребление фенилаланина способствует усиленному синтезу нейротрансмиттера серотонина. Кроме того, фенилаланин играет важную роль в синтезе тироксина – этот гормон щитовидной железы регулирует скорость обмена веществ. У некоторых людей отмечается сильнейшая аллергия к фенилаланину, так что эта аминокислота должна быть названа на этикетке. Беременным и кормящим матерям не надо принимать фенилаланин.

Природные источники фенилаланина:
– Молоко
– Лесной орех
– Рис
– Арахис
– Яйца .

Тирозин необходим для нормальной работы надпочечников, щитовидной железы и гипофиза, создания красных и белых кровяных телец. Синтез меланина, пигмента кожи и волос, также требует присутствия тирозина. Тирозин обладает мощными стимулирующими свойствами. При хронической депрессии, для которой не существует общепринятых методов лечения, потребление 100 мг этой аминокислоты в день приводит к существенному улучшению. В организме тирозин превращается в ДОФА, а затем в дофамин, регулирующий давление крови и мочеиспускание, а также участвует в первом этапе синтеза норэпинефрина и эпинефрина (адреналина). Тирозин мешает превращению фенилаланина в эпинефрин, и потому является незаменимой аминокислотой для взрослых мужчин. Он необходим мужчинам, страдающим фенилкетонурией (генетическое заболевание, при котором превращение фенилаланина в тирозин затруднено). Тирозин также вызывает усиленное выделение гипофизоом гормона роста. При определении пищевой ценности белков следует учитывать сумму содержаний тирозина и фенилаланина, поскольку первый получается из второго. При заболеваниях почек синтез тирозина в организме может резко ослабиться, поэтому в этом случае его необходимо принимать в виде добавки.

Природные источники тирозина:
– Молоко
– Горох
– Яйца
– Арахис
– Фасоль

Молекула цистина состоит из двух молекул цистеина, соединенных дисульфидной связью . Цистеин может замещать метионин в пищевых белках. Он необходим для роста волос и ногтей. Цистеин также играет важную роль в формировании вторичной структуры белков за счет образования дисульфидных мостиков, например, при образовании инсулина и ферментов пищеварительной системы. Он содержит серу, а потому может связвать тяжелые металлы, например медь, кадмий и ртуть. При отравлении тяжелыми металлами полезно принимать это вещество. Недостаток цистина в течение длительного времени приводит к выведению из организма важных микроэлементов. Кроме того, цистин является важным антиоксидантом. Сочетание цистина с витамином Е приводит к усилению антиоксидантного действия обоих веществ (эффект синергизма). Повышенное потребление цистина ускоряет восстановление после операций, ожогов, укрепляет соединительные ткани, вследствие чего повышенное потребление цистеина может быть рекомендовано при артрите.

Читайте так же:  Л карнитин во время беременности

Цистин может синтезироваться организмом из метионина; совместный прием обеих аминокислот усиливает липотропные свойства последнего. Он также важен для получения трипептида, называемого глутатионом (содержит цистин, глутаминовую кислоту и глицин). Цистин в сочетании с витамином С (примерно 1:3) способствует разрушению почечных камней. Цистеин очень плохо растворим в воде и потому вряд ли применим для приготовления жидких форм.

Значение аминокислот в природе

Аминокислотами называют гетерофункциональные соединения, содержащие одновременно аминогруппу и карбоксильную группы в составе одной молекулы. Классифицируют аминокислоты, основываясь на типе углеводородного радикала, на ароматические и алифатические, последние, в свою очередь, подразделяются на α-, β-, γ-, δ- и ω-аминокислоты, химические свойства которых ощутимо различаются.

Представители алифатических аминокислот

Наибольшее значение в химии имеют α-аминокислоты, в основном потому, что они являются мономерами белков – их можно назвать основой жизни. В состав важнейших α-аминокислот входят не только алифатические, но и ароматические и гетероароматические радикалы. Номенклатура аминокислот подразумевает использование названия соответствующей карбоновой кислоты в качестве основы, положение заместителей обозначают цифрами, начиная от карбонильного углерода (IUPAC), либо буквами греческого алфавита, начиная от соседнего атома углерода (рациональная). Широко используются и тривиальные названия. Тривиальные названия обычно связаны с источниками выделения аминокислот. Например, серин выделен из шелка (serieus (лат.) – шелковистый), тирозин – из сыра (tyros (греч.) – сыр). Для удобства написания полипептидных молекул используют сокращенные обозначения аминокислотных остатков.

Общее число встречающихся в природе α-аминокислот достигает 180, из них 20 постоянно присутствуют во всех белковых молекулах. Растения и некоторые микроорганизмы синтезируют все необходимые им аминокислоты. В животном организме некоторые аминокислоты синтезируются, некоторые – нет и должны поступать извне. Такие аминокислоты называют незаменимыми. К незаменимым относятся – валин, лизин, фенилалалнин, лейцин, треонин, триптофан, изолейцин, метионин.

Важнейшие α-аминокислоты

Сокращенное обозначение аминокислотного остатка

АМИНОКИСЛОТЫ

Белки — высокомолекулярные природные полимеры, состоящие из аминокислотных остатков, соединенных пептидной связью; являются главной составной частью живых организмов и молекулярной основой процессов жизнедеятельности.

В природе известно более 300 различных аминокислот, но только 20 из них входят в состав белков человека, животных и других высших организмов. Каждая аминокислота имеет карбоксильную группу, аминогруппув α-положении (у 2-го атома углерода) и радикал(боковую цепь), отличающийся у различных аминокислот. При физиологическом значении рН (

7,4) карбоксильная группа аминокислот обычно диссоциирует, а аминогруппа протонируется.

Все аминокислоты (за исключением глицина) содержат асимметричный атом углерода (т. е. такой атом, все четыре валентные связи которого заняты различными заместителями, он называется хиральныи центром), поэтому могут существовать в виде L- и D-стереоизомеров (эталон – глицериновый альдегид):

Для синтеза белков человека используются только L-аминокислоты. В белках с длительным сроком существования L-изомеры медленно могут приобретать D-конфигурацию, причем это происходит с определенной, характерной для каждой аминокислоты скоростью. Так, белки дентина зубов содержат L-аспартат, который переходит в D-форму при температуре тела человека со скоростью 0,01% в год. Поскольку дентин зубов практически не обменивается и не синтезируется у взрослых людей в отсутствие травмы, по содержанию D-аспартата можно установить возраст человека, что используется в клинической и криминалистической практике.

Все 20 аминокислот в организме человека различаются по строению, размерам и физико-химическим свойствам радикалов, присоединённых к α-углеродному атому.

Структурные формулы 20-ти протеиногенных аминокислот обычно приводят в виде так называемой таблицы протеиногенных аминокислот:

В последнее время для обозначения аминокислот используют однобуквенные обозначения, для их запоминания используется мнемоническое правило (четвертый столбец).

Глицин Gly G Glycine Гли
Аланин Ala A Alanine Ала
Валин Val V Valine Вал
Изолейцин Ile I Isoleucine Иле
Лейцин Leu L Leucine Лей
Пролин Pro P Proline Про
Серин Ser S Serine Сер
Треонин Thr T Threonine Тре
Цистеин Cys C Cysteine Цис
Метионин Met M Methionine Мет
Аспарагиновая кислота Asp D asparDic acid Асп
Аспарагин Asn N asparagiNe Асн
Глутаминовая кислота Glu E gluEtamic acid Глу
Глутамин Gln Q Q-tamine Глн
Лизин Lys K before L Лиз
Аргинин Arg R aRginine Арг
Гистидин His H Histidine Гис
Фенилаланин Phe F Fenylalanine Фен
Тирозин Tyr Y tYrosine Тир
Триптофан Trp W tWo rings Три

Существуют разные классификации аминокислот. Одна из них основана на характеристике интенсивности молекулярного взаимодействия бокового радикала с водой.

1. Гидрофобные (неполярные) (гли, ала, вал, лей, про, иле, три, фен).

2. Гидрофильные (полярные):

а) незаряженные (сер, тре, цис, асн, глн, тир*, мет*);

— отрицательно заряженные (глу, асп);

— положительно заряженные (лиз, арг, гис).

*некоторые источники относят тир и мет к гидрофобным аминокислотам.

Гидрофильные вещества интенсивно взаимодействуют с молекулами воды, они содержат полярные химические связи. Гидрофобность – это физическое свойство молекулы, которая «стремится» избежать контакта с водой. Гидрофобные молекулы обычно неполярны и «предпочитают» находиться среди других нейтральных молекул и неполярных растворителей. Гидрофильность и гидрофобность являются проявлением сил Ван-дер-Ваальса (группа слабых взаимодействий). Эти взаимодействия в основном определяют силы, ответственные за формирование пространственной структуры биологических макромолекул.. Пространственная структура воды стремится вытеснить гидрофобные группы, нарушающие сеть из связанных водородными связями молекул воды. Такое выталкивание из водного раствора и называют гидрофобным взаимодействием. Известно, что биологические биополимеры функционируют в водном окружении и именно наличие гидрофобных связей в значительной мере определяет форму, которую приобретает макромолекула.

Можно классифицировать аминокислоты по строению радикала:

1. Алифатические (гли, ала, вал, лей, илей).

2. Гидроксиаминокислоты (сер, тре).

3. Дикарбоновые (асп, глу).

4. Амиды дикарбоновых кислот (асн, глн).

5. Серосодержащие (мет, цис).

Читайте так же:  Креатин 1250 мега капс как принимать

6. Циклические (фен, тир, три, гис).

7. Диаминомонокарбоновые (лиз, арг).

Видео (кликните для воспроизведения).

8. Иминокислота (про).

В состав белков человека входит 19 аминокислот и 1 циклическая иминокислота — пролин, имеющая иминогруппу -NH-. Роль гидрофобного радикала в этой молекуле играет насыщенная алифатическая трехуглеродная цепь, образующая 5-членный цикл между α-углеродным атомом и иминогруппой:

Некоторые белки содержат аминокислоты с модифицированными радикалами, отсутствующие в других белках. Так, в полипептидную цепь коллагена входит гидроксилизин, эластина и коллагена — гидроксипролин. Факторы свертывания крови протромбин, проконвертин, белки костной ткани остеокальцин, сиалопротеин содержат γ-карбоксиглутаминовую кислоту:

Гидроксилизин Гидроксипролин γ-Карбоксиглутаминовая кислота

Модификация радикалов таких аминокислот обычно происходит уже после включения их в полипептидную цепь, т.е. на постсинтетическом периоде.

Существует еще одна классификация аминокислот, по способности организма синтезировать их из предшественников:

Незаменимые для человека: валин, изолейцин, лейцин, треонин, метионин, лизин, фенилаланин, триптофан, аргинин (незаменима для детей), гистидин.

Заменимые для человека: глицин, аланин, пролин, серин, цистеин, аспартат, аспарагин, глутамат, глутамин, тирозин.

Мнемоническое правило для запоминания заменимых и незаменимых аминокислот:

Фенилаланин Валин Метионин
Лизин Лейцин Треонин
Аргинин* Изолейцин
Гистидин Триптофан

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 8820 —

| 7529 — или читать все.

185.189.13.12 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

VIII Международная студенческая научная конференция Студенческий научный форум — 2016

АМИНОКИСЛОТЫ, ИХ РОЛЬ В ПРИРОДЕ

Все природные аминокислоты (кроме глицина) оптически активны и принадлежат к L-ряду. При микробиологическом способе аминокислоты образуются в процессе жизнедеятельности бактерий. Гидролитический метод основан на гидролизе белковых природных продуктов, например рогов, копыт, крови (отходов преимущественно мясной промышленности), из которых выделяются аминокислоты. Оба способа приводят к получению смеси оптически активных α -аминокислот L-ряда. Синтетические методы дают рацемическую смесь D- и L-аминокислот.

В производственных масштабах микробиологическим методом преимущественно получают лизин и глутаминовую кислоту; гидролитическим-цистеин, лейцин, изолейцин; синтетическим-метионин и глутаминовую кислоту. В отдельных случаях сочетают синтетический и микробиологический способы (лизин). Сначала синтезируют рацемическую смесь аминокислот, а затем ферментативно, в результате поглощения бактериями D-изомера, выделяют L-изомер.

Совсем недавно α -аминокислоты получали в незначительных количествах и использовали преимущественно для научных исследований. Сейчас они стали многотоннажными промышленными продуктами в связи с необходимостью обеспечения питанием все возрастающего населения земного шара.

Белковое голодание определяется сейчас в 4 млн. т белка, соответствующих 15 млн. т мяса крупного рогатого скота. Оно преодолевается увеличением ресурсов сельского хозяйства (животноводство и земледелие), получением из углеводородов нефти микробиологического белка (кормового и пищевого) без вкуса и запаха, не уступающего по питательности пищевым белкам, богатым лизином, но лишенным метионина. Наконец, питательная ценность пищи и кормов значительно повышается добавлением к ним небольших количеств незаменимых α -аминокислот. Так, например, добавление 0,1-0,25% лизина к кормам снижает расход кормов на 15-20% и увеличивает привес сельскохозяйственных животных на 20%, а введение в корм метионина повышает яйценосность кур на 20%. Глутаминовая кислота — самая распространенная в мире приправа (после соли) — добавляется для улучшения вкуса почти всех пищевых концентратов и консервов. Она также помогает бороться с некоторыми нервно-психическими заболеваниями.

Библиографичeкий список:

Брыкалов, А.В. Синтез и исследование композиционных кремнеземных и углеродных сорбентов / Брыкалов, А.В., Белик, Е.В., Шипуля, А.Н.: монография. – Ставрополь, 2006.

Определение термодинамических характеристик иммобилизованных сорбентов /Шипуля, А.Н. Пашкова Е.В., Беловолова А.А.// Сборник научных трудов SWord.- Выпуск 3. Том 48. – Одесса: КУПРИЕНКО СВ, 2013 г.

Аминокислоты в природе и их использование

Рис. 1. Структурные модели L- и D-аланина.
Химические свойства :
1) Некоторые свойства аминокислот, в частности высокая температура плавления, объясняется своеобразным их строением (биполярные ионы). Свободные а-аминокислоты в результате взаимодействия основной аминогруппы и кислой карбоксильной группы в водных растворах существуют в виде внутренних солей, представляющих собой биполярные ионы, поэтому их водные растворы обычно почти нейтральны (рН

Работа на этой странице представлена для Вашего ознакомления в текстовом (сокращенном) виде. Для того, чтобы получить полностью оформленную работу в формате Word, со всеми сносками, таблицами, рисунками, графиками, приложениями и т.д., достаточно просто её СКАЧАТЬ.

Аминокислоты

Аминокислоты — это класс органических соединений, имеющих амфотерные свойства, поскольку в их молекулах содержатся карбоксильные (–СООН) и аминные (-NH2) группы. Аминокислоты способны реагировать между собой, образуя полипептидные цепи, которые являются основой белков.

Реакция диссоциации аминокислоты глицина

Молекулы аминокислот, в отличие от биологических молекул — жиров и углеводов, — непременно содержат азот. Аминокислоты — это группа карбоновых кислот, в состав которых входят одна или несколько аминогрупп (-NH2), придающие им еще и щелочные свойства. Таким образом, это амфотерные (греч. амфотерос — оба) соединения, реагирующие как со щелочами, так и с кислотами.

Растворения аминокислот в воде обусловлено их диссоциацией, в результате чего в растворе карбоксильная группа отдает атом водорода, получая отрицательный заряд, а аминогруппа присоединяет атом водорода и получает положительный заряд.

Ключевые аминокислоты

Ключевыми считают 20 аминокислот, различающихся строением боковых цепей, которых в химии называют радикалами. В составе простейшей аминокислоты — глицина — боковую цепь заменяет атом водорода. В сложнее организованной кислоте — аланине — боковой цепью является уже метильная группа (СН3).

Дальнейшее разнообразие аминокислот обусловлено усложнением боковой цепи. Она может состоять из углеводородной цепи, спиртового остатка, соединений серы, дополнительной карбоксильной или аминогруппы и даже довольно сложных органических соединений, карбоновая цепь которых имеет форму кольца. В зависимости от структуры боковых цепей аминокислоты имеют различные химические и физические свойства. Аминокислоты могут быть неполярными, полярными, иметь кислотные или щелочные свойства.

Незаменимые аминокислоты

Растения способны синтезировать все 20 необходимых для жизни аминокислот, используя для этого только остатки карбоновой и азотной кислот и солнечную энергию. Животные также могут образовывать аминокислоты из простых молекул, однако не способны синтезировать так называемые незаменимые аминокислоты. Эти аминокислоты не играется какой-то особой роли, отличной от других аминокислот, и не имеют слишком сложного строения. Каждому виду животных присущ определенный набор незаменимых аминокислот. В организме человека не синтезируются восемь аминокислот: валин, изолейцин, лейцин, лизин, метионин, треонин, триптофан, фенилаланин. Незаменимые аминокислоты должны поступать в организм животных и человека с пищей.

Читайте так же:  Креатин для набора веса

Пептидная связь и пептиды

Аминокислоты способны реагировать между собой — карбоксильная группа одной аминокислоты вступает в реакцию с аминогруппой другой. Во время реакции образуется молекула воды, а валентности, которые высвободились, участвуют в связях между аминокислотами.

Ковалентная связь аминогруппы с карбоксильной (-NH-CO-) получила название пептидной связи. Она присуща только аминокислотам. Вещества, состоящие из остатков двух-восьми аминокислот, называются пептидами, а вещества, состоящие из остатков десяти-шестидесяти аминокислот — полипептидами.

Функции аминокислот

Аминокислоты выполняют прежде всего структурную функцию, поскольку являются звеньями, из которых строятся белки. Кроме того, им присущи другие важные функции.

Отдельные пептиды и аминокислоты является основой не только для белков, но и для других веществ. Например, неотъемлемым компонентом меланина — пигмента кожи и волос человека — является аминокислота тирозин. Также на основе этой аминокислоты образуется гормон щитовидной железы тироксин.

Аминокислоты, которые поступают в организм животного с пищей, могут быть и источником энергии. Аминокислоты окисляются до CO2 и H2O и простых азотсодержащих соединений, при этом высвобождается 17,6 кДж энергии с 1 г аминокислоты.

Благодаря своим амфотерными свойствам аминокислоты обеспечивают постоянное рН содержимого клетки.

Аминокислоты и их функции в организме человека

Аминокислоты — полифункциональные соединения, содержащие по меньшей мере две разные химические группировки, способные реагиро­вать друг с другом с образованием ковалентной пептидной (амидной) связи.

Общее число встречающихся в природе аминокислот достигает око­ло 300. Среди них различают: а) аминокислоты, входящие в состав бел­ков; б)аминокислоты, образующиеся из других аминокислот, но только после включения последних в процесс синтеза белка (их обнаруживают в гидролизатах белков); в) свободные аминокислоты. С точки зрения питания выделяют эссенциальные (незаменимые) аминокислоты. Эти аминокислоты не могут синтезироваться в организме человека и долж­ны поступать с пищей.

Аминокислоты играют большую роль в синтезе важнейших физиологически актив­ных соединений в организме и обеспечении некоторых свойств пищево­го сырья и продуктов.

Все живые организмы различаются по способности синтезировать ами­нокислоты, необходимые для биосинтеза белков. В организме человека синтезируется только часть аминокислот, другие должны доставляться с пищей. Первые из них называются заменимыми, вторые — неза­менимыми. Заменимые аминокислоты способны заме­нять одна другую в рационе, так как они превращаются друг в друга или синтезируются из промежуточных продуктов углеводного или липидного обмена. Для незаменимых аминокислот такие пути обмена существуют только у растений и некоторых микроорганизмов.

Жизнедеятельность человека обеспечивается ежедневным потребле­нием с пищей сбалансированной смеси, содержащей восемь незамени­мых аминокислот и две частично заменимые.

Незаменимые представле­ны аминокислотами с разветвленной цепью углерода — лейцином, изолейцином и валином, ароматическими — фенилаланином, триптофаном и алифатическими — треонином, лизином и метионином. Так как из метионина и фенилаланина в организме синтезируется цистеин и тирозин, соответственно, то наличие в пище в достаточном количестве этих двух заменимых аминокислот сокращает потребность в незаменимых пред­шественниках.

К частично заменимым аминокислотам относят аргинин и гистидин, так как в организме они синтезируются довольно медленно. Недостаточ­ное потребление аргинина и гистидина с пищей у взрослого человека в целом не сказывается на развитии, однако может возникнуть экзема или нарушиться синтез гемоглобина. В аргинине и гистидине особенно нуж­дается молодой организм.

Отсутствие в пище хотя бы одной незаменимой аминокислоты вызы­вает отрицательный азотистый баланс, нарушение деятельности цент­ральной нервной системы, остановку роста и тяжелые клинические по­следствия типа авитаминоза. Нехватка одной незаменимой аминокис­лоты приводит к неполному усвоению других. Данная закономерность подчиняется закону Либиха, по которому развитие живых организмов определяется тем незаменимым веществом, которое присутствует в наи­меньшем количестве.

Зависимость функционирования организма от количества незамени­мых аминокислот используется при определении биологической ценно­сти белков химическими методами. Наиболее широко используется ме­тод X. Митчела и Р. Блока (Mitchell, Block, 1946), в соответствии с кото­рым рассчитывается показатель аминокислотного скора (АС).

Скор выражают в процентах или безразмерной величиной, представля­ющей собой отношение содержания незаменимой аминокислоты в исследуемом белке к ее количеству в эталонном белке.

Аминокислота, скор которой имеет самое низкое значение, называ­ется первой лимитирующей аминокислотой. Значение скора этой ами­нокислоты определяет биологическую ценность и степень усвоения бел­ков.

Не нашли то, что искали? Воспользуйтесь поиском:

4.1. Строение, свойства и биологические функции аминокислот.

Аминокислоты — это первичные азотистые вещества растений, которые синтезируются с использованием минерального азота, поступающего главным образом из почвы. В молекулах аминокислот имеются карбоксильные и аминные группировки, соединённые с органическим радикалом алифатической, ароматической или гетероциклической природы. Если аминокислота содержит одну карбоксильную и одну аминную группу, связанную со вторым углеродным атомом ( α-положение), строение такой аминокислоты можно выразить следующей формулой:

Аминокислоты, имеющие одну карбоксильную и одну аминную группу, принято называть моноамuномонокарбоновымu. У боль­шинства из них аминогруппа находится в α-положении по отно­шению к атому углерода карбоксильной группы. Однако известны также некоторые аминокислоты, у которых аминогруппа связана с другими углеродными атомами (_b, γ, d и др., см. табл. 1).

В организмах также синтезируются аминокислоты с двумя кар­боксильными или двумя аминными и другими азотсодержащими группировками. Аминокислоты, содержащие две карбоксильные и одну аминную группы, обычно называют моноамuнодuкaрбоновы.мu, а имеющие две аминные и одну карбоксильную — диаминомоно­карбоновымu. Кроме того, аминокислоты различаются по строению радикала R, который может быть представлен неразветвлённой, а иногда и разветвлённой углеродной цепью, ароматическими и гете­роциклическими производными.

Читайте так же:  Сколько грамм креатина в чайной ложке

Наряду с аминокислотами важную роль в обмене азотистых веществ играют некоторые иминокислоты (пролин, пипеколиио­вая кислота и др.), содержащие вторичную аминную группировку (═NH). Они близки по физико-химическим свойствам к истинным аминокислотам и выполняют сходные биологические функции.

Важные функции в растительном организме выполняют производные аминокислот – амиды и бетаины, из которых наиболее хорошо изучены аспарагин, глутамин и гликоколбетаин. Аспарагин и глутамин участвуют в построении белковых молекул, являются продуктами обмена многих азотистых веществ. Гликоколбетаин ─ продукт азотного обмена у некоторых растений, служит активным донором метильных групп.

Все аминокислоты, за исключением глицина, содержат асим­метрические атомы углерода и проявляют оптическую активность.

D- и L-формы аминокислот различают по положению водорода и аминогруппы у α-углеродного атома. За эталон сравнения прини­маются конфигурации молекул L- и D-серина. Изомеры аминокис­лот, имеющие расположение в пространстве водорода и амино­группы у α-углеродного атома такое же, как у L-серина, относят L-ряду, а сходное с конфигурацией молекулы D-серина – к D-ряду.

Направление и угол вращения плоскости поляризации света у разных аминокислот и их оптических изомеров зависит от строе­ния радикала R, реакции среды (рН), природы растворителя и раст­ворённых в нём веществ.

Подавляющее большинство природных аминокислот синте­зируется в организмах в виде L-форм, а D-формы аминокислот встречаются редко, чаще всего в клетках микроорганизмов. При химическом синтезе образуется смесь L— и D-изомеров аминокислот.

Ферментные системы растений, человека и животных специ­фически приспособлены катализировать биохимические реакции, происходящие с участием L-изомеров аминокислот, и не способны к превращениям D-изомеров, которые даже могут ингибировать биохимические процессы в организме. В опытах установлено, что только метионин может усваиваться организмами человека и животных как в L-форме, так и D-форме.

Первые аминокислоты были открыты в начале XIX века, а к концу этого века уже были выделены и изучены почти все аминокислоты, входящие в состав белков. В настоящее время известно более 200 аминокислот. Важнейшая биологическая роль аминокислот — пост­роение белковых молекул. Аминокислоты, участвующие в синтезе белков, принято называть протеиногенными, их насчитывается 18. Кроме того, в синтезе белков принимают участие два амида — аспара­гин и глутамин.

После синтеза белковой молекулы в ней могут про­исходить модификации радикалов некоторых аминокислот, поэтому при анализе состава белков, кроме протеиногенных, обнаруживают некоторые другие аминокислоты (оксипролин, оксилизин и др.).

Аминокислоты, не участвующие в синтезе белков, являются важными метаболитами, с участием которых происходит синтез протеиногенных аминокислот, а также всех других азотистых ве­ществ растительного организма: нуклеотидов, амидов, азотистых оснований, алкалоидов, некоторых липидов, многих витаминов, хлорофилла, фитогормонов (ауксинов, цитокининов), некоторых фитонцидов. Строение и биологическая роль важнейших амино­кислот представлены в таблице 1.

Растения и природные формы микроорганизмов способны син­тезировать все необходимые им аминокислоты из других органи­ческих веществ, тогда как организмы человека и животных не спо­собны к синтезу некоторых аминокислот, входящих в состав белков. Эти аминокислоты называют незаменимыми и они должны посту­пать в организм с пищей.

Для взрослого человека незаменимыми являются 8 аминокислот: лизин, триптофан, метионин, треонин, лейцин, валин, изолейцин, фенилаланин. Для детей и некоторых групп животных незаменимыми также являются аргинин, гистидин и цистеин. При недостатке незаменимых аминокислот ослабляется синтез белков, что может быть причиной тяжелых заболеваний. А их недостаток в растительных кормах снижает выход животно­водческой продукции в расчете на единицу массы затраченного корма, в результате чего повышается ее себестоимость.

В целях составления правильного пищевого рациона для каж­дого вида организмов с учетом возрастного и физического состо­яния определены ежедневные нормы потребления незаменимых аминокислот. В среднем для человека они составляют, г: валин–­5,0, лейцин–7,0, изолейцин –4,0, лизин–5,5, триптофан–1,0, треонин–4,0, метионин–3,5, фенилаланин –5,0.

Чаще всего в кормах сельскохозяйственных животных в недоста­точном количестве содержатся такие незаменимые аминокислоты, как лизин, триптофан и метионин. Для балансирования кормов по со­держанию

этих аминокислот разработаны промышленные способы их получения. В связи с тем, что лизин и триптофан усваиваются жи­вотными только в виде Lизомеров, то для производства кормовых препаратов указанных аминокислот применяют микробиологический синтез, при котором реализуется природный механизм образова­ния L-изомеров аминокислот. Поскольку метионин может усваи­ваться животными в виде D- и L-форм, то для его промышленного получения используется менее затратный химический синтез, даю­щий рацемическую смесь оптических изомеров этой аминокислоты.

Содержание свободных аминокислот в растениях зависит от вида органа или ткани, возраста растений, внешних условий и особенно подвержено большим изменениям в зависимости от интенсивности протекания тех биохимических процессов, которые сопряжены с их потреблением (синтез белков, нуклеиновых кислот и других азотис­тых веществ). Концентрация аминокислот повышается при ослабле­нии ростовых процессов, недостатке питательных элементов, избы­точном азотном питании, усилении процессов распада белков при старении растений или прорастании семян.

Видео (кликните для воспроизведения).

Концентрации отдельных аминокислот могут возрастать в ре­зультате метаболитных нарушений в организме и под воздействием стрессов. Так, например, при вододефицитном стрессе в клетках растений происходит накопление аминокислоты пролина, а при избыточном аммонийном питании – накопление аспарагина, глутамина и аргинина.

Источники


  1. Рунова, М. А. Дифференцированные занятия по физической культуре с детьми 4-5 лет / М.А. Рунова. — М.: Просвещение, 2014. — 112 c.

  2. Педагогика физической культуры и спорта. — М.: Academia, 2010. — 336 c.

  3. Киреевский, И.Р. Питание для лиц c IV(AB) группой крови / И.Р. Киреевский. — М.: АСТ, Сталкер, 2004. — 155 c.
  4. История физической культуры и спорта / ред. В.В. Столбов. — М.: Физкультура и спорт, 2014. — 359 c.
  5. Ингерлейб, М. Б. Все дыхательные гимнастики в одной книге / М.Б. Ингерлейб. — М.: АСТ, Астрель, ВКТ, 2012. — 320 c.
Значение аминокислот в природе
Оценка 5 проголосовавших: 1

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here